-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

Title Software pirates: a criminal investigation

Author(s) Tse, HKS; Chow, KP; Lai, PKY

The 33rd ACM SIGPLAN Conference on Programming Language
Citation Design and Implementation (PLDI 2012), Beijing, China, 11-16
June 2012. In Proceedings of the PLDI, 2012, p. 1-10

Issued Date | 2012

URL http://hdl.handle.net/10722/169300

Rights Creative Commons: Attribution 3.0 Hong Kong License

https://core.ac.uk/display/37994303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Software Pirates: a Criminal Investigation

Hayson Tse, K.P. Chow, Pierre Lai
The University of Hong Kong,
Pokfulam Road, Hong Kong
{hkstse, chow, kylai} @cs.hku.hk

Abstract—Computer program infringing materials are difficult
to identify. There are common techniques to disguise the origin
of copied codes. In order to decide on a legal basis whether
a substantial part of copyright work has been taken, it is
necessary to consider both the quality and quantity of the
part taken. Various researches have carried out in relation
to authorship identification and plagiarism identification. In a
criminal case in Hong Kong, we used a common software to
compare files contents and folders between a copyright work and
the infringing copy instead of complex and technical metrics. We
conclude that the source codes of the defendant started from the
source codes of his previous employer using simple and easy to
understand measurements. Though the magistrate was satisfied
beyond reasonable doubt of the defendant’s guilt, the evidence in
the case did not enable a scientific calculation in respect of the
likelihood that a computer program may look like a derivative
of another program by chance.

I. INTRODUCTION

Copying other’s computer program or sharing them with
others has an innocent origin. It began in the 1980s when com-
puter technology was still in its infancy. Computer geeks at
universities wrote computer programs. They formed computer
clubs to share computer programs to help each other. Those
clubs soon became opportunities for sharing other computer
programs. Such opportunities were enlarged by the invention
of Bulletin Board Systems. In those days, computer programs
were either used by hobbyists or large corporations. Later,
computer programs were copied not for the sole purpose of
helping others in the development of computer programs [6],
e.g. for any purpose of trade or business.

In the education sector, copying other’s computer program
is known as computer program plagiarism. In 2001, Bull et
al. [3] carried out a survey on 293 academics. Fifty percent of
the academics felt that there had been an increase in plagiarism
by students. Those students copied other’s computer programs
and used them as if they were their own inventions for their
assignments.

In the business sector, employees access employers’ com-
puter program codes on employers’ hard drives. They copy
them onto external hard drives and use those codes in connec-
tion with their own private business. Various methods were
proposed to detect computer program piracy.

Computer program privacy has now become a serious and
widespread problem. In 2010, for every US dollar spent on
legitimate software, an additional 63 cents worth of unlicensed
software also made its way into the market. In the same year,
computer program privacy caused a loss of US $59 billion
worldwide [1].

Computer programs infringing materials are difficult to
identify. It is not uncommon for courts to spend a considerable
amount of time, effort, and resources to determine whether a
computer program is reproduced from another computer pro-
gram without the licence of the owner. Researches have been
carried out regarding authorship identification and plagiarism
identification.

In a criminal case of copyright infringement in Hong Kong,
a commonly available software which quickly and easily
compared files and folders was used to examine whether the
defendant’s computer program was substantially a copy of
the victim’s program. The victim was the former employee
of the defendant, a programmer. Though the defendant was
convicted, the evidence in the case did not enable a scien-
tific calculation in respect of the likelihood that a computer
program may look like a derivative of another program by
chance.

In this paper, we first examine in sections II and III to
see whether object codes of a computer program is or is not
protected by copyright laws in Hong Kong, and the modes of
copying. In section IV, we outline common techniques used
to disguise the origin of copied codes and we give a survey of
ways to detect copying. In section V, we describe our findings
in the criminal case mentioned above. We conclude in section
VI

II. PROTECTION OF SOURCE CODES AND OBJECT CODES

We consider the first issue whether the source codes and
object codes of a computer program are protected or not
protected by copyright laws in Hong Kong. This leads to an
examination of the nature of computer programs.

A. Source codes and object codes

In order to design a computer program, a programmer writes
in ordinary language with formula, flow charts and diagrams,
of which represented a set of instructions to a computer. The
programmer then writes out the program in details by “source
code” in one of the recognized computer languages. Source
codes are “high level language”. They are so called because
they are not far removed from ordinary language.

A computer does not understand ordinary language and
cannot read the source code. Therefore, it is necessary to
process them into binary codes by another program called a
compiler. The words and algebraic symbols of the “high level
language” then become binary numbers. This binary program
code is called “object code” or “machine code”.

The program in “object codes” in the first instance are
often stored on a magnetic disk, tape, compact disc, or a
read only memory silicon chip. These devices are installed
in the computer. When electrical power is applied to them, a
sequence of electrical impulse is generated. Those impulses
cause the computer to take action according to the program in
“object codes”. The descriptions of the electrical impulses are
displayed on a visual display unit of the computer, or print
out on paper [23].

B. Hong Kong protection

In Hong Kong, copyright is a property right which subsists
in, amongst other things, literary works. Literary works include
a computer program [19].

