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ABSTRACT 

The rotation-free or RF element method represents a non-conventional finite element method in 

which the rotations are not used as dofs and the element interpolation domains are overlapping. Its 

obvious advantage is that the complication of finite rotations can be avoided. In this paper, the 

relatively unexplored RF plane beam element recently formulated by the authors in the course of 

developing a RF triangle for thin-shell analyses is revisited. Comparing with other RF plane beam 

elements, the present one is simple and physical yet its accuracy remains competitive. Using a 

corotational approach and the small strain assumption, its tangent bending stiffness matrix can be 

approximated by a constant matrix which does not require updating in geometric nonlinear 

analyses. The element is here extended to spatial cable analyses in which the torsional stiffness can 

often be neglected and the sectional properties are isotropic. Under the same nodal distributions, it 

is seen that the present element can tolerate much larger load increment and time step under static 

and dynamic analyses, respectively, than the two-node thin beam finite element.  
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1.  INTRODUCTION 

Rotation-free or RF element method has attracted considerable attention in the last two decades. An 

obvious advantage of the method is that it simplifies the kinematic description under finite rotations. 

While the focus of the method is on RF triangular plate/shell elements [1-7], the RF beam elements 

are relatively unexplored until more recently. In the RF element, its interpolation domain is larger 

than its integration domain which is referred to as “element” for simplicity. In other words, not only 

the nodes within but also adjacent to the element are employed in the displacement interpolation. 

Phaal & Calladina [1] developed a RF beam element based on the quadratic interpolation. Three 

nodes are used to construct the displacement from which a constant curvature can be derived, see 

Figure 1(a). To the best knowledge of the authors, this straight forward linear straight beam 

formulation was not extended to curved beam and nonlinear analyses. Flores & Oñate [8] presented 

RF elements for nonlinear analyses of plane beams and axisymmetric shells with special emphasis 

on treating non-smooth and branching beams. With respect to Figure 1(b), 1-2, 2-3 and 3-4 are 

treated as straight and their directors (n12, n23 and n34) after deformation are computed accordingly 

in Reference [8]. Based on the displaced directors, the curvatures at nodes 2 and 3 are determined 

and linearly interpolated for the element bounded by the two nodes. Oñate & Zarate [9] later 

included the transverse shear deformation into the formulation by introducing shear angle dofs. On 

the other hand, Battini [10] proposed a RF co-rotational plane beam element. The element again 

relies on four nodes and the co-rotational frame is aligned with nodes 2 and 3. Using nodes 1 to 4 

and nodes 1 to 3, cubic and quadratic local deflections are interpolated, respectively. The local 

rotation at node 2 is taken as the average rotations derived from the two deflections. Similarly, the 

local rotation at node 3 can be derived. Using the local rotations and the zero local deflections at the 

two nodes, another local cubic transverse deflection is derived for the element bounded by nodes 2 

and 3.  

Very recently, the authors have formulated a RF plane beam element in the course of 

developing a RF triangle plate/shell element [11]. The formulation can be regarded as an extension 

of the simple RF beam element of Phaal & Calladina [1] to the curved beam and geometric 

nonlinear analyses. Comparing with other RF beam elements, the present one is simple and physical 

but its accuracy is competitive. Using a corotational approach and the small strain assumption, its 

tangent bending stiffness matrix can be approximated as a constant matrix which does not require 

updating in a geometrically nonlinear analysis. It is particularly suitable for efficient analysis of 

highly geometrically nonlinear problems. Cables, which are used in cable-supported bridges and 

roofs, are typical examples [12].  

 



 

(a) 

 

(b) 

Figure 1. (a) Three consecutive nodes along a straight plane beam. (b) Four consecutive nodes along a curved 

plane beam. 

 

In computational analysis of cables, linear and higher order line finite elements [13, 14], 

catenary finite elements [12, 15-18] and, of course, beam finite elements can be employed. As the 

catenary elements combine the analytical catenary expressions with the numerical method, they can 

yield accurate static predictions by using very few elements.  

Nevertheless, there are a couple of drawbacks in the line and catenary elements. Firstly, they 

concern only the axial force and the bending effect is ignored. This is justifiable in most but not all 

cases. For example, Irvin [19] pointed out that when rapid changes in curvature are unavoidable, the 

bending effect may be locally important. Recently, Buckham et al [20] also indicated that the 

bending effect is sometimes important, e.g. in the dynamic simulation of slack tethers used in 

underwater remotely operated vehicles. Secondly, numerical instability and convergence difficulties 

are sometimes encountered. Thus, some additional schemes such as pre-stress, pre-strain, assumed 

configuration and form-finding have been proposed [21]. Nevertheless, proper choice of these 

schemes and the related settings are not straight forward. Of course, these drawbacks do not exist in 

the beam finite element. Recently, a ‘nodal coordinate element’ [22, 23] has been proposed to deal 

with aforementioned drawbacks. The element takes bending and transverse shear effects into 
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account. However, in their formulation, not only the nodal coordinates but also the slopes of the 

coordinates need to be taken as the nodal dofs. For 3D analysis, each node carries 12 dofs. The 

formulation is complicated and the computational effort is considerably large.  

