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Abstract—We propose an explicit numerical integration
method based on matrix exponential operator for transient
analysis of large-scale circuits. Solving the differential equation
analytically, the limiting factor of maximum time step changes
largely from the stability and Taylor truncation error to the error
in computing the matrix exponential operator. We utilize Krylov
subspace projection to reduce the computation complexity of
matrix exponential operator. We also devise a prediction-
correction scheme tailored for the matrix exponential approach
to dynamically adjust the step size and the order of Krylov
subspace approximation. Numerical experiments show the
advantages of the proposed method compared with the implicit
trapezoidal method.

Index Terms—Adaptive time step, matrix exponential,
transient simulation.

I. Introduction

THE TREND toward ever higher integration density of
very large-scale integration has made the time-domain

circuit simulation [1] a bottleneck in today’s integrated circuit
design flows. For designs with millions of elements, SPICE-
like simulation [1] can easily take days, even weeks, to com-
plete the task. Therefore, accurate yet fast circuit simulation
methods have always been one of the major demands in in-
dustry. Many efforts have been made to speed up the transient
circuit simulation by improved integration algorithms [2]–[11].

Time-domain circuit simulation involves solving a system
of ordinary differential equations (ODEs), which describes
the behavior of circuit and can be solved numerically in
either implicit or explicit way. The ODE system of circuit
is usually stiff since the magnitude of elements in a circuit
varies in a wide range. For example, capacitance usually
ranges from 10−16 to 10−12. Most of SPICE-like simulators
adopt implicit methods, e.g., backward Euler and trapezoidal
methods (TRAP), to overcome the stability problem of stiff
ODE system. However, implicit methods are required to
solve a linear system at each time step and hence increase
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computation time of circuit simulation. Despite the impressive
achievements in iterative matrix solving methods [12], the
ill-conditioning matrix resulting from implicit methods signif-
icantly degrades the performance of the iterative techniques.
On the other hand, although direct technique [13] can be
applied on any matrix, empirically, both computation and
memory complexity are about O(n1.5), where n is the number
of unknowns. The limitation of performance and memory are
the major problems of implicit methods for circuit simulation.

In contrast, for each time step, explicit methods, in general,
need only sparse matrix-vector multiplication whose compu-
tation and memory complexity are O(n). Nevertheless, the
stability issue of explicit methods for stiff ODE enforces the
use of smaller time steps when simulating a circuit, and the
benefits of sparse matrix-vector product are damaged.

Apart from the above numerical methods, we can solve an
ODE system in a semianalytical way, where the time span
is still discretized but within each time step the equation
is solved analytically by the matrix exponential operator
eA, A ∈ CN×N . This leads to a distinct class of numerical
approach for differential equations called exponential time
differencing (ETD), which is dated back to 1960s [14] and
has been “reinvented” over the years in some areas, such as
computational physics [15], [16] and chemistry [17]. Solving
differential equations analytically removes the local truncation
error (LTE) of polynomial expansion approximation in most
numerical methods, and the stability of ETD is as the same as
TRAP, which is A-stable for passive circuits. Therefore, the
step size of ETD is free from restrictions of the stability and
the LTE of polynomial expansion.

The core computation of ETD lies in calculating the matrix
exponential. Moler and Van Loan summarized 19 ways of
computing a matrix exponential in their classic work [18], all
of which are considered costly and thus limit the usage of ETD
in time-domain simulation for circuits with huge size. In recent
years, the Krylov subspace method has been introduced as the
20th way and enables an efficient evaluation of the product of
eAv for very large-scale matrix A [18].

In this paper, we adapt the idea of ETD into the con-
text of time-domain circuit simulation and develop an ex-
plicit time-marching scheme called matrix exponential method
(MEXP) [19], [20]. Our method directly computes the analyt-
ical solution of the differential equations resulting from mod-
ified nodal analysis (MNA) [21]. We utilize the Krylov sub-
space method [22], [23] to approximate the matrix exponential
operator, which significantly reduces the complexity of matrix
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exponential computation. The largest step size of our method is
generally limited by the nonlinearity of nonlinear devices and
also approximation error of the matrix exponential operator.

Furthermore, the matrix exponential formulation together
with the Krylov subspace method has some special properties
that can be exploited to develop more efficient dynamic time
step control than that currently used in SPICE-like simulators
based on implicit methods. The properties include the scaling
invariance of Krylov subspace projection and a convenient
error estimate in computing the matrix exponential. Utilizing
these properties, a prediction–correction scheme is designed
in this paper for adaptive control of the step size and the
order of Krylov subspace approximation during the numerical
integration.

The remainder of this paper is organized as follows. Sec-
tion II introduces the general matrix exponential formulation
for linear and nonlinear circuits. Section III presents the
technique to regularize the singular matrix in the matrix
exponential formulation. Section IV presents the efficient
computation of matrix exponential operator by Krylov sub-
space approximation. Section V discusses the adaptive control
for MEXP. Section VI shows the experimental results and
Section VII concludes this paper.

II. Matrix Exponential Formulation

In this section, we present the primary formulation of
MEXP in linear and nonlinear circuit simulation. In MNA,
a linear circuit is represented by a system of linear differential
algebraic equations (DAEs) as follows:

Cẋ(t) = −Gx(t) + Bu(t) (1)

where C is the capacitance and inductance matrix, G describes
the conductance and the incidence between voltages and cur-
rents, and B is the input matrix of independent sources. Vector
x(t) contains nodal voltages and certain branch currents at time
t, and u(t) denotes the input voltage and current sources. Pro-
vided that C is invertible, (1) is reducible to a system of ODEs.
Given an initial condition x(0) of the circuit (e.g., from dc
analysis), one can obtain the analytical solution [24] of (1) as

x(t) = eA(t)x(0) +
∫ t

0
eA(t−τ)b(τ)dτ

where A = −C−1G (we do not need to explicitly compute
C−1G as will be shown in Section IV) and b(t) = C−1Bu(t).
Given the solution at time t and a time step h, the solution at
t + h is

x(t + h) = eAhx(t) +
∫ h

0
eA(h−τ)b(t + τ)dτ. (2)

Following the convention of SPICE-like simulators, we
assume that the given input u(t) is piecewise linear (PWL),
i.e., u(t) is linear within every time step. The integral term in
(2) can be computed analytically, turning (2) to (3) involving
three functions with matrix exponential operators as follows:

x(t + h) = eAhx(t)

+ (eAh − I)A−1b(t)

+ (eAh − (Ah + I))A−2 b(t + h) − b(t)

h
. (3)

We call the solution scheme based on this formulation as
MEXP. MEXP is an A-stable explicit method because x
approaches zero as h tends to infinity when eigenvalues of
A are negative.

Note that MEXP is an exact method in the sense that one
can solve (1) analytically, provided that the matrix exponential
is computed exactly and the PWL assumption of input is
satisfied. This is of theoretical difference from linear multistep
methods, such as the forward Euler method and the trapezoidal
methods. These methods approximate (1) by polynomial ex-
pansion and drop high-order terms, which is the source of
LTE. Therefore, for linear circuits, the step size of MEXP
is not restricted by LTE or stability, but instead solely by
the computation error of matrix exponential, which will be
detailed in Section IV.