There is no statutory definition provided for the phrase
“computer program”. The Concise Oxford Dictionary defines
the phrase as “a series of coded instructions to control the
operation of a computer”. “Object codes” are a series of coded
instructions to control the operation of a computer. Therefore,
“object codes” are a computer program.

Despite this definition, it has been argued that object codes
were not literary works [23], a material form perceived by the
senses of a human being . The reasons are:

1) Electrical impulses in a silicon chip, a magnet disk or
tape, or on a device cannot be perceived by sight, touch
or hearing.

2) The electrical pulses were not intended to convey any
message to a human being.

3) The re-arrangement of electrons in a programmed Read-
Only-Memory is not visible to the human eye too.

4) The electrical impulses also do not represent words,
letters, figures or symbols as a literary work.

5) The electrical impulses do not communicate the letters
or figures by which an object program may be repre-
sented.

On the other hand, source code are not far removed from
human languages. Source code conveys messages to a human
being as a literary work.

Those arguments ignore two important points. First, the
adaptation of a computer program includes a conversion of
a version of a computer program from a computer code into
a different computer code. The making of an adaptation of a
literary work is an act restricted and protected by the copyright
legislation in Hong Kong [18].

Second, as a member of World Trade Organization, Hong
Kong must give effect to the Trade-Related Aspects of Intel-
lectual Property Rights which protects both source and object
code [35].

Also, Hong Kong gives such effect by applying a fair, large
and liberal interpretation [16] to all its legislations.

III. MODES OF COPYING
A. Hong Kong

In Hong Kong, copying means a reproduction of a whole
or any substantial part of a copyright work [17]. Copying
includes:

1) The exact or literal reproduction of all or part of a
computer program;

2) Reproduction of the program in a re-written form, per-
haps in a different language; or

3) Reproduction on a higher level, for example the repro-
duction of the structure of the program.

The scope is wide because copyright law protects the
relevant skill and labour of the programmer. Infringement
occurs if there has been an appropriation of a part of the
work on which a substantial part of the programmer’s skill
and labour was expended [11].

In deciding whether a substantial part of copyright work
has been taken, it is necessary to consider both the quality
and quantity of the part taken. It is also necessary to consider
all relevant factors before any conclusion can be drawn. Those
factors include [15]:

1) Whether the claimant’s work constitutes or does not
constitute an original copyright work by reason of the
knowledge, skill and labour employed in the production
of the claimant’s work; and

2) Whether or not the defendant’s work has been or has not
been produced by the substantial use of those features
of the claimant’s work.

In view of the above, the copying of commonplace routines
is not a copyright infringement because the writing of the
commonplace routines involved no great skill or labour.

What amounts to “substantial” varies from context to con-
text. In summary [15]:

1) If an idea, function or concept is sufficiently worked out
and expressed in computer codes and is the result of
independent skill and labour, that expression of the idea
is protected.

2) Under certain circumstances, there will inevitably be
similarities in two independently written pieces of cod-
ing. This does not mean there is no copyright in such
similar codes. Copyright will subsist if it was the product
of substantial skill and labour. The circumstances may
provide a reason for the similarities.

3) Sometimes, a piece of coding is in the “public domain”
or is a standard piece of coding in which no one claims
copyright. If someone has combined it with other coding
using skill and labour, copyright subsists in the piece of
“public domain” coding in combination with the other
codings.

B. Some cases

We summarised four cases to demonstrate the need for
computer applications to be used to detect software piracy.

1) First case: Nowadays, computer users are used to graph-
ical user interface (GUI) and other features, e.g. windows and
icons, of at least 2 well known operating systems. Before those
features became part of the computing landscape, there have
been disputes between them regarding whether or not certain
features originated from the other.

There was a time when DOS operating system was a widely
used application software. It ran on the Intel processor. Xerox
first developed GUI during the 1970’s. It was not put into

the market. In 1979, Xerox demonstrated its GUI to Apple
which was developing new interface for Lisa and Macintosh.
At the same time, Intel was also developing new chips which
also ran GUIL. In late 1983, Microsoft announced developments
of Windows platform, version 1.0 of which was put into the
market in 1985. In 1985, Apple granted Microsoft a license
to used the windows and icons in the development of version
1.0. In exchange, Microsoft agreed to develop software for the
Macintosh platform.

Microsoft released Windows version 2.03. On March 17,
1988, Apple filed a law suit against Microsoft and its sub-
licensee Hewlett-Packard [12]. The main argument was that
both had infringed Apple’s copyrights in the presentation
and control of on-screen information on the ground that
Microsoft’s GUI was substantially similar to that of Apple’s.

On the basis of the response of an ordinary reasonable
person and whether or not the 2 works were virtually identical,
the US District Court for the Northern District of California
held that Apple could not get patent-like protection for the idea
of a graphical user interface, or the idea of a desktop metaphor.
This was because all the elements identified as similar by
Apple fell into one of the limiting categories, i.e. they were
either not subject to broad protection or not copyrightable at
all. The only other basis for protection left to Apple was to
compare the compilation and arrangement of these elements.
Apple’s only remaining argument was that the environments
were virtually identical. Since this was not a sound argument,
Apple chose not to make it. Therefore, when the Court of
Appeals applied the same standard, Apple necessarily lost.