In the present paper, the RF beam element proposed in Reference [11] will be re-visited and 

applied to the cable applications. The outline of this paper is as follows. The linear formulation of 

the beam element is reviewed in Section 2 followed by some numerical examples in Section 3. In 

Section 4, the corotational approach is employed to extend linear element to geometrically 

nonlinear analyses. Nonlinear numerical examples are given in Section 5. It should be remarked that 

the materials presented in Sections 2 and 4 have been similarly presented in Reference [11]. 

However, Reference [11] covers linear and nonlinear straight beams, curved beams, plates and 

shells. Consequently, only two smooth and relatively unconstrained beam examples are presented. 

The examples presented here are markedly different in nature from the two in Reference [11]. They 

include constrained and folded beams which have also been considered by other RF beams. Our RB 

beam is indeed comparable to those published by the others in accuracy yet its formulation is much 

simpler. In Section 6, a pseudo 3D RF beam element is newly developed and employed in cable 

analyses as presented in Section 7. Under the same nodal distributions, it can be seen that the 

present element (with only translational dofs) can tolerate much larger load increment and time step 

under static and dynamic analyses, respectively, than the two-node thin beam finite element (with 

translational and rotational dofs).  

 

2.  LINEAR FORMULAION 

In this section, the plane RF beam element formulated very recently by the authors in the course of 

developing a RF triangle [11] is briefly reviewed. We shall restrict the use of the term “segment” to 

the beam length between two consecutive nodes along a beam.  

 

2.1  The RF Element & Its Interpolation Domain 

As mentioned above, the interpolation domain is generally larger than the integration domain 

(also called as element domain). For the present RF formulation, the integration domain is a node-

based domain. For a straight beam as shown in Figure 1(a), the integration domain covers the range 

from the middle point of segment 1-2 to the middle point of segment 2-3, i.e., (X1 + X2)/2  X  (X2 

+ X3)/2. The corresponding interpolation domain covers the range from Node 1 to 3. Three nodes 

are involved and can be used to construct the interpolation.  

Similarly, for a curved beam as shown in Figure 2, the integration domain is from the middle point 

of segment 1-2 to the middle point of segment 2-3 while the interpolation domain covers the range 



from Node 1 to 3. It is noted that the middle points of curved segments 1-2 and 2-3 are difficult to 

determine. The curved segments are firstly projected onto the straight line 1-3 and then the middle 

points of the projected segments are used to help the determination of the integration domain as 

shown in the figure. 

 

Figure 2. Three consecutive nodes along a curved plane beam. 

 

2.2  Formulation of Straight RF Beam 

      Figure 1(a) shows an initially straight beam. The following quadratic polynomial can be 

interpolated for the transverse displacement W in the interpolation domain [1], i.e.  
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where Wi and Xi denote the nodal transverse displacement and the axial coordinate, respectively. 

Noticeably, the above W is quadratic which is lower than the cubic W employed in the two-node 

finite element beam model. The curvature can be obtained as: 
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where lij = Xj –Xi. The above curvature is used for the node-based element as defined before and the 

elastic energy in the RF element is 



 

2

12 12 12 23 12 23
1 1

2 2

2 2

12 12 23 12 23 23 12 23

3 3

2

12 23 23 12 23 23

1 1 1 1 1
( )

1 1 1 1 1 1 1 1
( ) ( ) ( )

2 2

1 1 1 1 1
( )

T

b

l l l l l l
W W

EI EI
E l W W

l l l l l l l l l
W W

l l l l l l



 
 

    
     

        
    
    

 
 

 (3) 

in which EI is the flexural rigidity of the beam and l = l13/2 is the element length. The elastic energy 

of the beam is obtained by summing the elemental elastic energy. 

 

2.3  Formulation of Curved RF Beam 

      Reference [1] does not extend the above straight beam element to curved beam element which, 

nevertheless, is considered in Reference [11] by a simple projection scheme. Nodes 1 to 3 in Figure 

2 are consecutive nodes along an initially curved beam on the X-Z-plane. Point 0 is the projection 

of node 2 onto the straight line 1-3 and n is the unit vector perpendicular to 1-3. Provided that 1-2-3 

remains shallow, the projected coordinates can be used to interpolate the initial and deformed 

configurations. The curvature change can be obtained in a way similar to that of Eq.(2) as: 
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U  is nodal displacement vector.  

In the equation, n
T
Ui is equivalent to transverse displacement Wi in Eq.(2). The bending energy of 

the element associated with Node 2 is 
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where the element length l is taken to be l13/2. To take the stretching energy into account, the 

conventional two-node truss finite element is used. 