For nonlinear circuits, the differential equation is given by

q̇(x(t)) + Clẋ(t) = − (
Glx(t) + i(x(t))

)
+ Bu(t) (4)

where Cl and Gl describe the linear capacitances, inductances
and conductances, and q(x(t)) and i(x(t)) denote the nonlinear
charges and currents from the nonlinear elements. With a mild
approximation, we assume the nonlinear charge varies linearly
within the time interval (tn, tn+h), which leads to a differential
equation similar to (1) as follows:

Cnẋ(t) = − (
Glx(t) + i(x(t))

)
+ Bu(t) (5)

with Cn = Cl + Cnl
n , where Cnl

n is the companion capacitance
matrix for nonlinear devices evaluated at tn. The exact solution
of (5) is therefore in an analogous form with (2) as follows:

x(tn + h) = eAnhx(tn) (6)

+
∫ h

0
eAn(h−τ) [F(x(tn + τ)) + b(tn + τ)] dτ

where A = −C−1
n Gl and F(x(τ)) = −C−1

n i(x(τ)).
The second-order implicit approximation of F(τ) =

(F(xn) + F(xn+1)) /2, which is A-stable [15], leads to an al-
gebraic nonlinear system as follows:

xn+1 =
(eAh − I)

2
A−1F (xn+1) + eAhxn

+ (eAh − I)A−1

(
Fn

2
+ bn

)
+ (eAh − Ah − I)A−2�bn

(7)

where �bn = bn+1−bn

h
. The nonlinear equation arising from

the (implicit) approximation of F involves the product of a
function of matrix exponential and the nonlinear function,
which couples the responses from the linear elements and
nonlinear elements in the circuit. Such coupled system is
generally expensive to solve by standard iterative solvers, e.g.,
Newton’s method or fixed point method, since the functions
of matrix exponential need to be reevaluated by the Krylov
subspace approximation in every iteration, as will be more
obvious in Section IV.

To decouple the linear and nonlinear terms in the above
equation, we adapt the scheme developed in [25], which
approximates e−An(τ)F(x(tn + τ)) instead of F(x(tn + τ)) by
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a Lagrange polynomial in the temporal integral of (6). The
second-order implicit approximation is then of the form

xn+1 =
h

2
F (xn+1) + eAh

(
xn +

h

2
Fn

)
+ (eAh − I)A−1bn

+ (eAh − Ah − I)A−2�bn

(8)

with a LTE of

−h3

12

(
(Ah)2Fn + (Ah)Ḟn + F̈n

)
. (9)

In (8), the nonlinear function of xn+1 is only multiplied by a
scalar coefficient, other than the matrix exponential function
in (7). The remaining three matrix exponential functions
involve only known quantities from previous time steps. This
decoupling of nonlinearity and matrix exponential (essentially
linearity) facilitates the numerical solution greatly, in that the
time-consuming evaluation of matrix exponential is needed
only once in each time step, while the nonlinear solution can
iterate multiple times until convergence.

The nonlinear equation of (8) can be readily solved by
Newton’s method. Nevertheless, it is more convenient and
consistent to solve it by standard fixed point solver as shown
in [25], since the starting point of the matrix exponen-
tial framework is to replace solution of linear system with
(efficient) computation of matrix exponential as follows:

xk+1
n+1 =

h

2
F
(
xk

n+1

)
+ eAh

(
xn +

h

2
Fn

)
+ (eAh − I)A−1bn

+ (eAh − Ah − I)A−2�bn.

(10)

To ensure convergence, one needs to maintain the following
condition throughout the fixed point iterations:∥∥∥∥∥h

2

dF (x)

dx

∣∣∣∣
xn+1

∥∥∥∥∥ < 1 ⇒
∥∥∥∥h

2
C−1

n Gnl
∣∣
xn+1

∥∥∥∥ < 1 (11)

which can be roughly examined by the norms of Cn and Gnl at
each step. The convergence condition imposes a restriction on
the step size depending on the nonlinearity of the circuit for
simulation. This restriction is generally mild compared with
the restriction from accuracy requirement of numerical solu-
tion, e.g., (9). Newton’s method can be resorted to for the cases
with very strong nonlinearity. The error incurred by the con-
stant capacitance approximation can be measured by the differ-
ence between the charge evaluated with the converged xn+1 and
the charge from the presuming linear variation from qn, that is∥∥Cnl

n+1xn+1 − Cnl
n xn+1

∥∥ (12)

where Cnl here refers to the capacitance part only.
The primary version of MEXP (3) has two limitations when

applied in large-scale circuit simulation. First, the system of
(1) has to be convertible to an ODE for which an analytical
solution is available, i.e., C must be nonsingular. This is usu-
ally not the case with generic MNA formulation. The matrix
A, however, needs not to be nonsingular, since the three matrix

exponential functions in their Taylor expansion form are just
power series of A. Second, direct computation of matrix
exponential is prohibitive [18] as the dimension of matrices
in modern circuit simulation easily exceeds one million. The
two problems will be addressed in the following two sections.

III. Regularization

The most common cause of singular C matrix in (1) is
the empty rows in C corresponding to the nodes without
capacitance and the currents of independent and controlled
sources, which have no time-differential terms appear in the
equation. On top of this “explicit” singularity, it is often the
case that some “hidden” dependency among variables would
make C noninvertible or ill-conditioned even though it has no
zero rows [24].

We have reported in a separate work [26] a two-phase
regularization technique to construct from the original MNA
system with singular C matrix an equivalent system with
invertible C, i.e., converting a descriptor system (DAE) to
an explicit state-space system (ODE). A succinct review is
given here. The first phase of regularization utilizes graph
theory to analyze the network topology and reduce the DAE
index of the MNA equation by eliminating certain elements via
Gaussian elimination (GE). In the second phase, a systematic
elimination process is applied to remove implicit dependency
among variables, resulting to a nonsingular system. For clarity,
the systematic elimination is presented first followed by the
topological index reduction.

A. Systematic Elimination

We utilize the regularization flow developed by Natarajan
[27], which reduces C to its row-echelon form as follows:

[
C11 C12

0 0

] [
ẋ1

ẋ2

]
= −

[
G11 G12

G21 G22

] [
x1

x2

]
+

[
B1

B2

]
u. (13)

Then another row-echelon transform is applied to the subma-
trix of [G21 G22] from the bottom row. The columns of G (and
C) are rearranged to ensure G22 is lower triangular. Finally,
block GE is applied to obtain a reduced system of equations
as follows:

Crẋ1 = −Grx1 + B0ru + B1ru̇ (14)

where

Cr = C11 − C12G−1
22 G21 Gr = G11 − G12G−1

22 G21 (15a)

B0r = B1 − G12G−1
22 B2 B1r = −C12G−1

22 B2 (15b)

x2 = − G−1
22 (G21x1 − B2u) . (15c)

Provided Cr is invertible, a variable transform of xr = x1 −
C−1

r B1ru is applied to absorb the derivative of u, rendering a
regular ODE as in (1) as follows:

Crẋr = −Grxr + Bru (16)

with Br = B0r − GrC−1
r B1r.
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⎡
⎣ Cii Cij 0

Cji Cjj 0
0 0 0

⎤
⎦
⎡
⎣ v̇i

v̇j

i̇v

⎤
⎦ = −

⎡
⎣Gii Gij 1

Gji Gjj −1
−1 1 0

⎤
⎦
⎡
⎣ vi

vj

iv

⎤
⎦ +

⎡
⎣ Isi

Isj

Vs

⎤
⎦ (17a)

⎡
⎣ Cii Cij 0

Cji Cjj 0
0 0 0

⎤
⎦
⎡
⎣ v̇i

v̇j

i̇v

⎤
⎦ = −

⎡
⎣ 0 Gij +Gii 1

0 Gjj +Gji −1
−1 1 0

⎤
⎦
⎡
⎣ vi

vj

iv

⎤
⎦ +

⎡
⎣ Isi

+GiiVs

Isj
+GjiVs

Vs

⎤
⎦ (17b)

