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Training a computer 

to evaluate the 

aesthetics of 

Chinese characters 

provides a feedback 

mechanism to 

improve the quality 

of automatically 

generated 

calligraphy.

to program a computer to appreciate beauty 
have been rare. Alan Turing once said, “We 
do not wish to penalize the machine for its 
inability to shine in beauty competitions.”1 
But witnessing the rapid advancement of pho-
torealistic techniques in computer graph-
ics nowadays, we feel it is not unimaginable 
that computers can also distinguish the beau-
tiful, and when that happens, beauty contests 
could certainly be open to computers as well.

To imbue computers with the ability to 
recognize beauty is certainly a worthwhile 
problem for AI researchers. The ultimate in-
telligent machine is probably one that can 
create beautiful results on its own, which 
presents a nice AI research challenge. This 
article describes our attempt to meet this 
challenge, the result of which is a system 

that can perform beauty appreciation quan-
titatively over Chinese calligraphy pieces.

Calligraphy and character fonts are closely 
related. Much research has been done on com-
puterizing Chinese fonts—for example, Ariel 
Shamir and Ari Rappoport’s study on how to 
compress Chinese outline fonts.2 Computeriz-
ing Chinese calligraphy, which is usually done 
with a brush, is more challenging because the  
shapes of brush strokes as well as the topol-
ogy over multiple strokes can be highly com-
plex. A single character alone presents many 
algorithmic challenges in terms of the shape 
and spatial layout of the strokes.

In this article, we first explore how to use a 
numerical method to evaluate the visual quality 
of calligraphic writings from an aesthetic point  
of view, and then describe the generation of 

The field of computer vision has predominantly been concerned with rec-

ognizing shapes and meanings of objects by their images—that is, figur-

ing out what things are. But in everyday life, our visual perception also induces 

a sense of how beautiful things are. To the best of our knowledge, attempts 
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good-looking Chinese calligraphic writ-
ings. Our work focuses on the aesthetics 
evaluation and automatic generation of 
single calligraphic characters, which are 
the basic building blocks of any Chinese 
calligraphic writing. (See the “Related 
Work” sidebar for other work done in 
this area.) Our experimental results 
show that our effort at the character 
level can effectively improve the visual  
quality of automatically generated multi-
character Chinese calligraphy.

Calligraphy Representation 
and Acquisition
We adopt the hierarchical Chinese 
calligraphy representation scheme we 

have described before,3 which rep-
resents the shape of a character at  
multiple levels. The method is fully 
automatic, which unfortunately 
would fail when processing charac-
ters in cursive styles. We therefore set 
out to devise a more generally appli-
cable method based on a two-phase, 
semiautomatic routine.

In the first phase, we combine sev-
eral decomposition algorithms to per-
form a best-effort automatic stroke 
extraction (see Figure 1). Starting 
from a given image of a calligraphic 
character, we tentatively extract its 
skeleton using a thinning algorithm.4 
Next, we employ an adapted version 

of Jairo Rocha and Theo Pavlidis’s 
algorithm to automatically segment 
the strokes.5 For characters written in 
regular styles that don’t deviate dras-
tically from standard writing styles, 
this automatic stroke segmentation 
works effectively and efficiently, typi-
cally taking less than three seconds.

For highly cursive writing styles, 
however, this approach tends to fail. 
It might only be able to identify a 
few strokes because of the severe de-
viation of a cursive character shape 
from its standard appearance. In that 
case, we turn to a stroke library for 
stroke identification through stroke 
shape matching,6 which generally can 

The most closely related work to that outlined in the 
main article is the automatic artistic Chinese callig-
raphy generation system described by some of the 

authors and their colleagues.1 That work, however, is con-
cerned mainly with using constraint-based reasoning to 
generate stylistic calligraphic characters and paid very little 
attention to the aesthetic quality of the generated results. 
Chin-Chuan Han and his colleagues proposed an interactive 
system for grading Chinese calligraphy for writing instruc-
tion.2 They employed image-processing techniques to 
extract features related to character position, size, and 
stroke projections. On the basis of these features, they 
used hand-coded rules to grade the visual quality of cal-
ligraphic writing through fuzzy inference. In contrast, we 
use a machine-learning approach to automatically grade 
the visual appearance of calligraphic writing. The grading 
results of our method closely resemble human aesthetics  
opinions.