Those 2 tests adopted by the trial court were ambiguous
in nature [29]. This was not the last duel between Apple and
Microsoft.

2) Second case: An ex-programmer of Computer Asso-
ciates went to work for Altai and wrote a software Oscar
by literally copying around 30% of the codes of Computer
Associates. In 1989, after Altai found out that they were
using copyrighted codes, they employed another programmer
to rewrite Oscar without using the copied codes, marketed it
and offered free upgrade to users of the old version. Computer
Associates filed a law suit against Altai [30]. One of the issues
for the trial court to decide was whether or not the second
version of Oscar, which did not derive from literal copying,
was an infringing copy of the work of Computer Associates.
Nonliteral elements include the organization, structures and
dynamic sequences of a “running” program.

In deciding the issue, the trial court traced the steps which
a programmer took to create the program, except in reverse
order. Once the levels of abstraction are laid out, the trial
court examine each level to separate idea from expression and
decided whether or not the expression has been copied.

The recreation of a programmer’s path in the reverse order
is undoubtedly difficult and should be done by someone well-
versed in programming [4].

The trial District Court held that the second program did not
infringe the copyright. On appeal, the Court of Appeal found
that the District Court was correct.

3) Third case: The amount of work to be examined can
be demonstrated in the law suit filed by IBCOS [9]. IBCOS

developed a program called ADS which was largely written by
an employee, Mr Poole. The software managed the financing
of agricultural equipment. The software comprised of 335 pro-
gram files, 171 record layout files and 46 screen layout files.
Mr Poole later left IBCOS and began working for Barclay’s.
Mr Pooles leaving agreement with IBCOS provided that all
software that had been developed was IBCOS’s property.

While working for IBCOS Mr Poole produced an improved
version of the ADS program called “Unicorn”. When Barclays
began marketing “Unicorn”, IBCOS brought proceedings for
infringement of the copyright that it allegedly owned in the
source code of the ADS program.

As a result of the integration of files that came together for
software to execute, the trial judge concluded that copyright
subsisted on more than one conceptual level in the package
of IBCOS. Copyright subsisted in the individual program files
that make up a software package, as well as the entire software
package. Where a computer program - whether a file or the
package as a whole - has been altered sufficiently, a new
copyright arises in the amended version of the software.

The Court also held that copying was not restricted to
“literal” and can be “non-literal”. Copying of a detailed
structure where it was a substantial part of a program could
infringe copyright in the program. The Unicorn program
infringed copyright in the ADS program because there was
literal copying of source code, overall similarity and even the
replication of mistakes!

The trial judge in the case also noted that: (a) The unim-
portant parts of a computer program like comments and
documentation may betray a conclusion that the source code
has been copied. These include common spelling mistakes
in the code, comments, variables, procedure calls or function
calls; (b) If the capitalization of the words are similar, then
they are also relevant to demonstrating copying; (c) comments
may include hyphens or asterisks in either side of words which
emphasise the structure in the software; (d) unusual similarities
also go to the assertion that the code has been copied; (e)
redundant code in the allegedly infringing copied code may
be identical to the original software; (f) names of program files
or any other part of the respective programs may be the same;
(g) changes to files that would be identical but for a change
that has been made by a global replacement.

4) Fourth case: The fourth case concerns the software
implementing an airline booking system principally employed
by low-cost airlines who employ ‘ticketless’ booking. The
claimant’s system is called OpenRes. The first defendant
(‘easyJet’) is a low-cost airline. The second defendant (‘Bullet-
Proof’) is a software developer, who is responsible for writing
the code of the allegedly infringing system, which is called
eRes, in consultation with easylet’s IT department. easyJet
wanted a new system that was substantially indistinguishable
from the OpenRes system. The commands alleged to have
been copied by easyJet amounted to some 44% of the OpenRes
commands.

The trial judge described the case as being “factually and
technically complex” and “There is a great amount of technical
detail in the case. Some of the issues cannot be properly ap-
proached without some understanding of the technical issues.”

[10]

The Court held in relation to these elements single words
were not protectable as copyright works. Complex commands
and the collection of commands as a whole were not pro-
tectable because they amounted to a claim for copyright in
a computer language, which is precluded by the European
Union Computer Programs Directive. VT100 screen displays
were not protectable because they amounted to “ideas which
underlie the program’s interface”. The GUI screen display and
icons were protected as distinct artistic works. The “business
logic” of the flight reservation program was not protectable
as to allow otherwise would be an unjustifiable extension of
copyright protection and circumvention of the Directive.

IV. HIDE AND SEEK
A. Common ways to hide copying

Whale [37] listed thirteen common techniques used to dis-
guise the origin of copied codes. The techniques are “changing
comments, changing formatting, changing identifiers, chang-
ing the order of operands in expressions, changing data
types, replacing expressions by equivalents, adding redundant
statements, changing the order of time-independent statements,
changing the structure of iteration statements, changing the
structure of selection statements, replacing procedure calls
by the procedure body, introducing non-structured statements,
combining original and copied program fragments”. Arwin et
al. [2] listed an additional technique: the translation of source
code from one language to another, or inter-lingual plagiarism.
For example, source code written in C may be copied across
to an implementation in Java.