⎡
⎣ Cii Cij 0

Cji Cjj 0
−1 1 0

⎤
⎦
⎡
⎣ v̇i

v̇j

i̇v

⎤
⎦ = −

⎡
⎣ 0 Gij +Gii 1

0 Gjj +Gji −1
0 0 0

⎤
⎦
⎡
⎣ vi

vj

iv

⎤
⎦ +

⎡
⎣ Isi

+GiiVs

Isj
+GjiVs

0

⎤
⎦ +

⎡
⎣ 0

0
−V̇s

⎤
⎦ (17c)

⎡
⎣ 0 Cij +Cii 0

0 Cjj +Cji 0
−1 1 0

⎤
⎦
⎡
⎣ v̇i

v̇j

i̇v

⎤
⎦ = −

⎡
⎣ 0 Gij +Gii 1

0 Gjj +Gji −1
0 0 0

⎤
⎦
⎡
⎣ vi

vj

iv

⎤
⎦ +

⎡
⎣ Isi

+GiiVs

Isj
+GjiVs

0

⎤
⎦ +

⎡
⎣−CiiV̇s

−CjiV̇s

−V̇s

⎤
⎦ (17d)

⎡
⎣ 0 Cij +Cii 0

0 Cjj +Cji+Cij +Cii 0
−1 1 0

⎤
⎦
⎡
⎣ v̇i

v̇j

i̇v

⎤
⎦ = −

⎡
⎣ 0 Gij +Gii 1

0 Gjj +Gji+Gij +Gii 0
0 0 0

⎤
⎦
⎡
⎣ vi

vj

iv

⎤
⎦+

⎡
⎣ Isi

+GiiVs

Isj
+GjiVs+Isi

+GiiVs

0

⎤
⎦+

⎡
⎣ −CiiV̇s

−CjiV̇s−CiiV̇s

−V̇s

⎤
⎦ (17e)

[
Cjj +Cji+Cij +Cii

][
v̇j

]
= −[Gjj +Gji+Gij +Gii

][
vj

]
+
[
Isj

+GjiVs+Isi
+GiiVs

]
+
[−CjiV̇s−CiiV̇s.

]
(17f)

The regularization of (13) has two bottlenecks.

1) Reducing C to the row-echelon form is costly (LU
decomposition with row pivoting), and will introduce
extra fill-ins into G during simultaneous operations
(multiplications with the inverse of L, U factors).

2) It cannot guarantee that Cr is nonsingular after the first
round of regularization, and if so, the process has to
be repeated to eliminate more variables from x1 until a
nonsingular Cr is achieved. This problem arises when
the system of DAEs have an index higher than one, i.e.,
the output equation contains derivatives of the source
terms, which would present in the above procedure only
after the second cycle [27]. Such iterative check and
elimination of singularity is unfavorable to computation
efficiency and sparsity preservation.

The second-order index of a circuit is mostly due to the pres-
ence of CV -loop and LI-cutset in the circuit topology [28].
Hence, we propose to reduce the index-2 circuit to its index-1
equivalent prior to the elimination process of (13) by detecting
and breaking all CV -loops and LI-cutsets in the topology. The
index-1 system are then fed into (13) that is guaranteed to stop
after one iteration.

B. Topological Index Reduction

Our index reduction method combines topology analysis
and algebraic transformation in such a way that the latter
(essentially GE) is only applied on a small portion of the
original system selected by the former. Modifications are made
on the matrix equation level instead of the netlist level for
better adaptability. One key observation is that a loop with
capacitors only does not lead to index-2 circuit in MNA; only
when voltage source(s) come into the loop will the second

order of index present [29]. This is different from LI-cutset
in which inductors alone can form a cutset leading to index-2
system (because inductor currents are state variables in MNA).

Our method hence starts with eliminating one (nondatum)
node voltage and the branch current for each (dependent and
independent) voltage source regardless whether it is part of a
CV -loop. This intends to break all (potential) CV -loops in one
shot taking advantage of the (usually) small number of voltage
sources in a circuit. The MNA stamp of independent voltage
source is given in (17a) and the corresponding elimination flow
follows from (17b) to (17f) (assume vi and iv are eliminated).
Dependent voltage sources are eliminated analogously.

Treatment to LI-cutsets is similar, except now one inductor
(not current source) per LI-cutset must be selected for
elimination. The inductors to be eliminated are selected from
a derived graph with only inductive branches and current
sources [30]. Once the inductor is chosen for a given LI-cutset
(denoted as L1), a similar process to (17b) is applied to elim-
inate one node voltage (the node without capacitance). If the
two end nodes of L1 both have capacitance, only the inductor
current needs to be eliminated. For the current variable, the
algebraic constraint from Kirchhoff’s current law (KCL) of
the LI-cutset (18) and its differential version are applied to
eliminate iL1 and i̇L1 in G and C, respectively, as follows:

iL1 +
NL∑
j=2

iLj
+

NIs∑
j=1

Isj
= 0. (18)

C. Treatment to Floating Capacitance

After eliminating all voltage sources and the selected induc-
tors from the topology, the matrix C could still be singular, due
to hidden (algebraic) singularity in C caused by the “floating



1184 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 8, AUGUST 2012

Fig. 1. Flow of regularization process.

capacitors,” a group of connected capacitors isolated by non-
capacitive elements, leaving one node voltage in the group
algebraically dependent on the others. To avoid using LU
decomposition to reveal this hidden singularity, we represent
each group of floating capacitors by a connected component
and locate them in a derived graph comprising only capacitive
nodes and branches. We can then eliminate one node voltage
using the algebraic and differential KCL of that node [26].
This way, the LU decomposition can be replaced by simply
permuting all nonzero rows to the upper part of C, which is
much more desirable for speed and sparsity.

The complete flow of the regularization method is illustrated
in Fig. 1. The underlying rationale of our method is to avoid
(to most extent) certain matrix operations, such as (iterative)
LU decomposition and matrix–matrix multiplications, that
are of high complexity and tend to damage the sparsity of
MNA matrices. This is crucial for any practical techniques in
large-scale circuit simulation considering the giant size of the
problems. We achieve this goal by preprocessing DAE index
and floating capacitors before system elimination, and using
topological analysis to guide such preprocessing that affects
only a small portion of the entire matrices.

D. Complexity Analysis

The computational cost of regularization consists of the
costs from topology analysis and algebraic transformation.
The graph algorithms for topology analysis, such as finding
minimal spanning tree and connected components, are in
complexity of O(Ng) or O(NglogNg) [31], where Ng is the
size of a reduced graph [30]. Since the size of the graph is
much smaller than the number of MNA variables, the cost of
topology analysis is insignificant.

The algebraic transformation mainly includes row-wise
elimination and LU decomposition of [G21G22] in the sys-
tematic elimination stage, whose cost is generally topology
dependent. The cost of row-wise elimination is determined

by the number of voltage sources, LI-cutsets, and floating
capacitors in a circuit. Based on our experience, the number
of these “trouble maker” is usually less than 0.1% for million-
scale designs. For the LU decomposition, the cost depends on
the number of nodes without capacitances in a circuit, and
such a circuit is uncommon.