 



2.4  Imposition of Boundary Conditions 

      The treatment on the boundary conditions with RF element is not as obvious as that with 

traditional beam element, since the adjacent nodes of the boundary elements may not exist. In the 

current approach, slave fictious nodes are employed to impose the boundary conditions similarly as 

done by Phaal & Calladine [1]. Two cases, i.e., symmetric and free conditions, are considered. The 

clamped conditions can be modeled by applying the symmetric conditions and by fixing the nodal 

displacement while the simply supported conditions can be modeled by applying the free conditions 

and by fixing the nodal displacement. 

      For the symmetric boundary condition as shown in Figure 3, a slave node 1’, which is the 

symmetric point of node 1 corresponding to the symmetric boundary, is firstly generated. The 

displacements of the slave node 1’ can be determined according to the symmetric condition, i.e., 

U1’=-U1, and W1’=W1. For the free edge condition, it means that the moment is null. Thus, the 

bending energy is also null. 

 

Figure 3. Imposition of symmetric boundary condition 

 

3.  LINEAR EXAMPLES 

The focus of the previous paper [11] is the shell element formulation and only one example on a 

linear beam is presented. Here, two straight beam examples previously considered by Flores & 

Oñate [8] are examined to illustrate the efficacy of the present formulation. 

 

3.1  Simple supported straight beam 

      This simply supported straight beam is loaded by uniform transverse load as shown in Figure 

4(a). The distributed load over an element is lumped and taken to be the nodal force applied to the 

central node of the element. Owing to symmetry, half of the beam is modeled with 1, 2, and 4 equal 

segments. The normalized nodal deflections with respect to the exact midspan deflection are shown 
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1 2 1’ 
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in Figure 4(b). It should be remarked that the nodal predictions of Flores & Oñate [8] are computed 

from the reported deflections at the midpoints of the segments which are taken to be straight in their 

formulation. Compared with Flores & Oñate’s beam element, the present one yields more accurate 

predictions in this example.   
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I = 2.133×10
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(a) 

  

(b) 

Figure 4 (a) Simple supported plane beam under uniform load. (b) The normalized deflections along the beam. 

 

3.2 Cantilever beam 

     This simple cantilever beam is subjected to a point moment load as shown in Figure 5(a). Since 

there is no rotational degree of freedom with RF element, the point moment load cannot be directly 

applied. However, an equivalent force couple can be applied to the adjacent nodes to replace the 

point moment as shown in Figure 5(b), where h is the segment length and two nodal forces P = M/h 

are used to construct the force couple. For the present example, the bending moment is constant 

throughout the whole beam which should be exactly represented by the RF elements. Thus, the 

error if exists should be resulted from the load treatment. The beam is modeled with uniform 

segments. Fortunately, the results show that no matter how many segments are used, the numerical 

model can achieve the exact solution. Therefore, using the equivalent force couple to replace the 

point moment is reasonable.  

L = 10 



 

(a) 

 

(b) 

Figure 5 (a) Cantilever beam subjected to point moment load. (b) Cantilever beam subjected to equivalent force 

couple.  

 

3.3  L-frame 

      The lower and upper ends of this L-frame are built-in and simply supported as shown in Figure 

6(a). At the junction B of the horizontal and vertical branches, a horizontal force is applied. This 

example has also been considered by Flores & Oñate [8]. They did not mention the tensile rigidity 

EA of the two branches. For simplicity, their cross-sections are treated as circular here. In this light, 

their diameter-to-length ratios are around 17. Two schemes are employed to consider the junction. 

The first scheme models the whole frame as a single smooth beam. In other words, the junction is 

approximated as an arc and a curved RF beam element is used across the junction, which is also the 

practice of Flores & Oñate [8]. The second scheme models the horizontal and vertical branches as 

individual straight beams whilst the equal-rotation and moment balance conditions at B are 

enforced. Each branch is modeled by 3, 6 and 12 equal segments. The horizontal nodal deflections 

along the vertical branch are normalized by the thin-beam solution of the horizontal deflection at 

the junction and shown in Figure 6(b). In the figure, “Present 1” and “Present 2” refer to the 

predictions using the first and second modeling schemes, respectively. Comparing “Present 1” with 

the prediction of Flores & Oñate [8], the former possesses a higher coarse-mesh accuracy. Using 12 

segments per branch, the former and the latter are slightly smaller and larger than the thin-beam 

solution. “Present 2” is roughly the average of “Present 1” and the prediction of Flores & Oñate [8]. 
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Moreover, “Present 2” overlaps with the thin-beam solution when 12 segments per branch are 

employed. The example is also considered by Abaqus. Using a large number of B21 elements, the 

horizontal deflection at B is 0.6% larger than that from the thin-beam solution. The Abaqus 

prediction is graphically coincident with Present 2 using 12 segments. 

 

(a) 

 

(b) 

Figure 6 (a) A L- frame acted upon by a horizontal force. (b) Normalized horizontal displacements along the 

vertical member. 