Further, an infringer may apply a decompilation process
to a computer program and recompile its output in a way
that generates a binary with identical functionality but with
seemingly different codes. In this case it might be far more
difficult to prove that the source code had actually been
“stolen” [7].

B. Authorship identification

In digital forensics, Bayesian Network models have been
developed to analyze various cybercrime scientifically, such as
Internet piracy [25] [26]. Software forensic has been described
as the science of software authorship identification [32]. Var-
ious methods have been suggested.

Computer programs are generally written in source code.
From a linguistic perspective, the source codes are in some
respects like a form of human language. In that regard,
programmers develop a style and approach that is identifi-
able [20].

Krsul [24] argued that programmers were humans. Hu-
mans were creatures of habit. Habits tended to persist. Krsul
identified a large range of metrics that can be used to help
determine the author of a program. He concluded that within
a closed environment, and for a specific set of programmers,
it was possible to identify a particular programmer and the
probability of finding two programmers that share exactly
those same characteristics should be small .

Other methods include identifying authorship by byte-level
N-grams [14], [13], and the use of software metrics such as
layout, style and structure.

C. Plagiarism identification

According to EI-Wahed, et al., computer program plagiarism
detection has been in existence for over twenty years [8].

Plagiarism detection and authorship identification, software
forensic, are different. Krsul [24] gave an example of a
program “X” that is a plagiarized version by programmer
“A” of an original work done by programmer “B”. After
programmer “A” has copied the original program, he makes
stylistic changes. Specifically, old comments are removed and
new comments were added. Indentation and placement of
brackets are changed to match the style of programmer “A”.
Variables are renamed. The order of functions is altered and
“for” loops are changed to “while” loops. Plagiarism detection
detects the similarly between those two programs. Authorship
analysis does not. For the purpose of authorship identification,
these two programs have distinct authors.

Many software tools have been developed for detecting
source-code plagiarism, the most popular being Plague, YAP3,
and JPlag [3].

1) Traditional ways of detection of copying: The traditional
method used to decide whether a computer program copies or
does not copy another program is to compare the source code
of one against the other [5].

Prechelt et al. [31] identified two main methods used
in automated plagiarism detection: feature comparison and
structure comparison. In feature comparison, the similarity
of two computer programs are measured by the similarity of
various software metrics, e.g the average number of characters
per line and the number of comment lines. Jones divided such
metrics into three profiles: physical profile, Halstead profile
and Composite profile [22].

Physical profile characterizes a computer program by its
physical attributes, such as the number of lines, words and
characters. Halstead profile characterizes a computer program
by its token types and frequencies. Closeness of two computer
programs is the Euclidean distance between their profiles.
Another way to detect infringing computer programs is to
find code clone pairs between the two programs. One of the
code clone detection tool is called CCFinder. By using that
tool, Tamada et al. found that “sys/net/zlib.c” of FreeBSD and
“drivers/net/zlib.c” of Linux are almost identical [34]. There
are other applications available such as “UltraCompare” and
“Beyond Compare”.

These current plagiarism detection tools appear sufficient
for academic use, like finding copied programs in program-
ming classes. First, they are short for fighting against serious
plagiarists [28]. Second, proof of duplication is not sufficient.
El-Wahed, et al. [8] identified the main issue which was
whether or not the code was actually copied or whether or
not there were other reasons for the similarities, such as using
third-party source code, code generation tools, commonly
used identifier names, common algorithms or common author.
Third, a defendant may argue that his computer program is too

different to infringe the copyright in the plaintiff’s copyright
work. His arguments rely on one or both of two reasons. First,
he may be saying that he did not copy or has only copied to an
insignificant extent. Secondly, he may take the point that what
he copied is not relevant for copyright law purposes because
the resemblance between the two programs is too insignificant
or is too general to take into account. An example is the way
of expressing an idea. If there is only one effective way of
expressing an idea, that expression was insufficiently original,
and was not therefore protectable [27] under copyright.

However, it is not always the case that the source code
of the infringing copy of a copyright work are available for
comparison with the source code of the copyrighted work.
Sometimes, it is the object codes which are available.

2) Requirements for copy-detection schemes: Schleimer et
al. [33] proposed that a copy-detection algorithm should have
three properties. They are:

1) Whitespace insensitivity

2) Noise suppression

3) Position independence

Wang et al. [36] identified five requirements. They are
abilities to:

1) Cope with semantics-preservation obfuscation tech-
niques;

2) Detect theft of small components of a program;

3) Handle detection for large scale commercial or open
source software theft;

4) Detect binary executables;

5) Be independent of platforms, operating systems and
program languages.

Wang et al. classified current detection schemes into 4
classes. They are:

1) Static source code based birthmark;

2) Static executable code based birthmark;

3) Dynamic Whole Program Path based birthmark;

4) Dynamic Application Programming Interface based
birthmark.

3) Detecting copied computer source code by examining
computer object code: Zeidman [38] patented a set of methods
and systems for detecting copied computer code. The detection
may be performed by comparing source code of a first program
to object code of a second program. It may also be performed
by comparing object code of a first program to object code of
a second program.