IV. Computation of Matrix Exponential

A. Merge of Three Functions into One Matrix Exponential

The analytical solution (3) has three matrix exponential
functions, which are generally referred as ϕ-functions of the
zero, first, and second order [32]. Al-Mohy and Higham [33,
Th. 2.1] has shown that instead of explicitly calculating
ϕ-functions, a series of ϕ-functions can be calculated by
computing the exponential of an (n + p) × (n + p) matrix,
where n is the dimension of A and p is the order of the ϕ-
functions, which is second order in (3). Therefore, we only
need to calculate the exponential of a slightly larger matrix to
obtain the analytical solution (3), which can be rewritten as

x(t + h) =
[

In 0
]
eA′h

[
x(t)
e2

]
(19)

with

A′ =

[
A W
0 J

]
, W =

[ b(t+h)−b(t)
h

b (t)
]

J =

[
0 1
0 0

]
, e2 =

[
0
1

]
.

(20)

Using (19), only one matrix exponential evaluation is needed
in each time step, and the problem boils down to how to
compute (19) efficiently.

B. Krylov Subspace Method

Intuitively, one could compute the matrix exponential eA

first and then multiply it by a vector. However, direct com-
putation of the matrix exponential is expensive (∼O(n3)) and
usually results in a full matrix that degrades the performance of
subsequent matrix–vector multiplications. Fortunately, MEXP
only needs the product of eAv, which could be approximated
efficiently using Krylov subspace projection [22], [23].

Krylov subspace approximation reduces the problem to
the evaluation of the exponential of a much smaller matrix.
According to the definition of exponent of matrix, we can
write eAv as follows:

eAv ≡ (I + A +
A2

2!
+ · · · +

Ak

k!
+ . . . )v. (21)

The approximation of the above equation can be readily
obtained from a Krylov subspace spanned by the basis of m

vectors as follows:

Km (A, v) = span{v, Av, . . . , Am−1v}.
The Arnoldi process in Algorithm 1 can be used to construct

an orthonormal basis Vm and a m × m upper Hessenberg
matrix H(1 :m, 1:m) denoted as Hm for the Krylov subspace
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eA′h
[

x(t)
e2

]
= exp

([ −C−1G C−1Wu

0 J

]
h

)[
x(t)
e2

]
= exp

([
C/α 0

0 I2

]−1 [ −G Wu

0 αJ

]
h

α

)[
x(t)
e2

]

= exp

([
C/α 0

0 I2

]−1 [ −G − (C/α) Wu

0 αJ − I2

]
h

α
+

[
In 0
0 I2

]
h

α

)[
x(t)
e2

]

= exp

⎛
⎜⎜⎜⎝ 1

α

[
C/α 0

0 I2

]
︸ ︷︷ ︸

C̃

−1 [ −G − (C/α) Wu

0 αJ − I2

]
︸ ︷︷ ︸

G̃

h

⎞
⎟⎟⎟⎠
[

x(t)
e2

]
e

h
α︸ ︷︷ ︸

v

= eÃhv.

(22)

Algorithm 1 Arnoldi process
Input: vector v, n × n matrix A and m

Output: (m + 1) × m matrix H and Vm = [v1, . . . , vm]
v1 = v/‖v‖2;
for j = 1, 2, . . . , m do

w = Avj;
for i = 1, 2, . . . , j do

H(i, j) = wTvi;
w = w − H(i, j)vi;
end

H(j + 1, j) = ‖w‖2;
vj+1 = w/H(j + 1, j);
end

Km. Note that in each Arnoldi iteration, we compute Av as
−C−1 (Gv). Thus, the major cost requires one sparse matrix–
vector multiplication and one sparse linear solve involving C
only. The relation between Vm and Hm is given by

AVm = VmHm + H(m + 1, m)vm+1e
T
m

where em is the mth unit vector with dimension m×1. Because
of the orthogonality of columns in Vm, Hm can be expressed
as

Hm = VT
mAVm. (23)

Then we project A onto the Krylov subspace and with (23)
derive the approximation of eAv as [23]

eAv ≈ VmVT
meAv = ‖v‖2VmVT

meAVme1

= ‖v‖2VmeHme1. (24)

To use the Krylov subspace method to compute (19), we first
rewrite it into (22) where

Ã =
1

α
C̃−1G̃, Wu = B

[ u(t+h)−u(t)
h

u (t)
]
. (25)

The scaling factor α is introduced to balance the quantities in
C̃ and G̃. The original exponent A′ is left shifted by (multiple
of) an identity matrix to make it nonsingular and as well turn
the real parts of some small eigenvalues of Ã that may be
positive in nonlinear simulation into negative. We generate
Vm and Hm by Algorithm 1 with Ãh and v as inputs. Using

(24), the overall solution of a new time step is

x (t + h) =
[

In 0
] ‖v‖2 VmeHmhe1. (26)

The value of m in the Krylov subspace approximation
depends mostly on the spectrum of Ã. The large (magnitude)
eigenvalues of Ã correspond to the small eigenvalues of C̃, i.e.,
the fast mode of the circuit, and the small eigenvalues relate
to the slow mode of the circuit. It is commonly known that the
Krylov subspace method approximates large eigenvalues better
than small eigenvalues. A more precise statement is that the
eigenvalues of Hm or the Ritz values tend to match the well-
separated (extreme) eigenvalues Ã with priority to minimize
the characteristic polynomial of Hm over the entire spectrum
of Ã. Therefore, a larger m is required only when Ã has many
large and well-separated eigenvalues, meaning that the circuit
contains many distinct fast modes. In our experiments, m often
ranges from 10 to 100 while the actual dimension of Ã could
be millions. With this small size, the eHmh can be computed
efficiently by many existing techniques [34], [18], and the
overall complexity of MEXP is greatly reduced.

We would like to mention that the Krylov subspace method
has also been applied in some iterative methods [12], e.g.,
conjugate gradient or generalized minimal residual method
to speed up the solution of linear system arising from, e.g.,
implicit numerical integration methods. It has been proved
in [22] that convergence of Krylov subspace method for matrix
exponential operator is faster than that for the iterative solution
of linear systems.

C. Stability

The stability region of matrix exponential formulation (22)
is the same as TRAP. Both methods are A-stable for passive
circuits whose eigenvalues of Ã are negative. The approxima-
tive computation by the Krylov subspace method in (26) is
also A-stable when Ã is normal by the following theorem.

Theorem 1: For passive circuits, MEXP computed by the
Krylov subspace approximation is A-stable when Ã is normal.

Proof: We can express Ã in Jordan normal form as

Ã = PJP−1

where J is upper triangular matrix and its diagonal terms are
eigenvalues. It is trivial to represent the matrix exponential of
Ãh as follows:

eÃh = PeJhP−1.
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Since the eigenvalues of J are negative in passive circuits, the
norm of eJh tends to 0 as time step h increases to infinity.
Therefore, (19) is A-stable for passive circuits.

To ensure stability of MEXP after performing Krylov sub-
space approximation, we need to guarantee that the norm of
VmeHm also shrinks as h increases. Since Vm is orthonormal
basis, we have

‖VmeHmh‖2 ≤ ‖eHmh‖2.

It is proved in [23] that the logarithmic norm of Hmh is no
larger than that of Ãh. We then have

‖VmeHmh‖2 ≤ ‖eHmh‖2 ≤ eμ(Hmh) ≤ eμ(Ãh)

where μ(·) is the logarithmic norm. Since μ(Ãh) of normal
matrix is the largest eigenvalue of Ã, which is negative, the
norm of VmeHm also tends to 0 as h increases to infinity. Hence,
MEXP computed by the Krylov subspace approximation is
A-stable for normal matrix.

Note that Ã might not be normal for the applications to
circuit analysis. It is reported in [16] that larger m could
avoid instability from the Krylov subspace approximation
because larger m approximates eÃh with less error (shown in
Section IV-D). In our experiment, MEXP by Krylov subspace
approximation with m ranged from 10 to 100 is stable for all
test cases.