 

4.  NONLINEAR FORMULAION 

In this section, the linear formulation is extended to the geometrically nonlinear analysis using a co-

rotational approach. It will be seen that the tangent bending stiffness matrix for the initially straight 

beam is constant and does not need updating. For the curved beam, the tangent bending stiffness 
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matrix can also be approximated as constant. 

 

4.1  Formulation of Straight Beam 

      The straight beam formulation is the same as that by Sze & Liu [24]. It is briefly described for 

completeness. Consider Nodes 1, 2 and 3 along the initial straight beam in Figure 7. U1, U2 and U3 

are the displacement vectors of Nodes 1, 2 and 3, respectively, and the deformed configuration is 

1’-2’-3’. A co-rotated x-z-frame is defined such that its origin is 1’ and the x-axis passes thru 3’. 

There exists a rigid body displacement U
C
 which brings 1-2-3 to its co-rotated configuration 1’-2

C
-

3
C
. It is trivial that U

C
 is a linear function of x, i.e.  

 ,Cxx U 0 . (6) 

Provided that the axial strain and curvature is small, the displacement from the co-rotated 

configuration to the deformed configuration is small and closely parallel to the z-axis which defined 

the unit vector n. Thus, the local transverse displacement w can be obtained as: 

 ( )T Cw n U U   (7) 

and  

 ( )C T Cw U U n nn U U . (8) 

Similar to Eq.(2) and Eq.(3), the bending energy can be quantified as: 
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in which, l is taken to be l13/2. By virtue of Eq.(6) and Eq.(8), the above equation can be simplified 

as: 
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As U can be interpolated as a quadratic function of x,  
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where B is self-defined. The bending energy and its derivatives required for the nonlinear iterations 

can then be derived as: 
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The first and second derivatives with respective to the vector of nodal displacements U1..3 are the 



internal force vector and the tangent bending stiffness matrix, respectively. It can be seen that the 

latter is a constant matrix which does not require updating in the iterative solution process. To take 

the axial effect into account, the simple two-node truss element formulated under the total 

Lagrangian framework is employed.  

 

Figure 7.  An initially straight beam segment in nonlinear analysis. 1-2-3, 1’2
C
3

C
 and 1’-2’-3’ are the initial, 

corotational and deformed configurations, respectively. 

 

4.2  Formulation of Curved Beam 

      The extension from linear to nonlinear formulation of the curved beam is analogous to that of 

the straight beam. Considering Figure 8, 1-2-3, 1’-2’-3’ and 1’-2
C
-3

C
 are the initial, deformed and 

corotated configurations, respectively. Again, the origin of the co-rotated x-y-frame is 1’ with the x-

axis passing thru 3’ and n being the unit vector along the z-axis. Similar to Eq.(4), the curvature 

change is 
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in which U
C
 is the rigid body co-rotational displacement and L is self-defined. Let 0 and 0

C
 be the 

projections of 2 and 2
C
 onto 1-3 and 1’-3

C
, respectively. Then,  02 0 2 0 2C C C C
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where the underlined term vanishes by virtue of Eq.(6); κ0 is self-defined and is the initial curvature. 



Substitution of  Eq.(14) into Eq.(13) yields 
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in which B  can be obtained from B in Eq.(11) by replacing l12 with l10and replacing l23 with l03. 

Hence, the bending energy associated with Node 2 is  
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and the corresponding internal force is 
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where 
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  is the bending moment. 

The explicit expression of the derivative of n is rather lengthy. Nevertheless, there is only one 

directional vector in the present formulation while more directional vectors are involved in other RF 

element formulation. The present one is obviously the simplest.  

 

Figure 8. Initial configuration, deformed configuration, and corotational configuration of a curved beam.  

 

      The tangent bending stiffness matrix can be obtained as the second order derivative of the 

bending energy. The explicit expression of the matrix would be extremely lengthy due to the 

complexity of the second order derivative of n. In the previous paper [11], a simplification by 



assuming 1-2-3 to be initially straight or o equal to zero is adopted such that the second derivative 

of the energy is approximated by the following constant matrix: 
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which, same as that in Eq.(12) for straight beam, requires no updating in the iterative solution 

process. It should be remarked that the simplification o = 0 should not be adopted in deriving the 

first derivative of the energy or the internal force vector which determines the deformed 

configuration in response to the external force. In examples considered in Reference [24], the 

collectively adverse effect of the simplification on the convergence rate is minimal.  

 

5.  NONLINEAR EXAMPLES 

Two straight and one curved beam examples have been presented in References [24] and [11], 

respectively. In this section, two additional examples previously considered by other RF elements 

are examined. The 0.5 % force tolerance is employed as the convergence criterion, i.e. 

 
| global external force vector global internal force vector|

0.5%
| global external force vector |


  (19) 

in which || returns the magnitude of the embraced vector.  