Pak-Keung Lai’s team studied the problem of numerically 
evaluating the beauty of calligraphic characters through a 
simple heuristics approach.3 They identified four rules in 
Chinese calligraphy, and then used them to implement a 
rule-based beauty-grading function. Our automatic callig-
raphy visual-quality evaluation, on the other hand, is based 
on a supervised-learning approach. It is generally known 
that high-level rules for capturing expert knowledge are 
not always effective and sometimes impossible to derive. 
Our data-driven approach can lead to a machine evaluation 
capability better than their rule-based approach in captur-
ing the opinions of human viewers.

Recently, in computer graphics research, a data-driven 
approach has been proposed for evaluating the attractive-
ness of human faces.4 Success with that approach adds to 
our confidence in a data-driven approach to evaluating 
aesthetics of Chinese calligraphic writings. Also related is 
recent work by some of the current authors and their col-
leagues that studies the problem of automatically generat-
ing Chinese calligraphic writings with style imitation.5

Pamela McCorduck’s book provides a comprehensive treat-
ment of AI and art,6 which motivates our study of the beauty 
of Chinese calligraphic art from an AI perspective. Other 
than the visual arts, computer-generated music is probably 
the most established area for AI techniques being employed 
in art composition. Current research on computer music in-
cludes both automatic music composition and music evalu-
ation. The challenges in that field, however, are in some 
respects easier than ours, because there are well-established 
musical rules for judging music, which isn’t the case for the 
visual arts, including calligraphy. Others have pursued work 
on story generation, believable agents, interactive story, and 
the like, which aim to capture aesthetics computationally.

Finally, our work is also remotely related to Donald 
Knuth’s pioneering work on Metafont.7 That work focuses 
on the definition and interpretation of fonts, but leaves 
font creation to the end users. In contrast, our work empha-
sizes the generation of good-looking character writings.
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extract strokes more completely. We 
could not devise a fully automatic  
routine for stroke extraction, how-
ever, because artistic calligraphy 
tends to be highly cursive and se-
verely distorted, which is beyond the 
capabilities of existing pattern recog-
nition techniques. Hence, we provide 
an intelligent user component inter-
face to let users correct or refine the 
automatic stroke decomposition re-
sults. To use the interface, the user 
only has to sketch the stroke trajecto-
ries, which don’t need to be highly ac-
curate. Given these user sketches, we 
adopt a heuristic-based search pro-
cedure to look for an optimal stroke 
match between the user-sketched 
strokes and the extracted stroke skel-
eton. This process subsequently leads 
to all the strokes being successfully 
decomposed and extracted.

Calligraphy Aesthetics 
Evaluation
Our calligraphic character aesthet-
ics evaluation is supervised-learning 
based. We first collected several cal-
ligraphic character writing samples 
from both calligraphy copybooks 
and student practice books, and they 
formed the training set for our learn-
ing algorithm. Having established the 
sample collection, we invited five cal-
ligraphists to rate the visual quality 
of each sample character. For simplic-
ity, we asked them to use only three 
labels—“good,” “so-so” and “bad.” 
For each labeled character, we com-
puted three values (x, y, and z) using 
a Bayesian estimation method. Each 
value indicated the probability that 
a character’s appearance would be 
judged good, so-so, or bad on a 0 to 
100 percent scale. We can also convert 
this probabilistic aesthetics evaluation 
result into a single numerical score:

Overall Score  x + 0.5y + 0z 
          x + 0.5y. (1)

Thus, the value domain of the con-
verted numerical score is between 0 
and 100 percent because x + y + z = 
100 percent.

On the basis of our discussions with 
some practicing calligraphists, we 
took into account three aspects when  
designing our calligraphy aesthet-
ics evaluation algorithm: the shapes 
of individual strokes, the topological 
relationship between these strokes, 
and the style consistency among the 
strokes.

evaluating Individual  
Stroke Shape
Learners of calligraphy must start with 
writing decent-looking single strokes. 
The reason is simple: a single ugly 
stroke can destroy the beauty of the en-
tire character. Accordingly, when grad-
ing the aesthetics of a character, we 
first estimate a visual appearance score 
for each of its constituent strokes.