Zeidman examined a number of plagiarism detection pro-
grams currently available and concluded that comparison by
creation of a detailed block diagram of the control flow
or data flow of the executable program. Other than those
plagiarism detection programs, detection may be performed
by comparison of detailed block diagram of the control flow
or data flow of the executable program. Zeidman identified
three drawbacks, which are the creation of extremely complex
diagram, time consuming comparison and difficult to auto-
mate.

Zeidman’s method comprises of building one or more
source code data structures from a program source code.
The structures have entries correspond to components of a

program represented by program strings or identifiers. From a
program object code file, object data structures are built. Those
structures also have entries corresponding to text sequence
of the object code file. Similar entries are obtained by a
comparison of the 2 sets of entries of the data structures. A
correlation score is calculated from the similar entries. The
magnitude of the score indicates copying.

4) Other means of proof: There are other ways which
indicate the hand of a copycat.

One of them is the presence of similar redundancies, mis-
takes and idiosyncrasies in coding, as opposed to standard
routines. This is because computer code evolves during initial
development, testing and upgrading. It is common to find that
there is residual and redundant code left within a computer
program.

Some programmers deliberately include “smoking guns”
into their codes. Those codes have no function at all but lie
there to prove copying. In the worst case of computer program
piracy, there exists exact reproduction of the whole copyright
work by simple duplication. Then, proving identity of the
infringing copy is a mechanical task by comparing the source
code.

Each program has inherent characteristics. Birthmarking
relies on such characteristics to show that one program is a
copy of another. Grover [21] defined birthmarking as those
characteristics which appeared in a program by chance. Such
characteristics could be used in program identification. Such
characteristics are inherent to the code.

V. A CASE STUDY

In 2005, a programmer left his employer, an accounting
software company, G, and started his business, an accounting
software company, T. The programmer wrote various programs
in the course of his employment with G. After he left,
he started his own business and sold a computer program
purportedly designed by him. G alleged that T was selling
infringing copies of programs of G.

G confirmed that the copyright works were developed using
Delphi. T did not dispute that the purported infringing copy
was also developed using Delphi.

A. Criminal Investigation

In the past, software copying cases were handled through
civil litigations in Hong Kong. In the current case, the software
company G filed a complaint to the law enforcement agency in
Hong Kong. The agency then started a criminal investigation
process and the investigator conducted the investigation with
the following steps:

1) Preliminary investigation: the purpose of the preliminary
investigation is to confirm if there are reasonable cause
to suspect that there was an offence;

2) Arrest and seizure: if the result from preliminary in-
vestigation is positive, the agency will then plan for an
operation to arrest the suspect and collect all necessary
evidence;

3) Forensics analysis: forensic analysis will be performed
on the collected evidence and an examination report will
be produced to assist the public prosecutor;

4) Prosecution: if the public prosecutor is satisfied that
there is a reasonable prospect of obtaining a conviction,
i.e. evidence to make out the case and evidence to rebut
any defence which might be available and which might
be raised, and the public interest requires a prosecution,
the public prosecutor then puts forward the charge(s) to
the suspect and presents the case to the court;

5) Defence: the suspect may present his/her explanation
to all charges and evidence produced by the public
prosecutor.

B. Preliminary Investigation using Decompilation

When the investigator received the complaint from the
software company G, the evidence available were executables
of the copyright work of G, executables of (infringing) works
of T and source codes of the copyright work of G (provided
by the plaintiff). Since only executables from G and T were
available, most techniques described in Section IV were not
applicable. Instead, investigator used simple and easy to un-
derstand approach. Therefore, in the preliminary assessment,
the executables of G and T were decompiled for comparison.
Whether the case could be established would depend on the
findings of the preliminary assessment.

This simple and easy approach was feasible because Delphi
executables can be decompiled. After decompilation, original
names of files or forms can be recovered. Codes are rep-
resented as assembly language. We listed out some of the
examples of recovered symbols after decompilation:

unit main;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, StdCtrls
type
TMainForm=class(TForm)
Panell: TPanel,
MainMenul: TMainMenu;
System1: TMenultem;
Helpl: TMenultem;
Aboutl: TMenultem;
Contents1: TMenultem;

Examples of assembly codes recovered are:

procedure TMainForm.ExitlClick(Sender : TObject);
begin

(*

005B3E98 55 push ebp

005B3E99 8BEC mov ebp, esp

005B3E9B 6A00 push $00

005B3E9D 6A00 push $00

005B3E9F 53 push ebx

005B3EAO 8BD8 mov ebx, eax

C. Preliminary Findings and Expert Opinion

After the decompilation, we observed certain features. We
summarized the number of “.pas” files and number of lines of
codes in Table I:

G’s Files Lines T’s Files Lines
files (.pas) files (-pas)

fool.exe 15 20,656 fooS.exe 16 26,754
foo2.exe 170 767,265 foob.exe 314 1,438,387
foo3.exe 139 548,625

food.exe 129 496,758

Total 453 183,304 330 1,465,141

Table I: No. of .pas file and no. of lines

G T
File names exist in both 209 209
File names exist in G 16
File names exist in T 105
Total 225 314

Table II: Recovered file names

Some file names are identical between G’s software and T’s
software. They are summarized below in Table II:

At the stage, there are two competing set of evidence.
Evidence in support of copying were:

1) All .pas filenames in G /start.exe existed in T /tom.exe;
2) 209 amongst 225 .pas file names in G’s executables
existed in T’s executable.