 

5.1  Z-shaped Cantilever 

      Figure 9(a) shows a Z-shaped cantilever subjected to a vertical point force at the free end. It 

contains two horizontal and one inclined branches. The cross section is rectangular. Following the 

practice of Flores & Oñate [8] and Battini [10], the cantilever is modeled as a continuous beam, i.e. 

the sharp bends at 60 and 120 units from the clamped end are treated as arcs with their initial 

curvatures determined by the nodal spacing.  The curves of load versus vertical deflection at the tip 

yielded by using 9 and 18 segments are plotted in Figure 9(b). The reference solution is a highly 

converged one computed by using a large number of Abaqus’s two-node plane beam element B21. 

It can be seen that the present results are satisfactory. Furthermore, the free end vertical deflections 

at F = 1263 (in the non-linear region) for different numbers of segment are compared with those 

obtained by Flores & Oñate [8] and Battini [10] in Table 1 after normalized with 133.09 which is 

the reference solution used by Battini. The normalized results are listed in Table 1. All RF elements 

yield close predictions. The present element and that of Flores & Oñate [8] yield nearly identical 

predictions. They are less accurate than that of Battini [10]. Nevertheless, the present formulation is 

far simpler than those of the other two RF elements.  



 

(a)  

 
Figure 9.  (a) The Z-shaped cantilever loaded by a vertical point force. (b) Load versus the tip vertical deflection.  

 

Table 1.  Normalized vertical free-end displacement at P=1263. 

Number of segments 18 9 6 

Present 1.005 1.021 1.056 

Flores & Oñate [8] 1.01 1.03 1.06 

Battini [10] 0.999 0.997 0.997 

 

5.2  Built-in Arch 

      Figure 10(a) shows a circular arch with both ends built-in. It is acted upon by a downward force 

P at its apex B. The force is plotted against the downward deflection d of B in Figure 10(b). A limit 

point can be seen in the curve and displacement loading is employed to avoid the instability in the 

numerical solution. The loading stops at d = 120 which exceeds the radius of the arch. The 

prediction of Battini’s RF beam element [10] is included and the reference solution is the highly 

converged one obtained by using 200 B21 elements which are capable of taking the initial curvature 

into account. Using 40 segments, the element of Battini yields more accurate prediction than the 

present one. By doubling the number of segments, the error of the present element is roughly 

halved. The present element continues to converge to reference solution with more segments. The 
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results, however, are not plotted for graphical clarity.  

 

(a) 

 

(b) 

Figure 10 (a) A circular arch loaded by a point force. (b) The load is plotted against the deflection under the load. 

 

6.  PSUEDO THREE-DIMENSIONAL BEAM FOR CABLE ANALYSIS 

In the previous sections, a plane beam is considered. For 3D beam analyses, bending effect about 

two mutually perpendicular transverse axes and torsional effect about the longitudinal axis should 

be considered. To the best of our knowledge, there has not been a 3D RF beam element. It is indeed 

impossible for the RF beam to consider the torsional effect due to the absence of rotational dofs. For 

cable analyses, a comprehensive beam formulation may not be necessary as the bending and 

torsional rigidities of the cable are relatively small compared with the axial stiffness; the cross 

section is usually isotropic; and the cable should be initially straight. Here, the torsional effect is 

neglected but the bending effect is retained. With the initial straight configuration, the derivation for 

the geometric nonlinear plane beam in Section 4.1 is largely applicable. With reference to Figure 7, 
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one only needs to add another dimension (Y, and the displacement V along it) and aligns the z-axis 

(and the unit 3D vector n along it) such that the x-z-plane is coplanar with 1’-2’-3’. Eq.(11) should 

accordingly be generalized to 
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With Eq.(20) substituted into Eq.(10) and Eq.(12), the rank of the constant matrix arising from the 

last expression in Eq.(12) is 3. Again, the two-node 3D truss finite element formulated under the 

total Lagrangian framework is employed to account for the axial effect.  

      To give some physical insight on the bending energy in Eq.(10) under the 3D setting and the 

limitation of the present 3D RF cable element, the bending energy for three-dimensional 

displacement can be expanded as: 

 2 2 2( , , , )
2

b

xx xx xx

EI
E l U V W    

In the expression, V,xx and W,xx are the curvatures in respectively the corotational x-y and the x-z 

planes whilst U,xx  is indeed a negligible error term in the bending energy since the axial strain U,x is 

small. For isotropic cross-section, the energy and, thus, the tangential stiffness matrix manage to 

consider the two mutually perpendicular bending moments.  

 A concern of finite element analysis of large displacement/rotation problems is that the element 

develops spurious internal force or energy under finite rigid body motions. To this end, a rotation-

free 3D curved beam modeled by two node-to-node segments is prescribed with the six independent 

rigid body modes at finite magnitudes. No internal force or energy develops in the beam. 

