

HYPERNOTIFIER

Piotr Książek

Bachelor’s Thesis
December 2009

Degree Programme in Information Technology
Information Technology

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/37992538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Author(s)

KSIĄŻEK, Piotr

Type of publication
Bachelor´s Thesis

Date
07122009

Pages

40

Language

English

Confidential
() Until

Permission for
web publication
(X)

Title

HYPERNOTIFIER

Degree Programme

Information Technology

Tutor(s)

LAPPALAINEN - KAJAN, Tarja

Assigned by

VSoft

Abstract

In every company there is a great amount of information that should be delivered to

the employees. Some of them are administrators and they want to know if something

was changed in the environment they administrate. If there are many different

environments, the employees are getting many different notifications from different

sources and in different layouts.

This thesis illustrates a solution that is used to handle different environments to get

a plain and compact, unified report about changes that were made. The solution

includes collecting of data, storing it and notifying about it. It is a Windows service

and a web application using database and interchangeable DLL libraries involved in

handling of the specific sources of changes. The solution provides a simple

mechanism for the creation and maintenance of reports containing selected changes

from selected sources supplied at specified time and frequency.

The Hypernotifier solution is created using C# programming language, and it runs in

the Microsoft® .NET Framework. It also takes advantage of the existing software

infrastructure.

The solution was made for the employees of VSoft, who would like to be notified

about changes in some areas of their interests, for example a folder in file system or

a list at the SharePoint web page.
Keywords

Changes, ASP.NET, .NET, services, distributed applications

Miscellaneous

Table of contents
1 INTRODUCTION ... 2

1.1 The need for a notifying application .. 2

1.2 VSoft JSC ... 3

2 DESIGNING THE SOLUTION .. 4

2.1 The deployment environment .. 4

2.2 Requirements .. 4

2.2.1 Functional requirements .. 4

2.2.2 User requirements.. 6

2.2.3 Notification processing functionality ... 7

2.2.4 Non-functional requirements ... 8

2.2.5 Constraints .. 8

2.3 Database design ... 9

2.3.1 Change storage .. 9

2.3.2 QUERIES .. 10

2.3.3 DICTIONARIES ... 11

2.3.4 Database structure ... 11

3 IMPLEMENTATION OF THE NOTYFING SOLUTION 13

3.1 Hypernotifier architecture. ... 13

3.2 Interfaces ... 14

3.2.1 IPlugin... 14

3.2.2 ICollector .. 15

3.2.3 IWatcher.. 15

3.2.4 IHyperNotifier ... 15

3.3 Plugins .. 16

3.4 Service .. 16

3.4.1 Windows Services with C# .. 17

3.4.2 HyperNotifier .. 19

3.5 Web application... 20

3.5.1 Query part ... 21

3.5.2 Sending part .. 22

4 USED TECHNOLOGIES ... 23

4.1 The .NET framework and ASP.NET .. 23

4.1.1 The .NET Framework .. 23

4.1.2 ADO.NET Entity Framework .. 29

4.1.3 LINQ ... 30

4.1.4 ASP.NET .. 32

4.2 Web Part ... 34

5 Conclusion .. 35

5.1 Evaluation of the solution .. 35

5.1.1 Future plans ... 36

5.2 Personal experience ... 37

6 References .. Błąd! Nie zdefiniowano zakładki.

Figures and tables

Figure 1. Hypernotifier use case diagram……………………………………………...4

Figure 2. CHANGES table structure………………………...……………………….10

Figure 3. METADATA table structure……………………………………………….10

Figure 4. Address book table structure…………………………………………….....10

Figure 5. DICTIONARIES table structure…………………………………………...11

Figure 6. DICT_ELEMENTS table structure………………………………………...11

Figure 7. Database structure…………………………………...……………………..12

Figure 8. Hypernotifier architecture...13

Figure 9. HyperNotifier solution..14

Figure 10. IPlugin interface..15

Figure 11. IHyperNotifier interface..16

Figure 12. SaveBLL class…………………………………………………………….19

Figure 13. Query class………………………………………………………………..19

Figure 14. Example of HyperNotifier web site look..20

Figure 15. Field tree..21

Figure 16. Constraint fields..21

Table 1. User Requirements……………………………………………………………6

1

TERMINOLOGY

C#

Multi-paradigm programming language encompassing imperative, functional, generic,

object-oriented (class-based), and component-oriented programming language. It was

developed by Microsoft within the .NET initiative. C# is one of the programming

languages designed for the Common Language Infrastructure.

ASP.NET

Web application framework developed and marketed by Microsoft to allow

programmers to build dynamic web sites, web applications and web services.

SQL

Structured Query Language is a database computer language designed for managing

data in relational database management systems (RDBMS). Its scope includes data

query and update, schema creation and modification, and data access control.

ADO.NET Entity Framework

Entity Framework is an object relational-mapping (ORM) framework for the .NET

Framework. This framework is an ORM offering from Microsoft for the .NET

Framework. While Microsoft provided objects to manage the Object-relational

impedance mismatch (such as a DataSet).

ADO.NET Entity Framework is included with .NET Framework 3.5 Service Pack 1

and Visual Studio 2008 Service Pack 1, released on 11 Aug 2008. It also includes the

capability of executing LINQ against ADO.NET Entity Framework entities.

 .NET Remoting

Is a Microsoft application programming interface (API) for inter process

communication.

http://en.wikipedia.org/wiki/Multi-paradigm_programming_language
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Generic_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Class_%28computer_science%29
http://en.wikipedia.org/wiki/Component-based_software_engineering
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Microsoft_.NET
http://en.wikipedia.org/wiki/Common_Language_Infrastructure
http://en.wikipedia.org/wiki/Web_application_framework
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Programmer
http://en.wikipedia.org/wiki/Web_site
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Database_schema

2

1 INTRODUCTION

This thesis will demonstrates the development of a Hypernotifier solution, one that is

able to subscribe in order to receive selected business information simultaneously

from multiple sources of data as opposed to the currently available mechanisms in a

company for juveniles "technical sign up on a single list / RSS's / source", and process

them as required.

The technologies that are involved with this solution, and the environment, into which

it will be created are looked into in the thesis. The study then proceeds to examine the

actual implementation of the solution.

1.1 The need for a notifying application

In a company like VSoft there are many sources of information that employees

would like to get. There are many different types of sources with different collections

of information. Employees and especially administrators would like to be informed if

something somewhere has been changed. And if they are overwhelmed with many

different reports, it is hard to get the information that they are really interested in. It is

also hard to configure the notifications according to the needs of layout, the accuracy

of the information and time of reporting. So the employees would like to be informed

about the changes in different sources of data in the same, easy form for each and in

a fast and easy configurable way.

Hypernotifier is a tool for collecting and reporting any changes in data sources.

The architecture provides solutions to create any number of plugins which collect data

from the subsequent data sources. Changes are reported in the user-selected areas of

interest, in a clear form. They are delivered in due time and with appropriate

frequency, and only including the data to which the user has read permissions. The

collected data are available independently, from the sources of data, which provides

quick and secure access, and may include links that can redirect to the details directly

in the data source. The report can include data since the last report or generate a

selected period of time in terms of available data in the database of Hypernotifier.

3

1.2 VSoft JSC

VSoft Ltd is a provider of advanced IT solutions in the area. It creates information

systems and serves customers optimizing complex business operations.