In the covering-ellipse stroke repre-
sentation,3 each stroke contains a se-
ries of points on its skeleton, and each 
point has a corresponding covering 
ellipse. We denote a stroke’s skeleton  

as K, which is a discrete 2D curve 
comprising all the pixels on the stroke 
skeleton. Without loss of generality, 
we assume the stroke has n pixels—
that is, K(1) is the first pixel on the 
stroke skeleton, and K(n) is the last 
pixel of the skeleton. Let Kx and Ky 
consist of all the x and y coordinates 
of K(1), K(2), …, K(n) in that order; in 
other words, Kx = {K(1).x, …, K(n).x} 
and Ky = {K(1).y, …, K(n).y}. Kx and 
Ky are two discrete 1D curves.

We also denote the covering el-
lipse corresponding to K(i) as E(i). 
Then the lengths of the major radii of  
E(1), …, E(n) form a 1D curve Ma. 
Similarly, the lengths of the mi-
nor radii of E(1), …, E(n) form a 1D 
curve Mi. Last, for each skeleton 
pixel K(i), we also compute a mini-
mum distance, D(i), from the pixel 
to a point on the stroke contour (see  
Figure 2). All the D(i) values together 
compose an offset distance sequence 
D = {D(1), …, D(n)}, which is another 
1D discrete curve.

Now we have a set of 1D curves, 
w = (Kx, Ky, Ma, Mi, D). We then 
compute the associated gradient 

Figure 1. Stroke extraction. Given (a) an input calligraphic character, (b) we first 
extract its skeleton. In this case, (c) automatic stroke segmentation extracts only 
three strokes, because of (d) the severe deviation of the input character from its 
standard style. (e) Matching against a stroke library extracts two more strokes.  
(f) After a user sketches a few suggestive stroke trajectories, (g) our intelligent  
user interface extracts all the strokes.

(a) (b) (c) (d)

(e) (f) (g)
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curves for each of them, getting an-
other set of 1D curves, w′ = (Kx′, Ky′, 
Ma′, Mi′, D′). With both w and w′, 
we can compute the shape features of 
the curves for use in both the learn-
ing and the grading processes. For 
each curve C, which is a 1D signal, 
we obtain its largest element (Cmax), 
the average value (Cave), and its me-
dian value (Cmed). The set of features 
extracted is derived as

F  {Cmax|C ∈ Θ} ∪ {Cave|C ∈ Θ} 
  ∪ {Cmed|C ∈ Θ} ∪ q (2)

where Θ  w ∪ w′, and q is defined by
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In our experiments, those features 
in qave make the most difference in our 
calligraphic curve aesthetics learning 
and grading processes.

To provide labels for the training 
examples, we ask the calligraphists 
to grade each stroke (see Figure 3).  
After computing the probabilistic 
grades from these manual labels, we 

feed a training set containing a total 
of 2,500 labeled single-stroke exam-
ples collected from about 500 single 
characters into a four-layered back- 
propagation neural network and 
trained it iteratively. The input to our 
neural network is the feature set F de-
rived in Equation 2. The output is a 
probabilistic evaluation result in the 
form of (x, y, z), where x, y, and z are 
probabilistic values, each in the range 
[0%, 100%], which indicate whether 
the stroke is good, so-so, or bad, re-
spectively. We can also synthesize 
a scalar score on the basis of these 
three probabilistic values using Equa-
tion 1. During the neural-network–
training process, we use ten-folded 
cross-validation to avoid overfitting. 
Table 1 shows a comparison of the 
human grading results with those 
from our algorithm.

evaluating Stroke Spatial Layout
As important as the appearance of 
single strokes is the way the strokes 
are arranged to compose a character. 
The visual qualities of the individual 
strokes interact to form the overall 
visual impression of the whole char-
acter. For Chinese characters, these 
spatial arrangements not only affect 
the aesthetic appearance but also 
can lead to different interpretations 
as to what the characters are. Some-
times a small change of the spatial  

relationship between strokes can result 
in an entirely different character, not 
merely the same character written in 
a different style. This poses a difficult 
challenge to our algorithmic design.