On the other hand, evidence negating copying were:

1) Sizes of executables in both systems were significantly
different;

2) Number of lines in recovered assembly codes and source
codes (with inline assembly) in both systems were
significantly different.

We have to carry out further examination. The evidence of

further examination were summarized in Table III, Table IV
and Table V:

No. of No. of

source source

files lines

Copyright owner G 288 191,440
Company T 321 219,077

Table III: Size of the 2 software systems

T source No. G source No. No. of
code of code of identical
directory files directory files file

names
\ I\ 1 1
foo7 5 foo8 5 5
foo9 79 fool0 48 46
fooll 177 fool2 114 110
fool3 6 foold 6 6
fool5 53 foo3/foo2/food 48 32
Total 321 222 200

Table IV: Structure and file names comparison

Similarity of 2 files with identical ~ No.
file names from T’s source codes of
and G’s source codes files
Identical file 23
No. of different lines between

2 files <= 20 37

Table V: Identical or very similar files

On the basis of the above findings, the preliminary opinion
was that T’s source codes had used G’s source codes as
a starting point for T’s development and a certain amount
of work had been done in the T’s source codes to provide
additional functionalities.

The forensics expert gave an neutral and unbiased opinion
based on the evidence collected during the preliminary inves-
tigation. It is the responsibility of the public prosecutor to
decide whether there was reasonable grounds for the agency
to plan an operation to arrest the suspect and to collect further
evidence.

D. The Arrest and seizure

Based on the preliminary findings, a case was established.
A search warrant was obtained to carry out a search at T’s
premises. An examination was then carried out on the hard
disks found in T’s premises. The following evidence were
found:

1) Source codes existed in the seized hard disks;

2) The source codes might be used to generate different

versions of T’s software system.

Later, 16 sets of compact discs were also seized during the
operation.

E. Beyond Reasonable Doubt

The main difference between a criminal case and a civil
litigation is the public prosecutor is required to prove beyond
reasonable doubt that the criminal act was performed by the
suspect. In this case, the prosecutor was required to prove
that the suspect had made infringing copies of the copyright
work for sale which violated the copyright laws in Hong
Kong. During the operation, 16 sets of compact discs were
collected, which were the copyright work for sale. On the
other hand, the infringing copies were made out of the source
code which was reproduced from copyright work. The making
and reproduction violated the copyright laws. Therefore, the
16 CDs contained T’s software system were submitted for
forensics examination. The purpose was to find out:

1) Is there any source code that can reproduce T’s software

system in the 16 compact discs?

2) If there is such set of source code, what are the simi-
larities between the T’s source code and the G’s source
code?

3) Is there any evidence to indicate that T’s source code
was copied from G’s source code?

During the examination, the investigator was unable to

rebuild the software from the source code found on the hard

disks. It means the investigator was unable to prove that
the copyright work for sale in the CDs were produced from
the source code, and the production chain was broken. The
investigator then decided to use other evidence to prove the
offence and the following circumstantial evidence were found
from the source codes in the hard disks. They are set out
below:

1) Development directories were found in the seized hard
drive and different versions were stored in different
directories;

2) The executables in one of the development directory
match the executables of 1 set of the 16 compact discs;

3) Each executable has the following file information:

a) Description;
b) Company;
¢) File Version.

4) The file information associated with executables in
different CDs were consistent (not identical), and also
consistent with the file information in the development
directory.

In view of the fact that the findings needed to be presented to
the Court at a later stage, the investigator decided to use simple
and easy to understand techniques to perform the comparison
instead of the complex methods which might confuse the
Court. It is always the objective of the defence lawyer to create
confusion at the court so that the magistrate is unable to decide
whether there is an offence or not.

Based on the above findings, the investigator performed a
more detail comparison in the following manner:

1) Name analysis;

a) File name comparison;
b) Function and procedure name comparison;
¢) Database comparison.

2) Source code comparison by Line by line comparison;

3) Search for “core functions” as identified by the copyright
owner, e.g. IncOrDecStockLocQty and CheckJnlNo.

The findings are set out in Table VI, Table VII and Ta-
ble VIIIL

No. of No. of No. of No.of No. of

distinct distinct match- names names

names names ing exist exist

in G in T names in G in T

only only

Function 121 113 109 12 14

Procedure 4,696 6,897 3,943 753 2,954
Total 4,817 7,010 4,052 765 2,958

Table VI: Comparing function and procedure names

The approach adopted in source code comparison are:
1) File comparison tool Beyond Compare 2.5 was used;
2) Comparison was file-based, i.e. files with identical files
names from G’s source code and T’s source codes were
compared.
There are two investigation highlights. They are summarized
in Table IX and Table X:

No. of No.of No.of No.of No.of
table match- names names
names ing exist exist
names in G in T
only only
Table 91 122 91 0 31

Name

Table VII: Comparing file names of database scripts

No. of No. of No.of No.of No. of
lines match- names names
names ing exist exist
lines in G inT
only only
Lines 2,884 3,881 2,660 224 1,221

Table VIII: Comparing no. of lines in database scripts

F. Other evidence

In the hard disks of T, we also found:

1) Copyright Notice of G;
2) Dead program statements and commented program state-

ments of G;
3) Dead files of G.