The roots of the company date back to 1996. From the existing number of

dynamically developing companies, as a result of a merger has been established one

innovative and resilient company - VSoft Limited Company. The Company has

exclusively Polish capital. The purpose of the merger was the concentration of

knowledge, technology and capital, so that it provided clients with the highest quality

services. The developed systems are tailored to meet the individual needs of the

clients. The company works with leaders in their industries. In 1999, cooperation was

established with PKO Bank Polski, in 2001 - with Gbg Ltd, in 2004 - with PZU Ltd

and BIK Ltd. The company cooperates with the biggest Polish companies.

The company specializes in the design and construction of modern solutions in the

field of information technology and data. It offers a professional service and is

a reliable partner in the development and improvement of large areas of the business

activities of the clients.

VSoft Ltd has reached an extremely strong position as a supplier of complete and

effective solutions. The adopted philosophy of innovative, unconventional, but, above

all, effective action is accomplished due to many years of experience, supported by a

number of successful implementations.

VSoft creates custom solutions for clients who require value-added service in the form

of optimizing business and operational efficiency. This competence is dedicated to

Microsoft partners for creating a solution using Microsoft Visual Studio 2005, Visual

Studio Tools for Office, SQL Server, Windows Server 2003, BizTalk, Windows XP

and Office System 2003.

VSoft company can boast certification from Microsoft: Custom Development

Solutions, Microsoft Gold Certified Partner, ISV Software Solutions, Business

Process and Integration Solutions.

(www.vsoft.pl)

4

2 DESIGNING THE SOLUTION

2.1 The deployment environment

The whole system is located on one server for easier communication between its parts.

Therefore, there is the main application, plugins as DLL libraries and the web

application. On the same server there is a database so it is also a database server.

2.2 Requirements

Before the planning or implementation phases of development, the first step is to

gather information about the requirements that the tool needs to provide.

2.2.1 Functional requirements

Use case

Based on the assessment of the problem at hand, the following use cases were

identified for the solution. FIGURE 1 presents the use case diagram.

FIGURE 1. Hypernotifier use case diagram

Figure 1 presents two types of user profiles: Administrator and User. The first one is

able to configure templates, while the second one can only receive and view them

filled with data.

5

The use case diagram depicts the Hypernotifier usage from the user‘s point of view.

Two actors that interact with the system can be seen.

The requirements for the solution are:

1. To build a general platform to collect and publish any changes to the data source

2. To build plug-ins at least for the file system, SharePoint 3.0, TFS SourceControl,

TFS WorkItems.

3. To be able to completely replace the current system of notifications on inner

company portal.

4. To implement, as far as possible, plug-ins to: VBP, TFS Reports.

5. To improve corporate communications.

6. To give proper information at the right time.

7. To streamline the recipient by providing a number of summary reports instead of a

well-defined number of notifications for the every current single change.

8. To increase the positive image of the inner corporate portal, and encourage the

publication of the proposal and other changes.

Fields tree

A fields tree shows a list of available fields for a specified data source. The user can

choose them by checking the appropriate checkbox to specify which information he

would like to get and in which position.

Constraints fields

Constraints fields are fields where users decides how they would like to information

be chosen from gained data. From which fields and how constraints will be created.

Templates chooser

The user can choose the stored templates and modify them afterwards as he needs.

Report creator

Report creator is a part of the web site where users decide when the report will be

send, how often and who will get it.

6

Save

A template can be saved to the database with additional data like e.g. sending

conditions.

2.2.2 User requirements

The following requirements were analyzed and identified while designing the

solution.

TABLE 1. User Requirements.

ID Requirement description Reference

1 Receiving information about changes

The solution has to be able to receive incoming

information about changes.

2.2.3 1.b

2 Scanning source for changes information

If source cannot send notification that something was

changed, tool should ask for the required information or

get it somehow from the source.

2.2.3 1.a

3 Understand different kinds of data sources

Handle the differences in data sources.
2.2.3 2

4 Storing changes information

Information about changes needs to be stored.
2.2.3 4

5 Creating templates

The ability to create different kinds of new templates

which could be used to present information about

changes.

2.2.3 5

6 Filling templates

Templates are connected with queries that will be fired to

fill the fields of the template.

2.2.3 5

4 Sending reports

The solution should have ability to send mails or

different kinds of notification.

2.2.3 6

5 Integrating and managing information

Using previously available information, integrating it,

and managing new information regarding notification.

2.2.3 4

6 Secure messaging

Users should be able to see only the information to which

they have permissions in the data source.

2.2.3 3

7

2.2.3 Notification processing functionality

After summarizing some of the functional requirements in the previous section, here

the details for the functionality to be provided are discussed in more detail. At this

point, only a textual description of the functionality is given.

1. Getting information from data source

It should be done in two ways:

a. Active mode – the data source is unable to send notifications that

something was changed, so the plug-in should watch the source and get

the required information. It can be done by continuously asking the

source for data and comparing it with the stored data. This mode is

obligatory meaning that every plug-in should provide such

functionality.

b. Passive mode – when the data source has ability to notify that

something was changed then the plug-in should only handle the

received data. This is an optional mode because some sources do not

have ability to react to an inner change.

2. Data normalization – plug-in should know what data are stored in the database

and how to handle and present them because the Hypernotifier service does not

care what is stored as a change.

3. Scanning permissions – to know if users can get information about specific

part of data source. Only the plug-in knows what the source of the change is,

and because there are differences in the way of storing permissions in different

sources only the plug-in can retrieve and handle the information about

permission to viewing the change.

4. Storing data – Information about changes will be stored in database as xmls

and metadata. One change stored in one row of table will be connected with

many, different metadata stored in another table. Metadata is needed to easily

find a change that is required. It contains common data that is used to query for

the change.

5. Creating a template – the administrator will be able to use stored templates to

create reports for users or can create his/her own template which will be filled

during the sending message process. Creating a template will be connected

with creating a query to the database which afterwards will be used to fill the

8

template to create a report. The templates and queries will also be stored in the

database.

The query can ask about:

 Who made the change? (filter for persons + ―all‖ + ―me‖)

 What was changed? (data types filter + ―all‖)

 When has the change been made? (data range + ―all‖)

 Where was the change? (localization and source filter + ―all‖)

 How to present the change? (template type selection)

6. Sending a report – filled reports can be sent to the user differently. The most

common way is sending the mail with a filled report. It can be determined

when and to whom the mail should be sent.

2.2.4 Non-functional requirements

Security

The application cares all the time for the security of the data. Every moment that the

user has access to data before showing it the application checks if he has appropriate

permissions.

Dictionary

All possible texts in the application should be taken from dictionary. The application has

standard texts which can be used in many parts of it so keeping them in a database is

a good idea; moreover, it gives a readymade place for managing the texts which can be

used to prepare translations for different languages.

2.2.5 Constraints

Validation

Before saving the template the minimum amount of data must be given by the user. It

is at least one field to show on a report, at least one user as receiver of the report and

the data needed to send an e-mail.

9

2.3 Database design

Next, the database format is introduced. The database that the Hypernotifier will rely

on provides some features that will aid in the construction and processing of the

report.

Many of the required information are already readily available in the databases that

are in use at the company currently. However, they need to be integrated, using the

messaging solution, because often the related information is in no connection in the

database.

Before exploring the table designs for the solution, it is a good idea to look at a list of

information that we will be working with. This is the information that has to be

considered storing in the database.

 Change information (user, name, date, change type, etc.)

 User information (receivers, administrators)

 Management information (for example, templates or queries)

Given these objects that should be stored, it is possible to arrange the information into

database tables.

2.3.1 Change storage

The change information is stored in database in a XML format which completely

describes it. In addition to this, an extract is created from the change that summarizes

what kind of change it is, when it happened and who has done it.