Assume a is a Chinese character 
whose stroke layout is to be graded. 
For every pair of its strokes (a, b), we 
compute the maximum, minimum, 
and mean distances— lmax(a , b), 
lmin(a, b), and lmean(a, b)—from a 
point on one stroke to a point on 
the other. These values can describe 
both the topological and the spatial  
relationship between the strokes. 
For example, we can easily deter-
mine whether the two strokes inter-
sect and how much they overlap, if 
at all. However, these three values 
might not tell us the strokes’ relative 
position precisely, which is important 
for the whole visual appearance or 
for determining the character’s iden-
tity. To capture that, inspired by our 
previous work,3 we draw a bounding 
box for each stroke (a bounding box 
of a stroke is the minimum rectangle 
that includes all the interior area of 
that stroke), and then compute the 
horizontal, vertical, and planar over-
lap between two strokes’ bounding 
boxes (see Figure 4). We denote these 
three types of overlap as Bh(a, b), 
Bv(a, b), and Bp(a, b) respectively, 
which are computed by
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where Width(s) and Height(s) denote 
the width and height of the bounding 
box for stroke s, X(s) and Y(s) are the 
horizontal and vertical coordinates 
of the bounding box’s center, and I(s) 
denotes the interior area of stroke s. 
Assuming the character a has n 
strokes, doing the above gives us six 
n × n matrices Mmax(a), Mmin(a), 
Mmean(a), Mh(a), Mv(a), and Mp(a). 

Figure 2. Deriving features of a single stroke. (Kx, Ky) are the coordinates of all the 
pixels on the stroke’s skeleton K. Ma and Mi are curves formed by the lengths of 
the major and minor radii of the covering ellipses. D is the distance from a skeleton 
pixel to the edge of the stroke contour.

(Kx, Ky) D

Ma

Mi
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The element in row i and column j of 
each matrix is lmax(Si, Sj), lmin(Si, Sj), 
lmean(Si, Sj), Bh(Si, Sj), Bv(Si, Sj), and 
Bp(Si, Sj), respectively, where Si and Sj 
are strokes i and j of a.

The next step is to derive the fea-
tures of these matrices. To grade 
the spatial layout of a, we first find 
its corresponding standard charac-
ter writing style a~. Here we use the 
Kai style (GB2312 in China’s na-
tional font standard) as the standard 
Chinese character writing style. We 
then derive the previous six matrices 
for a~, resulting in Mmax(a~), Mmin(a~), 
Mmean(a~), Mh(a~), Mv(a~), and Mp(a~). 
For each of these six feature matrices 
on a~, denoted as M(a~), and its corre-
sponding feature matrix M(a~) on the 
standard writing style a~, we derive 
their difference matrix Mdif(a) = M(a) − 
M(a~). Once Mdif(a) is calculated, we 
compute its maximum element value 
jmax, minimum element value jmin, 
maximum absolute value jmaxa, mean 
element value jmean, median element 
value jmed, and first three eigenval-
ues (l1, l2, and l3). Thus, we derive 
a total of 6 × 8 = 48 features for 
character a.

Again, we use a four-layered back-
propagation neural network in our 
grading process (see Figure 5). By 
working with the layout difference be-
tween a particular calligraphic writing 
style and its corresponding standard 
writing style, we don’t have to bother 
with much of the layout details associ-
ated with a particular character com-
position structure. That is, the fea-
tures we extract are more indicative 
of the writing style of an individual 
writer, and become largely unaffected 
by a character’s own particular stroke 
composition topology. This practice is 
inspired by our prior work.3

We feed our grading neural net-
work more than 500 character sam-
ples for the 100 most frequently used 
characters, all of which come from 

different people with different expe-
rience levels in calligraphy; the sam-
ples also include a few ugly or naively 
written ones. As we did with individ-
ual stroke grading, we assign only the 
labels good, so-so, and bad. Thus the 
input dimension to our neural net-
work is 48, and its output dimension 
is 3. We also generate an overall score 
using Equation 1. We train the neural 
network using 10,000 iterations, and 
we use ten-folded cross-validation to 
avoid overfitting during the training 
process.

Figure 6 shows the results for spatial- 
layout grading on some characters in 
the testing set whose human-applied 
labels were unknown to our grad-
ing neural network. Table 2 compares 
the grades from our algorithm with 
those from human calligraphists for 
10 other characters in the test. We 
set the threshold for visual accep-
tance at a score of 70 percent. This 
might sound like a high bar, but our 
main goal here is to ensure no poor- 
looking Chinese calligraphy generation  
results will be output as the end result.  

Figure 3. Grading of strokes by the calligraphists. The top row shows how our 
algorithm evaluated the strokes in these characters, and the bottom row shows the 
human evaluation. A black stroke is one that looks “good,” and a red one is “bad.” 
In general, our algorithm’s grading results agree well with those made by human 
calligraphists. Table 1 shows the overall scores for each stroke.
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(a) (b) (c) (d) (e) (f) (g)

Table 1. Comparison of algorithmic and human stroke grading  
of the strokes in Figure 3 (%).*

Character

Stroke no.