 

7.  EXAMPLES ON CABLES 

In this section, the RF cable element will be employed to consider a number of static and dynamic 

cable problems in References [15, 17] in which only the tensile rigidity EA is considered. In the RF 

cable element, one also needs to specify the bending stiffness which is highly dependent on its wire 

distribution, friction and loading of the cable. By assuming the closely-packed distribution for seven 

wires, two bounding values for the bending rigidity can be computed using the formulae in 

Reference [25] and the approximate average is 
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which will be adopted in all the subsequent examples. Some of them will also be considered by 

Abaqus’s B21 or B31 two-node 2D and 3D thin beam elements, respectively. The torsional stiffness 



of the B31 element will be specified as:  
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  . 

In the last two equations, A stands for the nominal cross-sectional area of the cable.  

      Same as Section 3.1, the distributed load over a RF element is lumped and taken to be the nodal 

force applied to the central node of the element. In dynamic analyses, the distributed mass is 

lumped similarly. Hence, the system mass matrix is diagonal which is a property needed for explicit 

time integration.  

 

7.1  Cable under Gravity and Point Loads 

      Figure 11 shows a cable anchored at two leveled points 1 and 2 which are 304.8 m apart. The 

example has been considered in Reference [15]. The unstretched length, cross-section area A and 

tensile rigidity EA of the cable are 312.73 m, 548.4 mm
2
 and 71.840 MN, respectively. The gravity 

load is q = 46.12 N/m and a point force P = 35.586 kN is also applied to point 3. The unstretched 

lengths of 1-3 and 3-2 are 125.88 and 186.85 m, respectively. In the computation, the numbers of 

segment in 1-3 and 3-2 are in the ratio of 2:3 and only the total number segments will be mentioned 

in the results. Initially, the cable is horizontal and unstretched with its left end attached to point 1. 

Then, the right end is moved to point 2 whilst the loads q and P are also applied. The cable is 

modeled by 5, 10 and 20 segments or the same numbers of B31 elements. Besides 45 iterations are 

allowed per load increment, the load increment and iteration strategies are the same as the default 

settings of Abaqus for nonlinear static analyses. In essence, the convergence criterion is the 

simultaneous fulfillment of the 0.5% force and 1% displacement tolerance conditions. Moreover, a 

load increment will be aborted and equally subdivided into four unless the force residue starts to 

diminish from the fourth iteration onwards and the convergence criterion is met within 45 iterations; 

or into two unless the projected force residue can meet the force tolerance requirement before the 

45-th iteration from the eighth iteration onwards. On the other hand, if the solution converges 

within five iterations in two consecutive load increments, the next load increment will be increased 

to 1.5 times of the present load increment. 
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Figure 11.  Cable under gravity and a point loads. 

      In this example, the RF cable method does not require any sub-division in the load increment. 

On the other hand, the overall load increment in Abaqus is successively reduced to its 10
-6

~10
-8

 

times before the first converged solution can be yielded. Table 2 shows the numbers of load 

increments and iterations employed before the final loads can be applied. Table 3 shows the final 

converged displacement components of point 3 which is under the point force. The prediction 

yielded by using 100 Abaqus elements can be taken as the reference solution. Both the present 

method and Abaqus yield accurate predictions. However, the former appears to have a higher 

coarse-mesh accuracy and consumes far less load increments/iterations than the latter. Table 3 also 

gives the predictions of the catenary and truss elements [15] which ignore the bending and torsional 

rigidities.  

 

Table 2.  Comparisons of number of load increments and iterations.  

 5 segments/elements 10 segments/elements 20 segments/elements 

Present Abaqus Present Abaqus Present Abaqus 

No. of load increments 1 36 1 51 1 51 

No. of iterations 41 135 41 226 41 227 

 

Table 3: Predicted displacement components of point 3 under the point load, see Figure 11.  

 U [m] V [m] W [m] 

 5 segments -4.805 0.000 -34.984 

Present 10 segments -4.803 0.000 -34.965 

 20 segments -4.802 0.000 -34.960 

 5 elements -4.848 0.000 -35.461 

Abaqus 10 elements -4.803 0.000 -34.967 

 20 elements -4.802 0.000 -34.962 

 100 elements -4.802 0.000 -34.961 

2 catenary elements [15] -4.786 0.000 -34.902 

10 truss elements [15]
 
 -4.772 0.000 -34.747 

 

7.2  Static Analysis of a Pretensioned Cable Net 

      This example was described by Tibert [17], among others, and also employed in the verification 

manual of SAP2000 [26]. The cable properties include A = 146.45 mm
4
, EA = 12.117 MN and 

weight = 1.45939 N/m. The initial pretensioned state is set up as shown in Figure 12. The Z-axis 

defines the vertical upward direction. B to I are eight leveled anchor points. D-E and F-G are 



parallel to the X-axis whilst B-H and C-I are parallel to the Y-axis. The pretensions and the 

locations of the cable junctions 1 to 4 are adjusted such that junctions 1 to 4 are 9.144 m vertically 

below the intersecting points of D-E, F-G, B-H and C-I. On the other hand, the pretensions in 1-2, 

3-4, 1-3 and 2-4 are adjusted to 24.2828 kN and those in the more inclined portions (i.e., B-1, C-2, 

D-1, 2-E, F-3, 4-G, 3-H and 4-I) are adjusted to 23.6868 kN. Then, the forces holding the cable 

junctions are removed whilst a 35.586 kN download force is applied to each of the freed cable 

junctions. The displacement components obtained from the RF cable element, Abaqus’s B31 

element, Tibert’s catenary element and SAP2000’s catenary element are listed in Table 4. All of 

them produce similar results which show that the present RB cable element is acceptable for the 

spatial cable net analysis. 