The purpose of METADATA table is to allow fast access to the most common fields

of a change. The whole information about a change is kept in CHANGES table, and

can be accessed through this table, when needed.

10

FIGURE 2. CHANGES table structure

FIGURE 3. METADATA table structure

The METADATA is a table that saves the common data for the change that can be

easily used to query about the change. To make a query fast the change will be looked

up by the metadata.

2.3.2 QUERIES

The queries made by the administrator also have to be stored because they will be

used during process of filling and sending a report about the changes. The purpose for

this table is to remember fields selected to be filled and how they should be filled.

FIGURE 4. Address book table structure

CHANGES

ID int 4 No

CHANGE_XML xml -1 Yes

PLUGIN_TYPE nvarchar(10) 10 Yes

Column Name Condensed Type Length Nullable

METADATA

ID int 4 No

CHANGE_ID int 4 Yes

ATTR_TYPE nvarchar(10) 10 Yes

ATTR_VALUE nvarchar(50) 50 Yes

Column Name Condensed Type Length Nullable

11

2.3.3 DICTIONARIES

In almost every application there are some types of elements that can be categorized

and reused many times; this is a good reason to create dictionaries. The table

DICTIONARIES contains types of collections that will be used in different parts of

the application. This table is connected with ELEMENTS, which saves the types that

appear in the application.

FIGURE 5. DICTIONARIES table structure

FIGURE 6. DICT_ELEMENTS table structure

2.3.4 Database structure

For storing the data in the application, a new database was created. Although some of

the information was already present in the database, it was definitely the time to start

gathering EDI messaging related information into one central place.

The previous sections show the individual structure of the database tables used. They

used C# data types, and provided no indication on the actual relation of the tables.

FIGURE 7 shows all the tables in the database, including their structure, and the

connection between the tables.

DICTIONARIES

ID smallint 2 No

NAME nvarchar(20) 20 Yes

GUID uniqueidentifier 16 Yes

Column Name Condensed Type Length Nullable

DICT_ELEMENTS

ID int 4 No

DICT_ID smallint 2 Yes

NAME nvarchar(20) 20 Yes

GUID uniqueidentifier 16 Yes

Column Name Condensed Type Length Nullable

12

This image illustrates in detail the data types used for the different fields of the

database, as well as the primary key columns of the tables.

FIGURE 7. Database structure

CHANGES

ID int 4 No
CHANGE_X... xml -1 Yes
PLUGIN_TY... nvarchar(10) 10 Yes

Column Na... Condensed T... Len... Nullable
DICT_ELEMENTS

ID int 4 No
DICT_ID smallint 2 Yes
NAME nvarchar(20) 20 Yes
GUID uniqueidentifier 16 Yes

Column Na... Condensed T... Len... Nullable

DICTIONARIES

ID smallint 2 No
NAME nvarchar(20) 20 Yes
GUID uniqueidentifier 16 Yes

Column Na... Condensed T... Len...
Nullable

METADATA

ID int 4 No
CHANGE_ID int 4 Yes
ATTR_TYPE nvarchar(10) 10 Yes
ATTR_VALUE nvarchar(50) 50 Yes

Column Na... Condensed T... Len... Nullable

QUERIES

ID int 4 No
QUERY xml -1 Yes
TYPE varchar(10) 10 Yes
CREATED datetime 8 Yes
[USER] int 4 Yes

Column Na... Condensed T... Len... Nullable

USERS

ID int 4 No
NAME nvarchar(50) 50 Yes

Column Na... Condensed T... Len... Nullable

13

3 IMPLEMENTATION OF THE

NOTIFYING SOLUTION

This chapter will explore the implementation of the notification solution. First, the

architecture of the entire application is introduced followed by the details of each part

and the information flow through all the parts and interaction with the end user are

shown.

3.1 Hypernotifier architecture.

Before detailing the different parts of the Hypernotifier architecture, an overview

graphic that depicts how the system is organized is illustrated. The different parts and

applications presented in Błąd! Nie można odnaleźć źródła odwołania. will be

explained and explored further in this chapter.

FIGURE 8. Hypernotifier architecture.

As far as the different parts of this chapter are concerned, the reader might want to

refer back to this image, to see how things are connected.

Hypernotifier

Plugin Web application

(Web part)
File System

Plugin TFS

Plugin Share Point

notification

DB

Service

14

The three ellipses on the left represent external systems from which information is

extracted. Hypernotifier generally consists of three parts: plugins, service, web

application; and is connected with database.

Before further exploring the systems that make up the notifying solution, more

fundamental building blocks are discussed in further detail.

3.2 Interfaces

In the Hypernotifier solution there are two projects which consist only of interfaces

that are: IPlugin and IHyperNotifier as shown on FIGURE 9.

FIGURE 9. HyperNotifier solution.

Interfaces are created in separated projects because they are used for .NET Remoting

communication that will be further explained in more details.

3.2.1 IPlugin

IPlugin interface describes the functionality of the plugins:

15

FIGURE 10. IPlugin interface.

 Method HaveIGotPermission checks if a given user has permission to read

data about changes in a given path.

 WhatFieldsHaveI returns names of fields that can be put into information

about a change in a particular data source.

 WhatStructureHaveI tells how information is located in the data source (eg. in

FileSystem it returns the folders‘ structure by passing all the paths that can be

reached).

 WhatUsersHaveI returns the list of all users who are using precisely this data

source.

 WhoAmI gives the name of the data source.

3.2.2 ICollector

ICollector is implemented by plugins which only receive information about a change

sent by the data source.

3.2.3 IWatcher

IWatcher interface indicates that the plugin which implements it is observing the data

source and gaining information by itself.

3.2.4 IHyperNotifier

IHyperNotifier interface tells what a service can do.

16

 FIGURE 11. IHyperNotifier interface.

 Save – saves the data about the change to the database.

 SaveTemplate – saves query and sends the time to the database.

3.3 Plugins

Plugin is a part of Hypernotifier which is responsible for the whole communication

between the source of data and service.

Plugin is connected to the project as DLL that stands for Dynamic-link library. There

can be an unlimited amount of plugins, each of them cares for one data source.

Plugins can receive information about changes in a data source and just pass it to the

service or observe the source and gain information by itself. In the first case a plugin

has a class which implements ICollector interface from IPlugin, while the class which

watches for changes in the data source implementing IWatcher. A plugin can

simultaneously have both of these interfaces implemented and get information in both

ways.

Every plugin implements IPlugin interface which ensures that the plugin provides all

the additional information about data source like its structure and a list of users. The

next important thing is that a plugin always ensures the security of information by

checking if a user has permission to read the data which wants.

3.4 Service

This is the main part of the application, in this solution it is a project called

HyperNotifier because here all the work of the application is done. Because the tasks

17

involving the duties of HyperNotifier are mostly background processing tasks and

because it must watch all the time for changes and regularly send notifications the

implementation was decided to be a Windows Service.

During the implementation phase the problem arose that communication between

different parts of solution like service, DLLs and web application was needed. There

were many solutions planned, and finally it was decided to implement .NET Remoting

with IPC (Inter-process communication) as communication channel (for details on

.NET remoting, see Section) because the application was planned to stand on one

server.

3.4.1 Windows Services with C#

In contemporary C# programming language using the .NET framework the creation of

Windows is very easy, comparing to how Windows services are created and registered

in such languages as C or C++ using the WIN32 API.