1 2 3 4 5 6 7

(a) 100 100 100 100 100 100 100

100 100 100 100 100 100 100

(b) 67.1 95.4 74.2 77.6 80.9 88.7 71.9

65 100 90 80 95 100 85

(c) 74.2 73.6 68.7 79.8 81.8 76.2 74.7

90 60 60 75 70 80 85

(d) 26.0 49.5 40.9 21.7 54.1 31.1 20.4

5 15 10 0 30 5 0

(e) 71.5 82.7 41.0 40.4 55.2 31.1 48.0

75 80 60 25 50 45 50

(f) 28.8 16.8 38.1 9.5 7.0 12.5 34.4

10 40 15 0 0 5 5

(g) 6.6 11.7 0 1.4 0 22.9 4.3

0 0 0 0 0 5 0

*For each character, the algorithmic grade is in the top row and the human expert grade on the bottom.
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Because there is a huge generation 
candidate space, as we explain later, 
using a strict threshold with some 
false negatives is more desirable than 
using an overly relaxed threshold that 
might lead to false positives.

evaluating Consistency  
of Stroke Styles
An ugly-looking character can consist 
of good-looking strokes, depending on 
whether the styles of different strokes 
cooperate harmoniously. Normally, 
strokes in the same style would lead 

to a good-looking character in that 
style if the individual strokes and their 
spatial layout are both good. In some 
cases where the styles of strokes are 
different but consistent, the strokes 
could still form a good-looking char-
acter. We thus need to evaluate the 
style consistency among strokes.

For simplicity, we assume there 
are m well-recognized writing styles 
commonly found in copybooks au-
thored by professional calligraphists. 
For each stroke in a character to be 
graded, we create an m-dimensional 

vector measuring the probability for 
the stroke to be in each sample writ-
ing style—for example,

G(S) = {gi(S)|i = 1, …, m},

defines a set G(S) in which gi(S) is 
the probability that stroke S is writ-
ten in the ith writing style. In our 
experiments, we fix the number of 
sample writing styles at six (m = 6) 
by selecting the six most frequently 
used styles in the Chinese font li-
brary. For a given stroke S, to de-
termine its corresponding g1(S), …, 
g6(S), we utilize the “cost of matching 
measurement” proposed by Rocha  
and Pavlidis, which defines the cost 
of transforming one stroke shape 
to match another. Assume the cor-
responding stroke shapes of S in the 
six most frequently used Chinese font 
styles are S1, …, S6. We denote the 
cost of matching measurement be-
tween S and Si as CM(S, Si). Then we 
compute gi(S) as

 g S
CM S S

CM S S
i

i

jj

( )
( , )

( , )
.=

−

−
=∑

1

1
1

6

For all the strokes contained in a 
character, S1, S2, …, Sn, we deduce 
their corresponding style signatures, 
g(S1), g(S2), …, g(Sn), as we just de-
scribed. We then compute the mean 
signature G g g= { , ..., }1 6  by averaging 
all the corresponding components in 
each stroke’s style signature. Now we 
can extract the style inconsistency SI 
for each stroke. For stroke S1 whose 
style signature is {g1(S1), g2(S1), …, 
g6(S1)}, we derive SI(S1) as

 
SI S g S gjj j( ) ( ) .1

1

6 1


=∑ −

We also use a backpropagation 
neural-network approach to grade 
a character’s style consistency. The 
input of our neural network is a 3D 

Figure 4. Stroke bounding boxes. (a) An individual stroke’s bounding box and its key 
features, where (X, Y) are the coordinates of the box’s center, and I is the interior 
area of the stroke; (b) all the bounding boxes of a single character; and (c) the 
bounding boxes of the same character written in standard style.

He
ig

ht

Width

(X, Y )

I

(a) (b) (c)

Figure 5. Our grading system. The equations on the left involve the six feature 
matrices for the character being graded (`) and the corresponding matrices for the 
same character in a standard font ( }̀ ). The element values and eigenvalues for the 
top result are shown, although we calculate them for the other results as well.
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vector that includes the three largest 
style inconsistency values of the char-
acter’s constituent strokes. The net-
work’s output is three real numbers 
between 0 and 1, denoting the prob-
abilities (as before) that the consis-
tency between strokes in the charac-
ter is good, so-so, or bad.