D. Error Analysis

A priori error bound of computing the matrix exponen-
tial (24) by the Krylov subspace projection is given by

err ≤ 2‖v‖2
ρm+1eρ

(m + 1)!
(27)

where ρ = ‖Ãh‖2 [22], [23]. The equation indicates the
approximation error depends on m and the 2−norm of Ãh.
For stiff problems where C contains capacitance of very small
values, the matrix Ã will have a large norm and therefore a
small h is required to reduce the error in Krylov subspace
computation of matrix exponential. This suggests that the pro-
posed MEXP is more suitable for moderately stiff problems.
One can also increase m to allow the usage of larger step size
while maintaining accuracy, but at the cost of an increasing
computation. This calls for a careful selection of h and m,
which will be discussed in the next section.

In practice, the prior bound may not be sharp and is costly to
evaluate. A posteriori error estimation proposed by Saad [23]
is commonly adopted to determine the error of (26), which
reads

err = ‖v‖2H(m + 1, m)|eT
mϕ1(Hm)e1| (28)

where ϕ1(x) = ex−1
x

.

V. Adaptivity

One pleasing feature of MEXP lies in the ease of adaptively
adjusting h during the numerical integration. According to
(23), the Krylov subspace projection is scaling invariant, i.e.,
αA → αHm. Once we have to shrink/enlarge time step h in

order to satisfy the error bound, it is convenient to reevaluate
(26) with a new h by simply scaling the matrix Hm provided
the PWL assumption of input waveforms (Ã remains constant).
Thus, the reevaluation process of adjusting time step involves
scaling of Hm and recomputing of the matrix exponential
of Hm. The time complexities for scaling and dense matrix
exponential are O(n2) and O(n3), respectively. Since the size
of Hm is small, the computation cost of whole reevaluation
process is insignificant. In contrast, the implicit methods have
to resolve the whole linear system whenever h is changed.

Taking advantage of this ease, we devise a prediction-
correction scheme to dynamically adjust the step size h and
the dimension of Krylov subspace approximation m during
time stepping. At each step, a new pair of h and m are
first predicted based on the knowledge of current step, with
attempt to minimize the computation needed to complete the
remaining time integration under given error constraint. When
the a posteriori error resulted from the predicted h and m

does not meet certain criteria, a correction scheme is applied
by adjusting h until the error is satisfactory.

Given a predefined global error budget Tol and the error at
nth step εn estimated by (28), we require the error at n + 1th
step εn+1 to meet the following inequality:

εn+1

εn

� γ
εmax
n+1

εn

= γ
hn+1Tol

tf εn

= γ
hnTol

tf εn

hn+1

hn

=
γ

w

hn+1

hn

(29)

where tf is the end time, εmax
n+1 is the maximum error allowed

at tn+1, and γ is a safety factor commonly taking 0.8. The
quality of the solution at tn is measured by the ratio

w =
εn

εmax
n

=
tf εn

hnTol
. (30)

A. Prediction of h and m

Unlike the separate changes of h and m in [32], we allow
h and m vary at the same time, by a moderate extent, and
estimate the error at the next step, according to the prior error
bound (27), as

εn+1

εn

=

(
hn+1

hn

) mn+1
β

+1

κ−(mn+1−mn) (31)

where β and κ are two parameters to be determined. The
optimal combination of h and m is selected to minimize the
remaining computation after current time point subjected to
the error constraint in (29), that is

min
tf − tn

h
Q(m) (32a)

s. t.

(
h

hn

) m
β

κ−(m−mn) � γ

w
. (32b)

Note that, by intuition, we expect the error constraint is a
monotone decreasing function of m, i.e., the higher is the
dimension of Krylov subspace, the smaller is the error. This
imposes a limit on the factor by which a new step size can
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grow from requiring the derivative with reference to (w.r.t.) m

of (32b) is negative, which gives

h/hn � κβ. (33)

Function Q(m) is the estimated cost of one stepping in
terms of m, in which the most time-consuming part is the
Arnoldi process listed in Algorithm 1. We neglect the cost of
computing the matrix exponential of the reduced matrix. Each
Arnoldi process costs roughly 3

2

(
m2 − m + 1

)
(N + 2) flops

(for orthogonalization), m sparse matrix–vector multiplications
and m sparse linear solves. Computation required in the last
two operations can be estimated by 2mNG̃ and 2mN

p

C̃
, where

NG̃ and NC̃ denote the numbers of nonzeros of G̃ and C̃.
The complexity factor p for sparse linear solve depends on
the structure of C̃ and the solution method, whose value
usually ranges from 1 (diagonal matrix) to 1.5. As a result,
we formulate Q(m) as

Q(m) = c1m
2 + c2m + c3 (34)

with c1 = 3
2 (N + 2), c2 = 2(NG̃ + N

p

C̃
) − 3

2 (N + 2), and c3 =
3
2 (N + 2).

We argue that the objective function (32a) achieves mini-
mum when the constraint (32b) takes equality and postpone
the proof later in this section. With this assumption, we solve
h from (32b) as

ln h = β
(

log
( γ

w

)
− mn log κ

) 1

m
+ (β log κ + log hn) (35)

= c4m
−1 + c5 = P(m).

Substituting (35) into (32a), the objective function becomes
a function of m only, namely,

(
tf − tn

)
Q(m)e−P(m), and the

extreme value is obtained when the function derivative is zero,
yielding

2c1m
3 + (c2 + c1c4) m2 + c2c4m + c3c4 = 0 (36)

whose positive roots are the solution of m. The corresponding
h is then obtained by (35). The new h is restricted by the
negative derivative constraint (33) and the constraint of PWL
input, and thus will be overwritten by the maximum value
jointly set by the two constraints when any of them is hit.
The prediction of m is updated accordingly.

In the following, we prove that the m and h selected by
the above process is the optimal solution of the optimization
problem (32).

Lemma 1: Provided (33) holds, the polynomial in (36) has
one and only one positive root.

Proof: It is trivial to show c1 > 0, c2 > 0, and c3 > 0.
If (33) holds, we have c4 < 0 from (35). The number of
sign changes between the coefficients of the polynomial in
(36) is one regardless of the sign of the second coefficient.
Determined by Descartes’ rule of signs, the polynomial has
exactly one positive root.

Theorem 2: Given (33), the mopt and hopt computed by (36)
and (35) are the optimal solution of (32).

Proof: We prove it by contradiction. Denote (32a) and
(32b) by F (h, m) and C(h, m) � γ

w
. We assume there exists

another pair of (h′, m′) (h′ �= hopt, m
′ �= mopt) being a solution

no worse than hopt, mopt for (32), that is

F (h′, m′) � F (hopt, mopt), C(h′, m′) � C(hopt, mopt). (37)

If C(h′, m′) < C(hopt, mopt), since C(h, m) is an increasing
function of h and F (h, m) is a decreasing function of h, one
can increase h′ to h̃′ to make C(h̃′, m′) = γ

w
and F (h̃′, m′) <

F (h′, m′) � F (hopt, mopt), which is contradictory to the fact
that F (hopt, mopt) is at its minimum for the equality constraint.
If C(h′, m′) = C(hopt, mopt) (and F (h′, m′) = F (hopt, mopt)), it
is equivalent that m′ is another positive solution of (36), which
is in contradiction to Lemma 1.