Microsoft Windows services, as said in Introduction to Windows Service Applications

(2009), known as NT services, enable users to create long-running executable

applications that run in their own Windows sessions. These services can be

automatically started when the computer boots, they can be paused and restarted, and

do not show any user interface. This makes these services ideal for the use on a server

or whenever there is a need of long-running functionality that does not interfere with

other users who are working on the same computer. The services can also be run in

the security context of a specific user account that is different from the logged-on user

or the default computer account.

Creating a service is creating a Microsoft Visual Studio .NET project, defining code

within it that controls what commands can be sent to the service and what actions

should be taken when those commands are received. Commands that can be sent to a

service include starting, pausing, resuming, and stopping the service, and executing

custom commands. (http://msdn.microsoft.com/en-

us/library/d56de412%28VS.80%29.aspx. Referred to on April, 2009)

18

To create a Windows Service Application System.ServiceProcess.ServiceBase which

is provided by .NET framework should be derived in service base class, and this class

is the base class for every service written in the .NET framework. There are two

methods that need to be overridden for a service to become functional. These methods

are OnStart and OnStop. All the low level details of creating and using the service

environment are handled by the .NET framework.

After creating and building the application, users can install it by running the

command line utility InstallUtil.exe and passing the path to the service's executable

file, or by using Visual Studio's deployment features. Users can then use the Services

Control Manager to start, stop, pause, resume, and configure the service. Users can

also accomplish many of these same tasks in the Services node in Server Explorer or

by using the ServiceController class.

Visual Studio .NET which was used to create HyperNotifier, ships installation

components that can install resources associated with service applications. The

installation components register an individual service on the system to which it is

being installed and let the Services Control Manager know that the service exists.

When working with a service application, user can select a link in the Properties

window to automatically add the appropriate installers to the project.

When adding an installer to the project in Visual Studio .NET, a new class (which is

named ProjectInstaller) is created in the project, and instances of the appropriate

installation components are created within it. This class acts as a central point for all

of the installation components that a project needs. For example, if users add a second

service to the application and click the Add Installer link, a second installer class is

not created; instead, the necessary additional installation component for the second

service is added to the existing class.

(http://msdn.microsoft.com/en-us/library/d56de412%28VS.80%29.aspx. Referred to

on April, 2009)

19

3.4.2 HyperNotifier

The service which works in our solution can be divided into two parts from the

business point of view. One part is responsible for gaining and saving data into

database, and the other one is creating and sending the required notifications.

Gathering information is done by a plugin and there it is called by a service method

which saves it into the database. This method is implemented in class SaveBLL as

well as the method SaveTemplate which saves the query and sends information

created by the user on a web site.

FIGURE 12. SaveBLL class.

The next important class is Query class which cares for processing the queries created

by the user. Here the author would like to point out that every data in the application

like changes in the data, queries and the sent information are passed as XML data

because this is the easiest way to store them in the database. This is the reason for

creating a class which can understand and use XMLs passed through the application.

FIGURE 13. Query class.

In this class the proper information from the database is obtained which is used to

create a report about the required changes. This information is collected when the

timer in the service reaches the next sending date set by the user. Then all the data are

placed into the template with the help of XSLT and they are sent to the listed users as

a ready report.

20

Service is also some kind of link between a plugin and a web application because each

of them does not know about the other, they only communicate with the service and it

manages the flowing information. Additionally, only the service has access to the

database so both plugin and web application just pass the data to the service and it

cares for saving them to database and if needed, retrieves and passes the data further.

Thus if in plugin or web application paragraphs saving or retrieving data from

database were discussed, it is thinkable that the data are passed through the service,

not directly to the database.

3.5 Web application

This part of the solution is nearest to the user and here is all the communication

between the application and the user. The name of this web application is

HyperNotifierTemplatesCreator because it is mostly responsible for giving the

functionality for creating and saving queries as templates for future filing. This part

was required to be as simple as possible so it is one ASP.NET site which is clear and

looks like a simple form to fill. This web site can be accessed directly and also is

prepared to be a web part which can be put on another web site especially in

SharePoint environment.

FIGURE 14. Example of HyperNotifier web site look.

Query part

Sending part

21

From a business point of view the page can be divided into two parts as shown in

FIGURE 14. The Query part is responsible for creating a query which means selection

of fields that are on the report, and specification of the constraints which will be used

for getting information. Meanwhile, the sending part allows the user to decide when,

how often and to whom notification the report will be sent. Next, both parts are

discussed briefly.

3.5.1 Query part

During loading of the page there are a number of issues done to prepare both of the

parts for users. Query part has some controls which are filled before users see them:

 Field tree

FIGURE 15. Field tree

All accessible data sources are presented here with all the fields that can be put

on template.

 Constraint fieds

FIGURE 16. Constraint fields

On the right of Field tree is shown a list of check boxes which are used to

check which fields are to be restricted. They are shown for each data source

independently. After checking the selected fields, under the Field tree

22

accordingly appear controls, which allows imposing restrictions at the selected

fields.

 Constraint controls

These controls can be filled by writing a constraint or by selecting it from a

given list which is filled with data retrieved from the data source. The user can

also write some filter which allows limiting the list of constraints. The

important issue is that if the user does not have permissions to see some

information, he will not see it because all the data are checked for permissions

before displayed on the list.

3.5.2 Sending part

This part is used to decide how often the report will be sent and who will receive it.

Therefore, controls allow a user to decide if a report must be sent daily, weekly or

monthly, at which time or even on a specified day of the week. Reports can also be

sent immediately after the required change appears in the data source.

In this part is also the list of users who will get the report. This is the list of all the

users who are using the source application and also a list of groups in the application

if the report should be sent only to a specific group. So users can be choosen by name

or just the group picked.

After selecting all the above information the user can press the button which is at the

bottom of the page called Save template. This action causes that the application gets

all the selected information, prepares appropriate XMLs and saves the data into

database.

23

4 USED TECHNOLOGIES

4.1 The .NET framework and ASP.NET

This section introduces the application development process using the .NET

Framework.

There are many application platforms, and a great amount of them are platforms for

web applications. Because of bigger accessibility, the user interaction side of the

Hypernotifier is based on ASP.NET.

ASP.NET is the web application platform provided by Microsoft, and it is run on the

Windows Server operating system, using the Internet Information Services (IIS) web

server and the .NET Framework.

4.1.1 The .NET Framework

The Microsoft .NET Framework is a software framework that can be installed and

used on computers running Microsoft Windows operating systems. It includes a large

amount of libraries containing coded solutions for common programming problems

and a managed environment in which programs written specifically for the framework

can be launched.

Base Class Library included in the framework provides a large range of features for

common programming needs like user interfaces, data and data access, database

connectivity, cryptography, web application development, numeric algorithms, and

network communications. (http://en.wikipedia.org/wiki/.NET_Framework. Referred

to on May, 2009) This class library is used in programmers‘ own code mostly for

basic operations, and in combination with their code it makes up applications.

The software environment in which the programs operate, manages its runtime

requirements. This runtime environment is known as the Common Language Runtime

(CLR). The CLR works as an intermediate layer between the launched program and

CPU that will execute the program so that programmers need not consider the

http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Library_%28computing%29
http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Base_Class_Library
http://en.wikipedia.org/wiki/Interface_%28computer_science%29
http://en.wikipedia.org/wiki/Data_access
http://en.wikipedia.org/wiki/Database_Connection
http://en.wikipedia.org/wiki/Database_Connection
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Computer_networking
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Run_time_system
http://en.wikipedia.org/wiki/Common_Language_Runtime

24

capabilities of hardware environment. The CLR also provides more utilities, such as

security, memory management, and exception handling. The class library and the CLR

are the core of the .NET Framework.