On the basis of all the above findings, and the nexus between
G and the defendant, we came to the conclusion that the source
codes of T’s software were started from the source codes of
G’s software.

G. Prosecutor

The public prosecutor put forward the report by the foren-
sics expert. The expert appeared at Court to explain the
findings in the report. Because the standard of proof is
“beyond reasonable doubt”, the expert needs to ensure that
the magistrate understand all the findings in the report. Any
confusion will be to the benefit of the defence.

H. Defence

The defence tendered at trial were that both programs were
written by the defendant (G’s programmer who left and set up
T) and they were therefore similar. Further, some codes had
a common source, i.e. they were sourced from the Internet,
reference books and samples. It was also argued that the
2 programs for similar functions would have similar code
patterns.

1. Verdict

The magistrate heard evidence from prosecution and de-
fence experts. At the end, the magistrate found the prosecution
had proved its allegation beyond all reasonable doubt and
convicted the defendant, i.e. the defendant’s program is an
infringing copy of G’s program.

Match- Total Total Total Total
ing lines lines lines lines
lines (Match- (Match- (All (All

ing ing files) files)
files) files)
G T G T
No.
of 10,987 123,504 162,550 140,483 219,063
lines
Table IX: Lines in files
Match- Total Total Total Total
ing lines lines lines lines
lines (Match- (Match- (All (All
ing ing files) files)
files) files)
G T G T
10,987 123,504 162,550 140,483 219,063
88.94%
78.19%
67.58%
50.14%

Table X: Percentage of Matching Lines

VI. CONCLUSION

This paper has summarily examined the copyright laws
of Hong Kong which protect both the source code and ob-
ject code of a computer program. We also surveyed various
researches regarding detection of copying, though various
techniques were used to disguise the origin of copied codes.
The basis of those methods is the comparison of 2 sets of
codes to decide whether one is an exact or literal reproduction
of another or a reproduction of a substantial part of another.
Establishing whether a program is or is not a derivative of
another can be a difficult and subjective task. It depends on
the judgment of the individual expert and the methodology
used by the expert. The model, the technique and the metrics
used depend greatly on the purpose of the analysis and on the
information available

In a criminal case in Hong Kong, we simply used a
tool to compare files, folders and directories of the original
copyright work and the infringing copy of copyright work.
We discovered characteristics which proved that the defendant
reproduced the copyright work to become his work. Though
the defendant was convicted, the evidence in this case did not
enable a scientific calculation to evaluate the likelihood that
a computer program may look like a derivative of another
program by chance.

Further work is to be carried out to design a model for
quantitative and qualitative measurements made on computer
program source code and object code automatically extracted
by analysis tools and calculated by an expert.

REFERENCES

[1] Business Software Alliance. Eigth Annual BSA and
IDC Global Software 2010 Piracy Study. Technical
report, Business Software Alliance and International Data
Corporation, 2010.

[2] Christian Arwin and S.M.M. Tahaghoghi. Plagiarism
Detection across Programing Languages. In ACSC 06:
Proceedings of the 29th Australasian Computer Science
Conference, Hobart, Australia, pages 277 — 286, 2006.

[3] J. Bull, C. Colins, E. Coughlin, and D. Sharp. Tech-
nical Review of Plagiarism Detection Software Report.
Technical report, JISC, 2000.

[4] John H. Butler. Pragmatism in Software Copyright:
Computer Associates v. Altai. Harvard Journal of Law
and Technology, 6:183, 1992.

[5] Hong Kong Special Administration Region Court of First
Instance. Palm Computing Inc. v Echolink Design Ltd.
and Kessel Electronics (H.K.) Limited. HCA 11787/1999
& HCA 13420/1999, page 1, 2003.

[6] Paul Craig. Software Piracy Exposed. Syngress, 2005.

[7] Eldad Eilam. Reversing: Secrets of Reverse Engineering.
Wiley Publishing Incorporation, 2005.

[8] Samer Abd El-Wahed, Ahmed Elfatatry, and Mohamed S.
Abougabal. A New Look at Software Plagiarism Inves-
tigation and Copyright Infringement. In /71 5th Interna-
tional Conference on Information and Communications
Technology, pages 315 — 318, 2007.

[9] England and Wales High Court of Justice. IBCOS
Computers Ltd. v. Barclays Mercantile Highland Finance
Ltd. FSR, page 275, 1994.

[10] England and Wales High Court of Justice. SAS Institute
Inc. v. World Programming Limited. EWHC (Ch), page
1829, 2010.

[11] English High Court of Justice Chancery Division. Cantor
Fitzgerald v. Tradition (U.K.) Limited. RPC, page 95,
2000.

[12] United States District Court for the Northern District of
California. Apple Computer, Inc. v. Microsoft Corpora-
tion and Hewlett-Packard Company. 821 F. Supp. 616,
1993.

[13] G. Frantzeskou, S. Gritzalis, and S. MacDonell. Source
Code Authorship Analysis for Supporting the Cyber-
crime Investigation Process. In Ist International Con-
ference on E-Business and Telecommunication Networks.
Setiibal, Portugal, INSTICC Press, 2004.