 
Figure 12.  The initial configuration of a cable net: (a) isometric view, (b) top view. 

 

Table 4. Predicted displacement components of joint 1, see Figure 12. 

 U [m] V [m] W [m] 

Present 24 segments -0.04033 0.04033 -0.44773 

 48 segments -0.04033 0.04033 -0.44773 

Abaqus 24 elements -0.04059 0.04059 -0.45075 

 48 elements -0.04060 0.04060 -0.45082 

12 catenary elements of Tibert [17] -0.04048 0.04048 -0.45001 

12 catenary elements of SAP2000 [26] -0.04029 0.04029 -0.44766 

 

7.3  Static Analysis of Cable 

      The cable in this example was considered by Jayarman & Knudson [15]. With the unstretched 

length equal to 253.746 m, the cable is anchored at two leveled points at separation of 254 m as 

shown in Figure 13. Properties of the cable include: A = 41.93 mm
4
, EA = 5.7821 MN and weight = 

3.5 N/m. The upward direction is defined by the Z-axis. Same as Jayarman & Knudson [15], only 
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half of the cable is modeled due to symmetry. Again, the weight over an element is lumped as the 

nodal force acting on the central node of the element. Table 5 lists the amount of sag, which is the 

vertical distance between the anchoring points and the midpoint B of the cable, predicted by the 

present formulation, Abaqus and a catenary element. The predictions do not differ from each other 

by more than 1.5%.  

 

Table 5.  Static sag [m] of the cable in Figure 13. 

Present Abaqus B31 beam element 1 catenary 

element [15] 2 segments 5 segments 10 segments 2 elements 5 elements 10 elements 

3.374 3.339 3.334 3.383 3.348 3.334 3.343 

 

  

Figure 13. Static equilibrium of a cable under its own weight. 

 

7.4  Dynamic Analysis of Cable 

      In this subsection, the dynamic response of the cable in Figure 13 is studied. With the cable 

assuming its static equilibrium configuration, a uniform downward load of 35 N/m, which is 10 

times of the cable weight, is applied instantaneously. Same as the distributed load, the mass of an 

element is lumped to its central node and the arrangement is suitable for explicit time integration. 

The vertical displacement of point B is computed by modeling half of the cable with different 

numbers of RF segments and B31 elements. The highest eigen frequencies of these assemblages 

and the critical time steps estimated by 1/f for stable predictions are given in Table 6. In particular, 

the 10-segment and 5-element assemblages possess 33 and 36 dofs, respectively, and their critical 

time steps are also close. It should be remarked that the estimated critical time step 1/f only works 

for linear analysis and may not work for the entire time history for nonlinear problems. To secure 

stable predictions for the 10-segment and 5-element assemblages, the related time steps are both 

taken as 1 ms which is about one-third of their 1/f. Their predictions for the vertical deflection of 

B are plotted in Figure 14(a). The prediction of the 20-element assemblage is taken as the reference 

solution and more elements do not lead to any practical change in the result. It can be seen that the 
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result produced by 10-segment assemblage is far closer to the reference solution than that of the 5-

element assemblage. The prediction of the 20-segment assemblage is included to check using 

whether more segments would improve the prediction and the result is positive.  

 

Table 6.  Highest eigen frequencies of the assemblages modeling the cable problem in Figure 13. 

 No. of RF segments No. of B31 beam elements 

10 20 5 10 20 

Highest eigen frequency f [cycle/s] 99.8 201.5 109.3 218.1 437.0 

1/f [ms] 3.19 1.56 2.91 1.46 0.73 

 

      With the cable under static equilibrium again, the Y-directional distributed impulsive load 

portrayed in Figure 14(b) with 0.2 second duration and 35 N/m peak is applied to the cable. The Y- 

and Z- displacements of point B predicted by the same set of assemblies are shown in Figures 14(c) 

and 14(d), respectively. It can be seen that the result produced by the 10-segment assemblage is also 

closer to the reference solution, produced by the 20-element assemblage, than the 5-element 

assemblage.  

 

 

  

(a) 



 

(b) 

 

(c) 

 

(d) 

Figure 14.  (a) Z-displacement of point B after a 35 N/m instantaneous load along the Z-direction is applied to the 

cable in Figure 13. (b) The impulsive load along Y-direction. (c) Y-displacement of point B after the 

impulsive load in (b). (d) Z-displacement of point B after the impulsive load in (b). 