The previous version of the .NET Framework which is 3.0 is included in Windows

Server 2008 and Windows Vista. The current version 3.5 can also be installed on

Windows XP and the Windows Server 2003 operating systems. On Windows Mobile

platforms and smart phones there is available a reduced version of the .NET

Framework called .NET Compact Framework. Version 4.0 of the framework was

released as a public Beta on 20 May 2009.

Basic architecture of the .NET Framework is as follows:

Common Language Infrastructure (CLI)

This provides a language-neutral platform for application development and execution,

including solutions for exception handling, garbage collection, security, and

interoperability. Because the implementation of the core aspects of the .NET

Framework is done according to CLI, it can be used across the many languages

supported by the framework and is not limited to a single language. Microsoft's

implementation of the CLI is called the Common Language Runtime, or CLR.

(http://en.wikipedia.org/wiki/Common_Language_Infrastructure, Referred to on May,

2009)

Assemblies

The Common Intermediate Language to which .NET Framework languages are

compiled is stored in .NET assemblies. Assemblies are stored in the Portable

Executable (PE) format that is used in the Windows platform in DLL and EXE files.

The assembly can be one or more files, one of them must contain the manifest, which

has the metadata for the assembly. The complete name of an assembly is a simple text

name, version number, culture, and public key token and should not be confused with

the filename on disk. The public key token generated when the assembly is compiled

is a unique hash, which guarantees that two assemblies with the same public key

token, are identical for the framework. Also a private key can be specified which is

required to add an assembly to the Global Assembly Cache. The private key is used

for strong naming and it proves that the assembly has the same author when a new

http://en.wikipedia.org/wiki/Memory_management
http://en.wikipedia.org/wiki/Exception_handling
http://en.wikipedia.org/wiki/Windows_Server_2008
http://en.wikipedia.org/wiki/Windows_Server_2008
http://en.wikipedia.org/wiki/Windows_Vista
http://en.wikipedia.org/wiki/Windows_XP
http://en.wikipedia.org/wiki/Windows_Server_2003
http://en.wikipedia.org/wiki/Windows_Mobile
http://en.wikipedia.org/wiki/Smartphones
http://en.wikipedia.org/wiki/.NET_Compact_Framework
http://en.wikipedia.org/wiki/Common_Language_Runtime
http://en.wikipedia.org/wiki/Common_Intermediate_Language
http://en.wikipedia.org/wiki/.NET_assembly
http://en.wikipedia.org/wiki/Portable_Executable
http://en.wikipedia.org/wiki/Portable_Executable
http://en.wikipedia.org/wiki/Metadata
http://en.wikipedia.org/wiki/Public_key
http://en.wikipedia.org/wiki/Global_Assembly_Cache

25

version of the assembly is compiled because it is known only to the creator of the

assembly.

Metadata

.NET metadata describes all CIL that means all classes and class members that are

defined in the assembly, and also the classes and class members that are connected

with the current assembly. The CLR checks the metadata to ensure that the correct

method is called. The metadata can be created by developers through custom

attributes but usually is generated by language compilers. The metadata contains

information about the assembly as written above, and is also used by the reflection

functionality of the .NET Framework.

Security

.NET security mechanism consists of following features: Code Access Security (CAS)

and validation and verification. Code Access Security is a solution that prevents code

without appropriate permissions from performing privileged actions. It is based on

evidence (that commonly is the source of the assembly, either local machine or

Internet) that is associated with a specific assembly. Code Access Security uses

evidence to determine the permissions that code possess. If some code is called by

another code it can demand from the caller to have a specific permission. This demand

causes the CLR to perform a check through every assembly of each method in the call

stack for the required permission; if any of assemblies has not required permission

a security exception is thrown.

Class library

The .NET Framework is shipped with a set of standard class libraries. Each class

library is organized in a hierarchy of namespaces. The most commonly used classes

are contained in either System.* or Microsoft.* namespaces. A large number of

common functions is implemented there, such as input/output features, graphic

rendering, database interaction, and XML document manipulation, among others. The

.NET class libraries are not restricted to one language but are available to all .NET

languages. The .NET Framework class library can be divided into two parts: the Base

Class Library and the Framework Class Library.

http://en.wikipedia.org/wiki/.NET_metadata
http://en.wikipedia.org/wiki/Code_Access_Security
http://en.wikipedia.org/wiki/Standard_library
http://en.wikipedia.org/wiki/Namespace_%28computer_science%29
http://en.wikipedia.org/wiki/.NET_languages
http://en.wikipedia.org/wiki/.NET_languages

26

The Base Class Library (BCL) is the core of classes that serve as the basic API of the

Common Language Runtime. The classes in mscorlib.dll and some of the classes in

System.dll and System.core.dll are a part of the BCL. The BCL classes are

available in every .NET Framework implementations including .NET Compact

Framework, Microsoft Silverlight and Mono.

The Framework Class Library (FCL) refers to the entire class library that .NET

Framework includes. It contains large set of libraries, including WinForms,

ADO.NET, ASP.NET, LINQ, Windows Presentation Foundation, Windows

Communication Foundation among others. The FCL has a comparable range to the

standard libraries of Java and much greater range than standard libraries for languages

like C++.

Memory management

The .NET Framework CLR frees the developer from thinking about memory

(allocating and freeing up when done); instead it does the memory management itself.

To this end, the memory allocated to instantiations of .NET types (objects) is done

contiguously from the managed heap, a pool of memory managed by the CLR.

("Garbage Collection: Automatic Memory Management in the Microsoft .NET

Framework". Archived from the original on 3 July 2007.

http://en.wikipedia.org/wiki/.NET_Framework. Retrieved May 2009.). The object is

considered to be in use by the CLR as long as there exists a reference to that object,

which might be either a direct reference to an object or via a graph of objects. When

any reference indicates to an object, and it cannot be reached or used, it

becomes garbage. However, it still keeps the memory allocated to it. That is why

.NET Framework includes a garbage collector which runs periodically, on a separate

thread from the application's thread, that finds all the garbage objects and reclaims the

memory allocated to them.

The .NET Garbage Collector (GC) is a non-deterministic, compacting, mark-and-

sweep garbage collector. (http://en.wikipedia.org/wiki/.NET_Framework, Referred to

on May, 2009) The GC runs only when a certain amount of memory has been used or

there is a large demand for memory on the system. Since it is not guaranteed when the

conditions to start GC arise, the GC runs are non-deterministic. Each .NET application

has a set of pointers to objects on the managed heap (managed objects). These include

http://en.wikipedia.org/wiki/Base_Class_Library
http://en.wikipedia.org/wiki/API
http://en.wikipedia.org/wiki/Common_Language_Runtime
http://en.wikipedia.org/wiki/.NET_Compact_Framework
http://en.wikipedia.org/wiki/.NET_Compact_Framework
http://en.wikipedia.org/wiki/Microsoft_Silverlight
http://en.wikipedia.org/wiki/Mono_%28software%29
http://en.wikipedia.org/wiki/Framework_Class_Library
http://en.wikipedia.org/wiki/WinForms
http://en.wikipedia.org/wiki/ADO.NET
http://en.wikipedia.org/wiki/ASP.NET
http://en.wikipedia.org/wiki/Language_Integrated_Query
http://en.wikipedia.org/wiki/Windows_Presentation_Foundation
http://en.wikipedia.org/wiki/Windows_Communication_Foundation
http://en.wikipedia.org/wiki/Windows_Communication_Foundation
http://en.wikipedia.org/wiki/Java_Class_Library
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Graph_%28data_structure%29
http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29
http://en.wikipedia.org/wiki/Thread_%28computing%29
http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29

27

references to static objects and objects defined as local variables or method

parameters, as well as objects referred to by CPU registers. When the GC runs, it

pauses the application, and for each object referred to in the pointer, it recursively

marks all objects, which are reachable from the root objects, as reachable. It uses

.NET metadata and reflection to discover the objects encapsulated by an object. It then

enumerates all the objects on the heap (which were initially allocated contiguously)

using reflection. All objects not marked as reachable are garbage. This is the mark

phase. Since the memory held by garbage is not of any consequence, it is considered

free space. However, this leaves chunks of free space between objects which were

initially contiguous. The objects are then compacted together, by using memcpy to

copy them over to the free space to make them contiguous again. Any reference to an

object invalidated by moving the object is updated to reflect the new location by the

GC. The application is resumed after the garbage collection is over. (ibid.)