We determine the two parameters β and κ in a heuristic
manner taking advantage of the fact that, given a calculated
Krylov pair H and V, the effort required to obtain a posteriori
error estimate for a new h and m is trivial. Assume hn,
mn, and εn are known at current step, for each prediction,
we compute the error at five sampling points surrounding
(hn, mn), namely, (ehn, mn), ( 1

e
hn, mn), (hn,

3
4mn), (ehn,

3
4mn),

and ( 1
e
hn,

3
4mn). Here, we only scale down mn as the new

H is simply a submatrix of the original one, and upscaling
mn requires extra Arnoldi iterations. Then the two unknown
parameters are determined by the least squares (LSs) fitting of
(31) with the above five data points.

With only moderate accuracy requirement, we solve the LS
fitting problem by taking logarithm on both sides of (31) as
follows:

(
m

β
+ 1

)
log

h

hn

− (m − mm) log κ = log
ε

εn

. (38)

With the notation of a1 = 1/β, a2 = log κ, y1 = log h
hn

, y2 =
m, z = log ε

εn
, the parameters β and κ are derived from the LS

solution of the overdetermined system as

⎡
⎢⎢⎢⎣

y
(1)
1 y

(1)
2 mn − y

(1)
2

y
(2)
1 y

(2)
2 mn − y

(2)
2

...
...

y
(5)
1 y

(5)
2 mn − y

(5)
2

⎤
⎥⎥⎥⎦
[

a1

a2

]
=

⎡
⎢⎢⎢⎣

z(1) − y
(1)
1

z(2) − y
(2)
1

...
z(5) − y

(5)
1

⎤
⎥⎥⎥⎦ (39)

where (yi
1, y

i
2) and zi are computed from the five sampling

points and the corresponding a posteriori errors.

B. Correction of h Based on A Posteriori Error

The prediction scheme provides a useful insight for select-
ing h and m for the next time step. Nevertheless, it may
occasionally lead to (h, m) pair that has a posteriori error
violating the error constraint or too small to fully use the error
margin. Therefore, we employ a posterior correction scheme
to refine h to ensure the error stay within an appropriate
region below the error threshold. Specifically, the scheme will
repeatedly enlarge or shrink h by a given ratio and forward
the time frame only when the a posteriori error falls into an
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Algorithm 2 Overall prediction-correction flow
Input: matrices C, G, B, input u(t), initial time step h,

initial m, total error budget Tol, and total time tf
Output: result x(t)
t = 0; x(0) = dc analysis;
while t ≤ T do

[Cr, Gr, Br] = regularization(C, G, B);
evaluate Hm and Vm by Krylov subspace method;
while w < wmin do

scale up h and Hm;
compute a posteriori error ε by (28) and new w;
end

while w > wmax do
scale down h and Hm;
compute a posteriori error ε and new w;
end

calculate xnew by (26);
[β, κ] = findParameter(h, m, ε, H, V);
[hnew, mnew] = prediction(tf , t, h, m, w, β,κ);
t = t + h;
x(t) = xnew;
h = hnew;
m = mnew;
end

interval of [wmin, wmax]. When enlarging h, the two constraints
defined in Section V-A also apply to prevent overshooting.

Note that a similar step-size control have been applied
in commercial SPICE-like simulators, such as HSPICE, to
constrain the LTE of each time step. Yet the adaptivity of
implicit methods and matrix exponential approach is quite
different in the following aspects.

1) When a step size is changed, the linear system in the
implicit methods will also change, such as C/h − G/2
in TRAP. Thus, the implicit methods must solve the
linear system again for every time-step reversal. In
practice, it is often seen that HSPICE takes a long time
to perform one-time stepping because the LTE control
forces the simulator to solve a linear system many times
to find a feasible h. MEXP is free from this overhead
when adjusting time step owing to the scaling invariant
property of Krylov subspace projection.

2) Since in implicit methods there is no easy update of
solution for a different step size, an increase in step size,
if possible, can only happen in the next step. In contrast,
with simple scaling and reevaluation of a small matrix
exponential, one can apply the largest permissible step
size right in the same step.

3) Varying order of approximation, e.g., automatic switch
between first, second, and higher order of implicit meth-
ods is difficult. On the other hand, the matrix exponential
approach allows a simultaneous adjustment of h and
m within a wide range to optimize the computational
efficiency.

The overall flow of prediction-correction scheme is shown in
Algorithm 2.

Fig. 2. Accuracy of regularization process.

Fig. 3. Errors of computing eAhv by Taylor’s expansion and Krylov subspace
method w.r.t. m. Reference solution is obtained by expm(Ah)v (h = 0.1ps).
Both real error and a posteriori error estimate of Krylov method are shown.

VI. Experimental Results

We prototype MEXP in MATLAB and integrate with a
SPICE-like circuit simulator SMORES developed in MIT [35].
Experiments are performed on a server with Intel Xeon
3.0 GHz CPU and 16 GB memory, with testbench circuits of
different sizes and characteristics.

Table I provides detailed specifications. Type indicates lin-
ear (L) or nonlinear (NL) circuits. Index gives the DAE index
of the MNA systems. The numbers of nonzeros in C + G
before and after regularization are also shown. For fairness,
a MATLAB implementation of TRAP is used to provide
benchmarks for accuracy and performance comparisons. All
linear systems are solved by the direct solver (backslash) in
MATLAB.

A. Results for Regularization

Fig. 2 validates the accuracy of regularization method, in
which the transient response of D2 before and after regular-
ization are compared. Since no approximation is introduced,
the regularization maintains the accuracy very well (relative
mismatch between the two curves is 4.3 × 10−11). The five
largest (in magnitude) generalized eigenvalues of (C, −G) and
(Cr, −Gr), shown inset of Fig. 2, also demonstrates an exact
equivalence between the original and the regularized systems.
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TABLE I

Specification of Test Cases

Design Category Type Nodes Nodes w/o Cap Index nnz(C + G) Before Reg. nnz(C + G) After Reg.
D1 Power grid L 2.5K 0 1 12.3K 12.3K
D2 Trans. line L 5.6K 431 2 0.9M 0.9M
D3 Power grid L 160K 0 1 1.8M 1.8M
D4 Power grid L 1.6M 0.6M 2 5.4M 4.8M
D5 Power grid L 4M 0 1 44.2M 44.2M
D6 Inv. chain NL 82 0 1 342 342
D7 Power amp. NL 342 105 2 2.2K 2.1K
D8 16-bit adder NL 579 0 1 3.6K 3.6K
D9 ALU NL 10K 373 1 44.3K 43.4K

B. Performance of Krylov Subspace Method in Computing
Matrix Exponential

In this section, we show the numerical advantage of Krylov
subspace method over traditional Taylor’s expansion (21).
While Taylor’s expansion can approximate matrix exponential
with the order of m, its accuracy is worse than that of Krylov
subspace method with m dimensions. To demonstrate the
difference, we perform both Taylor’s expansion and Krylov
subspace method on a small RC circuit with 500 nodes and
capacitances whose values vary from 10−11 to 10−16. Fig. 3
shows the advantage of using the Krylov subspace method
(24) to calculate eAhv, compared with Taylor’s expansion (21).
The reference result is computed via the MATLAB built-in
function expm [34], which is accurate for small-scale matrices.

The convergence rate of Taylor’s expansion depends on
the norm of the matrix in the series in (21), i.e., how fast
the factorial in denominator can dominate the nominator. In
Fig. 3, the error increases with m at first due to the faster
increase of matrix power than that of factorial, and then drops
later when the factorial starts to outweigh the matrix power.
The error only saturates after m = 80 at about 10−8. The
Krylov subspace method approximates the matrix exponential
by orthogonal basis of the Krylov space Km(A, v). Since the
orthogonalization process minimizes norm of vm+1 in (23),
which is major source of the approximation error, the Krylov
subspace method is more accurate than Taylor’s expansion
under the same dimensions. Fig. 3 shows that the error of
Krylov subspace method saturates to 10−15 at m = 11.
The error estimated by the a posteriori formula (28) is also
shown, which stays above the real error all the time and is
fairly sharp. Also, we would like to mention that the actual
approximation error of Krylov subspace method could be
smaller than the result shown in Fig. 3, which is limited by
the double precision.