 

7.5  Cable subjected to periodic ground motion 

      Figure 15 shows a cable with unstretched length 10 m anchored at two leveled points 10 m 

apart. The two points are subjected to the same periodic X-displacement sin t where ω = 1 s
-1

 and 

ω = 10 s
-1 

are attempted. A lumped mass M = 100 kg is attached to the midpoint of the cable. The 

cable properties as well as the treatments for the distributed gravity load and the mass are the same 

as those in the last example. The cable is modeled by 12 and 40 RF-segments as well as 6 and 40 

B31 elements. The highest eigen frequencies and the estimated critical time steps are given in Table 

7. Similar to the last subsection, the time step for the 6-element assemblages are taken to be 0.06 ms 

which again is approximately one-third of the estimated critical time steps. However, Abaqus fails 

with the warning message “excessively distorted element” returned. The warning message 

disappears when the time step is reduced to 0.0091 ms. The purpose of the 40-element assembly is 

to obtain a reference solution. However, the warning message “excessively distorted element” keeps 

appearing even when the time step is taken to be 0.000 01 ms. Further reducing the time step leads 

to “system error”. On the other hand, both the 12 and 40 RF-segments are able to produce 

predictions with the time steps slightly lower than the estimated critical time steps.  

 

Figure 15.  A cable with a concentrated mass M = 100 kg attached to its midpoint. X-displacement 

of the concentrated mass at two driving frequencies  = 1 s
-1

 and  = 10 s
-1

 is predicted.  

 

Table 7.  Highest eigen frequencies of the assemblages modeling the cable problem in Figure 15. 

 No. of RF segments No. of B31 beam elements 

12 40 6 40 

Highest eigen frequency f [cycle/s] 1486 5113 1664 11086 

1/f [ms] 0.214 0.062 0.191 0.029 

 

It is conjectured that the warning message may be caused by finite rotation which is a non-trivial 
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issue in three-dimensional problems. As the cable motion should be confined in the X-Z-plane, the 

Y-displacement, X-rotation and Z-rotation of all the beam elements are restrained. After applying 

the constraints, the problem becomes planar. The restrained beam assemblages are able to produce 

prediction with the time steps as guarded by the estimated critical time steps which remains 

unchanged.  

 

 

(a) 

 

(b) 

Figure 16. The predicted X-displacement of the 100 kg mass in Figure 15 for 

(a)  = 1 s
-1

 and (b)  = 10 s
-1

. 

 

Figure 16(a) and 16(b) show the X-displacement of the concentrated mass for ω = 1 and ω = 10 

s
-1

, respectively. The results are predicted by the 12 and 40 RF-segments as well as 6 and 40 

restrained B31 elements. The time steps used by the 12-segement and 6-element assemblages are 

both taken to be 0.06 ms. When ω = 1 s
-1

, all predictions are close. When ω = 10 s
-1

, the result 



produced by the 12-segment assemblage is clearly closer to the reference solution, produced by the 

40-element assemblage, than the 6-element assemblage.  

 

 

8.  CLOSURE 

A simple rotation-free beam element formulation previously developed by the authors is re-visited 

and extended to a pseudo 3D formulation for the spatial cable analyses. Comparing with other 

rotation-free beam elements, the present one is probably the simplest but its accuracy is competitive. 

By using a corotational approach, a geometrically nonlinear formulation can be achieved. For 

straight beams, the bending energy can be expressed as a quadratic function of the nodal 

displacements and the tangent bending stiffness matrix is a constant matrix. For curved beams, the 

tangent bending stiffness matrix can also be approximated as a constant matrix with an insignificant 

adverse effect on the convergence. Numerical examples attempted by other rotation-free elements 

are first examined here. The results show that the present formulation can give satisfactory 

predictions in both linear and geometrically nonlinear analyses. The superior features of the 

rotation-free beam formulation also make it a promising choice for cable analyses. To this end, the 

plane beam formulation is extended to a pseudo 3D beam formulation in which the torsional 

stiffness can be neglected and the sectional properties are isotropic. A number of examples on cable 

analyses are examined and the yielded predictions are close to those of the thin beam finite elements. 

However, the tolerable load increment and maximum stable time step of the rotation-free element 

far exceed those of the two-node thin-beam finite element model in nonlinear static and explicit 

dynamic analyses, respectively.  

It should be mentioned that the major advantage of the present rotation-free beam element is its 

efficiency in terms of the large tolerable load increment, large stable time step and absence of the 

finite rotational problem. Its plate/shell counterpart has been applied to fabric drape simulation in 

which the finite element method has rarely gained any success [11,27]. Other rotation-free 

plate/shell elements have been applied to metal forming problems and drap simulation [6,7]. The 

simplicity and efficiency of the present rotation-free framework are restricted to small strain 

problem. Inclusion of large strains needs to be further explored.  
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