The GC used by .NET Framework is actually generational. ("Garbage Collection—

Part 2: Automatic Memory Management in the Microsoft .NET Framework".

Archived from the original on 26 June 2007.

http://en.wikipedia.org/wiki/.NET_Framework. Retrieved May 2009.) That means that

objects are assigned a generation; newly created objects belong to Generation 0. The

objects that survive a garbage collection are moved to Generation 1, and the

Generation 1 objects that survive another collection are becoming Generation 2

objects. Objects from higher generation are garbage collected less frequently than

objects from lower generations. This mechanism increases the efficiency of garbage

collection because older objects tend to have a larger lifetime than newer objects.

Thus, by removing older (and thus more likely to survive a collection) objects from

the scope of a collection run, fewer objects need to be checked and compacted (ibid.).

In the developing process .NET Framework version 3.5 Service Pack 1 was used

which provides the following new features and improvements as written in Overview

to Microsoft .NET Framework 3.5 Service Pack 1:

 ―ASP.NET Dynamic Data, which provides a rich scaffolding framework that

enables rapid data driven development without writing code, and a new

addition to ASP.NET AJAX that provides support for managing browser

history (back button support). For more information.

http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Reflection_%28computer_science%29

28

 Core improvements to the CLR (common language runtime) that include better

layout of .NET Framework native images, opting out of strong-name

verification for fully trusted assemblies, improved application startup

performance, better generated code that improves end-to-end application

execution time, and opting managed code to run in ASLR (Address Space

Layout Randomization) mode if supported by the operating system.

Additionally, managed applications that are opened from network shares have

the same behavior as native applications by running with full trust.

 Performance improvements to WPF (Windows Presentation Foundation),

including a faster startup time and improved performance for Bitmap effects.

Additional functionality for WPF includes better support for line of business

applications, native splash screen support, DirectX pixel shader support, and

the new WebBrowser control.

 ClickOnce application publishers can decide to opt out of signing and hashing

as appropriate for their scenarios, developers can programmatically install

ClickOnce applications that display a customized branding, and ClickOnce

error dialog boxes support links to application-specific support sites on the

Web.

 The Entity Framework is an evolution of the existing suite of ADO.NET data

access technologies. The Entity Framework enables developers to program

against relational databases in according to application-specific domain models

instead of the underlying database models. The Entity Framework introduces

some additional features, including support for new SQL Server 2008 types,

default graph serialization of Entities, and the Entity Data Source. This release

of the Entity Framework supports the new date and file stream capabilities in

SQL Server 2008. The graph serialization work helps developers who want to

build Windows Communication Foundation (WCF) services that model full

graphs as data contracts. The Entity Data Source provides a traditional data

source experience for ASP.NET Web application builders who want to work

with the Entity Framework.

 LINQ to SQL includes new support for the new date and file stream

capabilities in SQL Server 2008.

 The ADO.NET Data Services Framework consists of a combination of

patterns and libraries, which enable data to be exposed as a flexible REST

(Representational State Transfer)-based data service that can be consumed by

29

Web clients in a corporate network or across the Internet. The ADO.NET Data

Services Framework makes data service creation over any data source. A

conceptual view model of the underlying storage schema can easily be

exposed through rich integration with the ADO.NET Entity Framework.

Services created by using the ADO.NET Data Services Framework, and also

compatible Windows Live (dev.live.com) services, can be easily accessed

from any platform. For client applications that are running on Microsoft

platforms, a set of client libraries are provided to make interaction with data

services simple. For example, .NET Framework-based clients can use LINQ to

query data services and a simple .NET Framework object layer to update data

in the service.

 Windows Communication Foundation now makes the DataContract Serializer

easier to use by providing improved interoperability support, enhancing the

debugging experience in partial trust scenarios, and extending syndication

protocol support for wider usage in Web 2.0 applications.

 The .NET Framework Data Provider for SQL Server (SqlClient) adds new

support for file stream and sparse column capabilities in SQL Server 2008. ―

(http://www.microsoft.com/downloads/details.aspx?FamilyID=AB99342F-5D1A-

413D-8319-81DA479AB0D7&displaylang=en, Retrieved in September, 2009)

4.1.2 ADO.NET Entity Framework

ADO.NET Entity Framework is an object-relational mapping (ORM) framework for

the .NET Framework which abstracts the relational schema of the data that is stored in

a database and presents its conceptual schema to the application. For example, in the

database, entries about a customer and their information can be stored in the

Customers table, their orders in the Orders table and their contact information in yet

another Contacts table on the other hand Customers, Orders and Contacts tables are

represented by classes in an application. For an application to deal with this database,

it has to know which information is in which table, that is why the relational schema

of the data is hardcoded into the application.

30

The disadvantage of this approach is that if schema of the database is changed, the

application also need the change. ―Also, the application has to perform SQL joins to

traverse the relationships of the data elements in order to find related data. For

example, to find the orders of a certain customer, the customer needs to be selected

from the Customers table, joined with the Orders table, and then projected to remove

unwanted columns.‖ (http://en.wikipedia.org/wiki/Entity_Framework, Referred to on

June, 2009)

Object-oriented programming languages, where the relationships of an object's

features are given to the user as Properties of the object and accessing the property

traverses the relationship is completely different from the model of traversing

relationships between items. Furthermore, using SQL queries expressed as strings,

does not give guarantees about the operation and does not provide compile time type

information which can easily lead to exceptions during the execution of the

application.

In this model the client side data access mechanisms are shielded from mapping of the

logical schema into the physical schema that defines how the data is structured and

stored on the disk because it is the job of the database system as the database exposes

the data in the way specified by its logical schema.

(http://en.wikipedia.org/wiki/Entity_Framework, Referred to on June, 2009)

4.1.3 LINQ

LINQ stands for Language Integrated Query. It is a set of extensions to the .NET

Framework that encompass language-integrated query, set, and transform operations.

It extends C# with native language syntax for queries and provides class libraries to

take advantage of these capabilities. It introduces standard, easily-learned patterns for

querying and updating data, and the technology can be extended to support potentially

any kind of data store. Visual Studio 2008 includes LINQ provider assemblies that

enable the use of LINQ with .NET Framework collections, SQL Server databases,

ADO.NET Datasets, and XML documents.. Here only LINQ to Objects will be

31

presented. The main idea of LINQ is to allow developers to focus more on

functionality rather than on creating repetitive code. LINQ syntax is very similar to

SQL and it has a lot of the same keywords and similar functionalities. (Nash, 2007,

465-467).