C. Performance of Uniform MEXP

Fig. 4 shows the transient response of D3 simulated by
MEXP, TRAP (TR), and forward Euler method (FE). We apply
fixed step sizes 1 ps and 5 ps for both MEXP and TRAP
method, and 1 ps for FE. The m in MEXP is 20.

The figure demonstrates the capability of MEXP to use large
step size for numerical integration. With a larger h of 5 ps,
MEXP can till have its waveform “jump” to the correct points
(the yellow crosses) at the waveform of 1 ps. The pointwise

Fig. 4. Accuracy comparison among matrix exponential, trapezoidal, and
FEs for different step size (linear cases).

mismatch between the two waveforms is only 9.4 × 10−3.
On the other hand, TRAP cannot capture the high frequency
behavior as MEXP when using a large step size of 5 ps. There-
fore, MEXP is reliable even when the time steps skip some
high frequency details, provided that the matrix exponential is
calculated accurately. Such “coarse-grain” accuracy is owing
to the analytical nature of MEXP, which allows designers to
take a fast yet accurate sweep of the global behavior of a
circuit by a very large step size. The explicit forward Euler is
unstable even with the time step of 1 ps.

Table II gives a detailed comparisons between MEXP and
TRAP using fixed h and m for the five linear cases. A
reference solution is first obtained by TRAP using a small
time step href for a time span tf . The runtime and the
L2-norm error w.r.t. the reference solution are recorded for
the TRAP and MEXP when using h = 10href and h = 100href .
Among the four examples, D1 is highly stiff with minimum
capacitance ∼10−19, D2 and D4 are moderately stiff with
minimum capacitance ∼10−16, and D3 and D5 are less stiff
with minimum capacitance ∼10−13.

For systems with small to moderate stiffness (D2 and
D3), MEXP has a better accuracy than TRAP, owing to the
analytical nature of the former’s solution. MEXP causes more
errors for D1 of large stiffness, due to the large norm of
Ãh. Either a smaller h or a larger m is required for better
accuracy, which suggests MEXP is more suitable for slight
and moderately stiff systems. Nevertheless, this is solely due
to the accuracy consideration (and efficiency tradeoff), instead
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TABLE II

Performance Comparison With Uniform h and m for Linear Cases

Case
TR EXP

href T t h t Error w.r.t. href h t Error w.r.t. href m

D1 0.01 ps 100 ps 1957.3 s
0.1 ps 34.5 s 3.0 × 10−4 0.1 ps 180.3 s 8.6 × 10−3

30
1 ps 1.9 s 4.4 × 10−3 1 ps 20.6 s 4.0 × 10−1

D2 0.01 ps 10 ps 2728.3 s
0.1 ps 282.2 s 7.1 × 10−2 0.1 ps 589.4 s 3.7 × 10−3

30
1 ps 43.5 s 2.1 × 10−1 1 ps 90.8 s 3.8 × 10−2

D3 0.1 ps 100 ps 27064.5 s
1 ps 2907.1 s 2.8 × 10−3 1 ps 1190.2 s 2.8 × 10−5

20
10 ps 426.6 s 2.1 × 10−1 10 ps 176.8 s 3.2 × 10−5

D4 0.01 ps 10 ps 1.8 × 105 s (est.)
0.1 ps 14760.2 s N/A 0.1 ps 3796.2 s N/A

40
1 ps 2102.5 s N/A 1 ps 565.8 s N/A

D5
0.1 ps 100 ps

N/A
0.1 ps N/A N/A 0.1 ps 6491.1 s N/A

20
1 ps N/A N/A 1 ps 1168.7 s N/A

of the stability limitation confronting the traditional explicit
methods.

In terms of runtime, MEXP is slower than TRAP for small
cases, but provides a noticeable speedup for large cases (∼4X
for D4). This is attributed to the fact that in the Arnoldi process
we only need to factor the matrix C̃, which is generally sparser
and well structured than C̃ + G̃ that needs to be factored in
common implicit methods. For the extremely large-example
D5 (the matrix dimension exceeds 10M), TRAP simply breaks
down due to the memory limit in matrix factorization, while
MEXP remains applicable, suggesting a better scalability in
terms of memory usage. Apart from the benefit from improved
matrix structure, the orthogonalization process in Arnoldi iter-
ation is naturally parallelizable, which implies more potential
computational benefit compared to the direct linear solution.

D. Performance of Adaptive MEXP

This section demonstrates the advantage of using the adap-
tive scheme in Section V in MEXP. We first verify that the
formula (31) provides a usable error prediction for matrix ex-
ponential computation. Fig. 5 compares the predicted error and
the real a posteriori error by (28) at each step of a simulation
with D1. A ramp signal is used to avoid PWL input restriction
on step size. The total error budget is 10−4. Step sizes are tuned
by a factor of 1.25 each time in posterior correction to ensure
w to fall into [0.6, 1.2]. It is seen that the prediction generally
captures the behavior of the real posteriori error.

To further demonstrate the quality of the predicted (h, m)
pair, we vary the h and m over a range at each step and
evaluate the corresponding cost function (34). The ranges of h

and m variations are [0.1h, 10h] and [ 3
4m, 4

3m], respectively.
We choose a new (h, m) corresponding to the minimal Q(m)
(and satisfying error constraint), which is regarded the real
“optimal” solution, and compare it to the predicted (h, m).
Fig. 6 indicates a good match between the predicted and
real optimal (h, m) pairs, and thus the effectiveness of our
prediction scheme.

Table III compares the performance of TRAP and MEXP
with adaptive control for the four linear cases. The error is
measured by w in (30) with an overall budget Tol = 10−3.
In the adaptive TRAP, LTE of each step is measured by
h3

n

...
x/12, and is used to provide a new h for the reversal of

Fig. 5. Predicted and a posteriori errors comparison.

Fig. 6. (a) Predicted and (b) real optimal (h, m) pair.

current step (if w > 1.2) or for the next step (if w < 0.6),
i.e., hnew =

√
whold. We also implement two versions of

adaptive MEXP: one adjusts h only using the correction
scheme, and the other adjusts both h and m by the prediction-
correction scheme described in Section V. The correction is
again conducted to ensure 0.6 ≤ w ≤ 1.2. Nt and Nws denote
the number of time steps and the number of linear solves that
have been wasted due to the time step adjustment in TRAP.

Albeit indispensable in practice, the adaptive time-step
control largely affects the performance of TRAP due to the
repeating solution of a large linear system whenever the LTE
requirement is not met. In the worst-case D2, nearly one-
third of total linear solves are “wasted” in the LTE control.
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Fig. 7. Selection of time points for the two adaptive MEXPs (D1,
Tol = 10−3).

MEXP, on the other hand, avoids this kind of overhead by
projecting the original large-scale matrix onto a much smaller
subspace, on which the error estimate and management are
highly efficient. With the same error budget, the maximum
speedup from the adaptive MEXP is over 15X (D3). The
performance of EXP(h, m) is superior over EXP(h), with
improvement from 1.3X to 2.8X. This demonstrates the benefit
of allowing m to vary over steps at the same time using our
prediction-correction scheme. Fig. 7 shows the difference in
point selection of EXP(h) and EXP(h, m) for D1 with a two-
square wave input.