[14] Georgia Frantzeskou, Efstathios Stamatatos, Stefanos

Gritzalis, Carole E. Chaski, and Blake Stephen Howald.

Identifying Authorship by Byte-Level N-Grams: The

Source Code Author Profile (SCAP) Method. Interna-

tional Journal of Digital Evidence, 6(1), 2007.

Kevin Garnett, Gillian Davies, and Gwilym Harbottle.

Copinger an Skone James on Copyright. Sweet and

Maxwell, 2005.

[16] Government of the Hong Kong Special Administration

[15]

Region. Section 19 of the Interpretation and General
Clauses Ordinance, Chapter 1. Laws of Hong Kong,
1997.

[17] Government of the Hong Kong Special Administration
Region. Section 22 of the of the Copyright Ordinance,
Chapter 528. Laws of Hong Kong, 2007.

[18] Government of the Hong Kong Special Administration
Region. Section 29 of the Copyright Ordinance, Chapter
528. Laws of Hong Kong, 2007.

[19] Government of the Hong Kong Special Administration
Region. Sections 2 and 4(1) of the Copyright Ordinance,
Chapter 528. Laws of Hong Kong, 2007.

[20] Andrew Gray, Philip Sallis, and Stephen Macdonell.
Software Forensics: Extending Authorship Analysis
Techniques to Computer Programs. In Proceedings of the
3rd Biannual Conference of the International Association
of Forensic Linguists (IAFL), Durham NC, USA, pages
1-8, 1997.

[21] Derrick Grover. The Protection of Computer Software -
Its Technology and Applications. Cambridge University
Press, 1989.

[22] Edward L. Jones. Metrics based Plagiarism Monitoring.
In Proceedings of the sixth annual CCSC northeastern
conference on he Journal of Computing in Small Col-
leges, Middlebury, Vermont, United States, pages 253 —
261, 2001.

[23] Hong Kong Court of Appeal. HKSAR v. Chan Tak Tim.
Hong Kong Law Report Digest, 3:112, 2004.

[24] 1. Krsul. AuthorshipAnalysis: Identifying the Author of a
Program, Technical Report CSD-TR-94-030. Technical
report, Department of Computer Science, Purdue Uni-
vesity, 1994.

[25] Michael Y. K. Kwan, Kam-Pui Chow, Frank Y. W. Law,
and Pierre K. Y. Lai. Reasoning About Evidence Using
Bayesian Networks. In IFIP Int. Conf. Digital Forensics,
pages 275-289, 2008.

[26] Michael Y. K. Kwan, Richard E. Overill, Kam-Pui Chow,
Hayson Tse, Frank Y. W. Law, and Pierre K. Y. Lai. Sen-
sitivity Analysis of Bayesian Networks Used in Forensic
Investigations. In IFIP Int. Conf. Digital Forensics, pages
231-243, 2011.

[27] Honourable Sir Hugh Laddie, Peter Prescott, Mary Vito-
ria, Adrian Speck, and Lindsay Lane. The Modern Law of
Copyright and Design. Butterworths, 3rd edition, 2000.

[28] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu.
PLAG: Detection of Software Plagiarism by Program
Dependence Graph Analysis. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 872 — 881, 2006.

[29] Joseph Myers. Apple v. microsoft: Virtual identity in the
gui wars. Rich. J. L. & Tech., 1:5, 1995.

[30] United States Court of Appeals Second Circuit. Com-
puter Associates International, Inc., v. Altai, Inc. 61 F.3d
6, 1995.

[31] Lutz Prechelt, Guido Malpohl, and Michael Philippsen.
Finding Plagiarisms among a Set of Programs with JPlag.
J. UCS, 8(11):1016, 2002.

[32] Philip Sallis, Asbjorn Aakjaer, and Stephen MacDonel.
Software Forensics, Old Methods for a New Science.
In Proceedings of Software Engineering: Education &
Practice (SE:E & P’ 96), Dunedin, New Zealand, pages

[33]

[34]

[35]

[36]

[37]

[38]

481 — 485. IEEE CComputer Society Press, 1996.

Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken.
Winnowing: Local Algorithms for Document Finger-
printing. In SIGMOD °03: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of
Data, pages 76 — 85, New York, NY, USA, 2003. ACM.
Haruaki Tamada, Masahide Nakamura, Akito Monden,
and Ken-Ichi Matsumoto. Java Birthmarks Detecting
the Software Theft. [EICE - Trans. Inf. Syst., E88 -
D(9):2148-2158, September 2005.

World Trade Organisation. Articles 1 and 10. Trade
Related Aspects of Intellectual Property Rights, 2001.
Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng
Liu. Behavior based Software Theft Detection. In
CCS ’09: Proceedings of the 16th ACM Conference on
Computer and Communications Security, pages 280 —
290, New York, NY, USA, 2009. ACM.

G. Whale. Detection of Plagiarism in Student Programs.
In Proceedings of the Ninth Australian Computer Science
Conference, Canberra, pages 231 — 241, 1986.

Robert Zeidman. Patent: Detecting Copied Computer
Source Code by Examining Computer Object Code,
2009.