The following listing shows basic LINQ query:

string[] names = { "Burke", "Connor", "Frank",

 "Everett", "Albert", "George",

 "Harris", "David" };

IEnumerable<string> query = from s in names

 where s.Length == 5

 orderby s

 select s;

foreach (string item in query)

 Console.WriteLine(item);

(101 LINQ samples, Referred to in September, 2009, http://msdn.microsoft.com/en-

us/vcsharp/aa336746.aspx)

The query is searching for strings with length 5, in the array. It starts from the

declaration (the order of variables is random) of table of strings (names); later there is

a condition and final result value. In comparison with an SQL query there would be

―select‖ statement at the beginning, next the table name and the condition at the end.

In LINQ the order is opposite, though the IntelliSense can still work when the query is

constructed (the type is well known because it is retrieved from the type of collection

elements). The query returns IEnumerable<string>. LINQ queries can be changed

into lambda expressions tree which is implementation of anonymous methods. From

version 2.0 of .NET Framework Lambda expression are occurring in C# language as

more compact way of using anonymous methods.

IEnumerable<string> query = names

 .Where(s => s.Length == 5)

 .Select(s => s.ToUpper());

32

 In method Where in brackets before ‗=>‘ sign, there are parameters that should be

used in expression and after sign the operation which should be performed on

parameters.

This syntax can be used without any loss in readability if the query is simple, but with

more complex queries, more readability have standard LINQ query syntax .

(Kumar, LINQ Quickly, 2007, Referred to on October, 2009)

4.1.4 ASP.NET

ASP.NET is a web application framework developed and marketed by Microsoft to

allow programmers to build dynamic web sites, web applications and web services. It

was first released in January 2002 with version 1.0 of the .NET Framework, and is the

successor to Microsoft's Active Server Pages (ASP) technology. ASP.NET is built on

the Common Language Runtime (CLR), allowing programmers to write ASP.NET

code using any supported .NET language. (http://en.wikipedia.org/wiki/Asp.net,

Retrieved on September, 2009)

ASP.NET includes applications, extensions to applications and a big part of the .NET

class hierarchy. ASP.NET works under Microsoft IIS web server. In HyperNotifier

solution it will be using Microsoft Windows 2003 Server and IIS to host ASP.NET

application.

.NET pages, known officially as "web forms", are the main building block for

application development. (MacDonald and Szpuszta, 2007 p. 63) Web forms are

consist of aspx files, these files typically contain static (X)HTML language, as well as

Web Controls and User Controls where the required content for the web page is added

by the developers. Additionally, in similarity to other web development technologies

such as PHP, JSP, and ASP; dynamic code which runs on the server can be placed in a

page within a block <% -- dynamic code -- %>, but this practice is generally not

used because of data binding since it requires more calls when rendering the page.

However dynamic code can be placed in a page, Microsoft recommends using the

code-behind model for dealing with dynamic program code, which places this code in

a separate file or in a specially designated script tag. Code-behind files are named like

MyPage.aspx.cs or MyPage.aspx.vb, so the first part of the filename is the same as

aspx file including extension, and second part is an extension denoting the page

http://en.wikipedia.org/wiki/Web_application_framework
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Programmer
http://en.wikipedia.org/wiki/Web_site
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/Active_Server_Pages
http://en.wikipedia.org/wiki/Common_Language_Runtime
http://en.wikipedia.org/wiki/.NET_Languages
http://en.wikipedia.org/wiki/XHTML
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/JavaServer_Pages
http://en.wikipedia.org/wiki/Active_Server_Pages
http://en.wikipedia.org/wiki/Binding_%28computer_science%29

33

language. In Microsoft Visual Studio and other IDEs this practice is automatic. This

style of programming allows the developer to write code that responds to different

events, like e.g. the page loading, or a click on a control; rather than a step by step

walk through the document.

ASP.NET's code-behind model is a departure from Classic ASP because it leads

programmers to build applications which separate presentation layer from content. In

theory, this would allow a web developer to focus on the design part, which gives less

opportunity for distortion of the program code that is underneath. This is similar to the

separation of the view from the controller in MVC (Model-View-Controller) design

pattern.

The rendering methods used in ASP.NET are called visited composites. The Web form

file (.aspx) is compiled into initialization code which builds the composite (control

tree) representing the original template. Server controls are represented by instances of

a specific control class. The code that initializes the page is a combination of user-

written code and results in a class specific for the page. The written code is usually the

assembly of multiple partial classes.

The requests for the page are processed through the following steps. The first is

initialization, when an instance of the page class is created and the initialization code

is executed. In the next steps the produced initial control tree is manipulated by the

methods of the page. Because the node in the tree is a control represented as an

instance of a class, the tree structure can be change by the code and manipulation of

the properties/methods of the individual nodes can occur. Finally, the rendering step is

executed, a visitor is asking each node visited in the tree to render itself using its

methods. The result is HTML code, which is sent to the client.

For a programmers that are novice in ASP.NET who are used to rely on class instance

members, the page lifecycle can be very confusing, because after the request

processing has ended, the instance of the page class is discarded and with it the entire

control tree, so all the data stored in controls is lost with every page request/response

cycle.

(http://en.wikipedia.org/wiki/Asp.net, Retrieved on September, 2009)

http://en.wikipedia.org/wiki/Microsoft_Visual_Studio
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Separation_of_presentation_and_content

34

4.2 Web Part

A web part is an ASP.NET server control which can be added by users at run time to

a Web Part Zone on Web Part Pages. Web Parts are giving the user ability to modify

the content, appearance, and behavior of Web pages directly from a browser. They are

an integrated set of controls for creating Web sites. The User Interface controls derive

from the Part class, and they compose the primary UI on a Web Parts page.

Web Parts are Microsoft's implementation of Web Widgets idea.

Web Parts can be used as add-on ASP.NET technology to Windows SharePoint

Services. (http://en.wikipedia.org/wiki/Web_part, Retrieved on September, 2009)

Web Parts are equivalent to Portlets, but do not necessarily require a web portal such

as SharePoint to host them.

(http://en.wikipedia.org/wiki/Web_part, Accessed on September, 2009)

35

5 CONCLUSION

5.1 Evaluation of the solution

The HyperNotifier project has ended successfully. All requirements have been meet

and it is a usable and well constructed solution.

The time spent for developing HyperNotifier was long because it was a minor project

in the company. There was only one developer working on this project, although in

the designing part there were also three other people involved, the project manager,

an analyst and a programming specialist who discussed the project during the

implementation phase, sometimes adding some corrections. Some parts took more

time for creating than expected, mostly because during the implementation better

solution appeared or the requirements were changed. When smaller parts of the

solution were complete, the team also discussed the current features, and if something

was missing, it was added to the plan. There were also elements that were created

faster than planned because of finding a better way to do it.

The solution consist of five project including five interfaces, one windows service,

one web application and additionally three plugin projects. It is prepared to be as

simple as possible for extension. It only needs to implement a small number of

interfaces and build a DLL, then add it to the plugins folder in the project and add the

name of the plugin into the configuration file. This is enough for the user to enjoy the

new functionality. Also communication with the user interface has been stretched to

the interfaces, which allows easy connection and a way to communicate with the user.

Although the HyperNotifier solution is doing what it should, and gives the user

possibilities to accomplish the goals that were specified, there is still room for

improvement, and new features. The next section explores possible further tasks

which will give HyperNotifier new abilities.

Before HyperNotifier was built the changes were arrived but were not coordinated by

anything. Every source had its own way to notify about changes, thus, different mails

were arriving from many sources and it was hard to cope with all of them. Each mail

had a different layout and sometimes arrived at a very surprising time. If mails needed

36

to be presented and formatted, someone had to gather them, organize, do the

processing manually and prepare the report. The created solution is a big step toward

uniformity and efficiency, an automated processing of information about the changes

from all sources in the company.