Situation in nonlinear circuit simulation is more compli-
cated. The time step is not only limited by the error in
computing the matrix exponential term, but also by the error
and convergence rate in solving the nonlinear system. Hence,
the step size of nonlinear circuits may not be as large as that
of linear circuits whose the error is only from the Krylov
subspace method. In Table IV, we show the performance
data of TRAP and MEXP for the four nonlinear examples.
Nonlinearity is handled by the Newton’s method in TRAP,
and the fixed point iteration (10) in MEXP, both with the
same convergence criteria. In TRAP, we follow the HSPICE
convention [36] to control time step by counting the number
of iterations [increases (reduce) h by 1.25X if the number of
iterations is less than 3 (larger than 20)], and by LTE as in
the linear cases after the Newton’s iteration converges. If the
LTE does not meet the prescribed accuracy requirement, the
time step is reversed and the Newton’s iteration is restarted
with a smaller h. Nit denotes the number of total number of
nonlinear iterations and Nws the number of iterations wasted
due to time-step reversal. In MEXP, h is controlled by the error
of computing matrix exponential, and the error of nonlinear
approximation (9) and (12). A posteriori correction is used to
reduce h when the accuracy of Krylov subspace approximation
is not sufficient. The fixed-point solution process is repeated if
the nonlinear error is large, which also results in certain extra
iterations counted by Nws. For a new step, we do not apply
the prediction scheme as in the linear cases to forecast h and
m. The new h will be jointly determined by several values
estimated by the current matrix exponential error, nonlinear
error, and convergence condition (11), whichever is smaller.

Fig. 8. Accuracy and time-point selection of MEXP for nonlinear circuit
(D8).

Due to slower convergence of the fixed point iteration,
MEXP generally requires more nonlinear iterations than TRAP
using the Newton’s method, which can be seen by counting
the average per-step effective iteration (Nit − Nws)/Nt . This
number ranges from 1.99 to 2.89 for TRAP while from
2.00 to 5.72 for MEXP. However, the separation of linear
solution and nonlinear solution makes the error control in
MEXP more straightforward than TRAP and largely avoids
time-step reversal. In the calculation of LTE in TRAP, the
contributions from linear elements and nonlinear elements are
mixed together. Large error from either linear or nonlinear part
will cause the violation of LTE and thus the time-step reversal.
As seen in Table IV, a considerable portion of nonlinear
iterations are wasted due to the time reversal, which in the
worse case is nearly one half (D8). In MEXP, the numerical
errors from linear and nonlinear solutions are separated. The
nonlinear iteration is restarted only when the nonlinear error
is large, which involves only the contribution from nonlinear
elements. The error from solving linear elements is handled
by the efficient error management unique for Krylov subspace
approximation. It can be seen that the wasted nonlinear itera-
tions in MEXP takes a much smaller fraction in total iterations
than that in TRAP. The large number of time steps used for
D7 is due to its stiffness (min capacitance ∼10−16), where
the error of computing matrix exponential forces to adapt a
small step size. With such small step, the nonlinear iteration
converges fast, which is seen that there is no step reversal due
to nonlinear error and only two per-step effective iterations.
In terms of per-iteration runtime, MEXP also outperforms
TRAP for large problem (D9) as seen in the linear case. The
maximum overall speedup from MEXP is about 3.7X. The
simulated responses of the two methods for the adder case
(D8) are shown in Fig. 8.

Fig. 9 shows the runtime breakdown of EXP(h, m) in
Table III and EXP in Table IV. The breakdown includes the
runtime percentage of four main steps of Algorithm 2, which
are regularization, computation of Hm and Vm by Arnoldi
process, a posteriori error estimation, and the calculation
of xnew. Since the runtime of “findParameter” and “predic-
tion” are insignificant, the figure does not include both the
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TABLE III

Performance Comparison With Adaptive h and m for Linear Cases (Tol = 10−3
)

Case T hinit minit
TR(h) EXP(h) EXP(h, m)

Nt t Nex Nt t Nt t

D1 100 ps 0.01 ps 30 416 11.3 s 117 759 201.5 s 120 72.6 s
D2 10 ps 0.01 ps 30 99 394.1 s 46 41 214.7 s 40 161.4 s
D3 100 ps 0.1 ps 20 130 3118.2 s 5 70 200.2 s 55 112.3 s
D4 10 ps 0.01 ps 40 187 33802.1 s 29 181 3004.1 s 174 2135.2 s
D5 100 ps 0.1 ps 20 N/A N/A N/A 75 4927.2 s 45 3075.9 s

TABLE IV

Performance Comparison for Nonlinear Cases

Case T hinit
TR EXP

Nt Nit Nws t Nt Nit Nws t m

D6 1 ns 1 ps 259 1062 357 35.6 s 222 1438 166 164.1 s 20
D7 100 ps 0.1 ps 242 670 187 68.4 s 533 1070 0 292.6 s 30
D8 100 ps 0.1 ps 371 1996 923 671.4 s 114 708 108 408.7 s 20
D9 100 ps 0.1 ps 451 1512 501 8244.5 s 285 1299 101 2252.3 s 30

TABLE V

Summary of the Features of Explicit, Implicit, and MEXPs

Methods Nature
Stability Matrix to

Main Cost Memorya Adaptivityb Cost of
Error Origin

for Passives Inverse Adaptionc

Implicit
Poly. approx.

High C + hG Linear solve (NC+G)1.5 h only High
Taylor

order ≤ 10 truncation
Polynomial Poly. approx.

Weak C
Matrix-vector

N1.5
C h only Low

Taylor

explicit order ≤ 10 multiplication truncation
Matrix

Analytical High C Arnoldi process max(N1.5
C , mN) h and m Low

Matrix EXP

exponential computation

aEstimated fill-in factor of 1.5 is used for sparse LU factorization, NC is the number of nonzeros of C, N the dimension of C. bVariable order BDF is not considered here. cCost
of reevaluation for a new step size.

Fig. 9. Runtime breakdown for main steps in Algorithm 2.

operations. As we can see, only cases D2, D4, D7, and
D9 require regularization, and the corresponding runtimes in
these cases only take 4.7%, 8%, 4.5%, and 4.8%, which
demonstrates practicability of the regularization process. The
computation of Krylov subspace method generally dominates
the performance for large cases, which takes more than 70%
for the cases with size larger than 1K. In contrast, the
computation time of small cases is more relevant to the number
of error estimations and calculations of xnew, which is larger
in the nonlinear cases, such as D6, D7, and D8.

As a final remark, Table V compares the major charac-
teristics of (traditional) explicit methods, implicit methods,
and MEXP within the context of circuit simulation. Each

method is shown to have its own strength and weakness,
and thus its own appropriate range of application. Explicit
methods has the best per-step performance but the worst
stability problem, rendering it is more suitable for designs
known to be nonstiff. Implicit methods are the most robust
approach for general situations, although with a relatively low
scalability and adaptivity. MEXP to some extent fills in the
gap between explicit and implicit methods, by eliminating the
stability difficulty of the former and providing better scalability
than the latter, for a wide range of application with small to
intermediate stiffness.

VII. Conclusion

An explicit numerical integration method has been pre-
sented for accurate and efficient time-domain circuit simu-
lation. Different from conventional linear multistep method,
MEXP solves the linear differential equation analytically via
the matrix exponential operator. The computation of matrix
exponential was significantly accelerated by the Krylov sub-
space method. The proposed method alleviates the stability
bottleneck of explicit methods and enables great adaptivity for
time-step size control. Numerical experiments have confirmed
the superiority of the proposed method.
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