The HyperNotifier is currently used to process incoming information, and scan source

for changes if needed. The route of the information is automatic, and the arriving

information ends up in the database and afterwards at specified time are sent by mail

in a consistent and plain report. The users can then view this report and take

appropriate action. They have easy overview through all the changes in all the sources

and only those that they wanted to see.

Development will not stop, however, as there are now many new requirements

present, which will be gradually introduced to the project.

The HyperNotifier project appeared even more complicated project than it was in the

Assumption. There were a number of parts that could be made in at least two different

ways like, for example, handling of the DLLs or database communication. The first of

them was solved by choosing the easiest and least complicated solution which was

using the System.Reflection.Assembly in opposite to System.AddIn library. The

choice of database communication was not so simple. It was important to have an easy

and especially fast access to the data and it was not desirable to use old solutions. In

the end, the decision fell on Entity Framework with the help of LINQ mostly because

it is quite new and sufficiently tested. In decisions like these there was also a

significant influence of the desire to learn new technologies and it always was a big

argument for.

5.1.1 Future plans

The Hypernotifier was designed in a way that making future changes should be an

easy task, but still, of course, that depends on how complex the new functionality is.

The solution is made to be extensible in plugins area so there can be added very easily

many new sources of data.

The Hypernotifier already provides a way to work with the incoming changes and

send outgoing reports. There are, however, many more aspects to working with the

37

changes, and this section can be explored for some of the possibilities that might be

implemented in the future for the Hypernotifier.

The solution is designed to continuously expand and improve, thus after the release of

the first version the improving work is started. The nearest plan is to add new plugins

for a number of additional sources and to move the user interface to the web part to

allow placing it on SharePoint site.

So features that can extend the functionality of Hypernotifier are as follows:

 Adding new plugins for new sources of data.

 New user interface (changeable) like Webpart.

 Adding some new functionality to the UI to make it more user friendly (e.g.

fast searching).

 Adding new premade templates for reports.

 Giving the user more capabilities to design report (e.g. organizing data on the

report and designing layout).

The very big step ahead from only notifying about changes could be adding to

Hypernotifier the functionality to prepare reports from all the gathered data

comparing, for example, which files are commonly changed and which very rare. That

kind of information can be also very useful in a company like VSoft.

5.2 Personal experience

I am sure that I definitely have learned a lot during the development. I am also very

proud of what I did and how it improved me as a professional. The Hypernotifier was

my biggest and most complex project. After having finished it I know more about

designing distributed applications, what kind of solutions should be used, which

should be avoided. However, still I see the areas where I need to develop myself.

The Hypernotifier as a team project in some ways gave me also a lot of new

experience. Now I understand how important good communication between project

members is and how to make team work more efficient. Also I realized how hard is to

make a good software which will be satisfactory for the customer. It requires

38

continuous consultation and comparing the vision of the developers with the vision of

the future user. Working closely together with those who will be using the solution

was in my opinion the best solution. They were constantly inspecting the work, the

initial requirements laid out for the solution were dynamically changing, and the

application needed to adapt to these new requirements.

Creating distributed applications differs in many fields from making simple,

condensed programmes. The different parts need to be carefully integrated together,

so they can work seamlessly with each other. Additionaly, the big challenge of today‘s

programmers is to make the parts easily changeable. That is not as easy as it might

first seem to create a software that can be easily modified and manipulated. The most

important issue is careful planning and continuous communication with the customer,

without it the changes added to the solution might overwhelm the creator, and not

meet the customers‘ expectations.

39

6 REFERENCES

Weldon W. Nash, Accelerated C# 2008, Referred to on June, 2009.

Clare Churcher, Beginning Database Design, 2007, Referred to on April, 2009.

Paul Wilton and John W. Colby, Beginning SQL, 2005, Referred to on April, 2009.

Joseph Albahari, Ben Albahari, LINQ Pocket Reference, 2008, Referred to on

October, 2009.

N Satheesh Kumar, LINQ Quickly, 2007, Referred to on October, 2009.

Matthew MacDonald and Mario Szpuszta, Pro ASP.NET 3.5 in C# 2008 Second

Edition, 2007, Referred to on May, 2009.

Simon Robinson, Christian Nagel, Jay Glynn, Morgan Skinner, Karli Watson, Bill

Evjen, Professional C# Third Edition, 2004, Referred to on May, 2009.

Robert Vieira, Professional SQL Server™ 2005 Programming, 2007, Referred to on

April, 2009.

Charles Petzold, Programming Microsoft Windows with C#, 2002, Referred to on

April, 2009.

101 LINQ samples, Referred to on September, 2009, http://msdn.microsoft.com/en-

us/vcsharp/aa336746.aspx .

VSoft, Referred to on April, 2009,

http://www.vsoft.pl/index.php?option=com_content&view=article&id=1&Itemid=13.

Windows service, Referred to on April, 2009,

http://en.wikipedia.org/wiki/Windows_service.

http://msdn.microsoft.com/en-us/vcsharp/aa336746.aspx
http://msdn.microsoft.com/en-us/vcsharp/aa336746.aspx
http://www.vsoft.pl/index.php?option=com_content&view=article&id=1&Itemid=13
http://en.wikipedia.org/wiki/Windows_service

40

Introduction to Windows Service Applications, Referred to on April, 2009,
http://msdn.microsoft.com/en-us/library/d56de412%28VS.80%29.aspx.

.NET Framework, Referred to on May, 2009,

http://en.wikipedia.org/wiki/.NET_Framework.

.NET Framework Technologies, Referred to on May, 2009,

http://msdn.microsoft.com/en-gb/netframework/default.aspx.

ADO.NET Entity Framework Overview, Referred to on June, 2009,

http://msdn.microsoft.com/en-us/magazine/cc163399.aspx.

ADO.NET Entity Framework, Referred to on June, 2009,

http://en.wikipedia.org/wiki/Entity_Framework.

ASP.NET, Referred to on September, 2009, http://en.wikipedia.org/wiki/Asp.net

LINQ, Referred to on November, 2009, http://msdn.microsoft.com/en-

us/netframework/aa904594.aspx.

Web part, Accessed on September, 2009, http://en.wikipedia.org/wiki/Web_part.

What's New in the .NET Framework Version 3.5, Referred to on September, 2009,

http://msdn.microsoft.com/en-gb/library/bb332048.aspx.

Garbage Collection: Automatic Memory Management in the Microsoft .NET

Framework, Archived from the original on 3 July 2007, Retrieved on May, 2009, from

http://en.wikipedia.org/wiki/.NET_Framework.

Garbage Collection—Part 2: Automatic Memory Management in the Microsoft .NET

Framework, Archived from the original on 26 June 2007, Retrieved on May, 2009,

from http://en.wikipedia.org/wiki/.NET_Framework.

http://msdn.microsoft.com/en-us/library/d56de412%28VS.80%29.aspx
http://en.wikipedia.org/wiki/.NET_Framework
http://msdn.microsoft.com/en-gb/netframework/default.aspx
http://msdn.microsoft.com/en-us/magazine/cc163399.aspx
http://en.wikipedia.org/wiki/Entity_Framework
http://en.wikipedia.org/wiki/Asp.net
http://msdn.microsoft.com/en-us/netframework/aa904594.aspx
http://msdn.microsoft.com/en-us/netframework/aa904594.aspx
http://en.wikipedia.org/wiki/Web_part
http://msdn.microsoft.com/en-gb/library/bb332048.aspx
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/.NET_Framework