To collect the training set, we de-
velop a program that randomly ex-
tracts good-looking strokes from 
sample calligraphic writings and as-
sembles them into characters using 
the original sample character’s stroke 
composition layout. We then ask our 

calligraphists to rate each training 
sample with one of the three labels. 
Next, we feed these labeled, random 
samples into the neural network for 
training using 10,000 iterations. We 
also use ten-folded cross-validation 
to avoid overfitting during the pro-
cess. After deriving the probabilities 
of the character’s style consistency 
in each of the three categories, we 
use Equation 1 to synthesize an over-
all style consistency score. Table 3  
shows some evaluation results of 
the stroke style consistency grading 
experiments.

Figure 6. Sample characters. (a) From 
left, three positive and two negative 
examples from our training set; 
(b) characters rated unacceptable 
by spatial relationship analysis; 
(c) aesthetically acceptable results 
(scores > 70 percent) according to  
our grading algorithm.

(a)

(b)

(c)

Table 2. Comparison of algorithmic and human spatial-layout grading.

Character

Labels and overall score (%)*

Character

Labels and overall score (%)*

Good So-so Bad Overall Good So-so Bad Overall

100 0 0 100 55.0 45.0 0 77.5

100 0 0 100 90 10 0 95

61.6 38.4 0 80.8 0 54.3 45.7 77.2

70 30 0 85 50 50 0 75

86.8 13.2 0 93.4 0 54.3 45.7 77.2

100 0 0 100 20 60 20 50

35.5 60.0 4.5 65.5 0 50.7 49.3 75.4

40 60 0 70 20 60 20 50

31.3 60.0 8.7 61.3 98.4 1.6 0 99.2

70 30 0 85 100 0 0 100

*For each character, the algorithmic grade is in the top row and the human expert grade is on the bottom.

Table 3. Comparison of algorithmic and human style consistency grading.

Character

Labels and overall score (%)*

Character

Labels and overall score (%)*

Good So-so Bad Overall Good So-so Bad Overall

100 0 0 100 0 0 100 0

100 0 0 100 0 20 80 10

3.9 61.2 34.9 34.5 0 9.3 90.7 4.7

20 60 20 50 0 40 60 20

91.0 9.0 0 95.5 0 12.0 88.0 6.0

70 30 0 85 0 50 50 25

62.7 37.3 0 81.4 58.6 41.4 0 79.3

100 0 0 100 40 60 0 50

*For each character, the algorithmic grade is in the top row and the human expert grade is on the bottom.

IS-27-03-XU.indd   69 6/18/12   2:55 PM



70  www.computer.org/intelligent Ieee InTeLLIGenT SySTeMS

A e s t h e t i c  c A l l i g r A p h y  g e n e r A t i o n

evaluating a Whole Character
Finally, we evaluate the aesthetics of  
a whole character through a decision  

tree that produces the composite scores 
of characters having a certain num-
ber of strokes. The decision tree’s  

input includes the character’s topolog-
ical score, its style consistency score, 
and the single-stroke appearance 
scores for all the strokes in the charac-
ter. For a character with n strokes, the 
input to the decision tree has 3n + 6 
dimensions: the n strokes produce 3n 
single-stroke appearance scores be-
cause each stroke’s aesthetics grade is 
associated with three probabilistic val-
ues, and similarly, the character’s to-
pological score and style consistency 
score each produce three dimensions.

The examples used for training each 
of these decision trees are 50 charac-
ters; each character is written in six 
different styles and labeled by a human 
calligraphist. Figure 7 shows a selec-
tion of the characters used as examples,  
and Table 4 compares the human  
labeling results with the aesthetics 
scores produced by our algorithm.

Figure 8 reports our evaluation of the 
accuracy of our calligraphy aesthet-
ics grading on a set of 200 characters  

Figure 8. Statistical distributions of the errors of our algorithm’s grading results. The 
box-and-whisker diagram illustrates the variance between our algorithm’s grading 
results and the scores given by human calligraphists.
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Figure 7. Example characters used for synthesizing an overall character score. Table 4 shows the scores each character received. 
The scores produced by our algorithm on the aesthetics of the whole character agree closely with the human scores. This shows 
that our algorithm can grade the visual quality of calligraphic writings satisfactorily.

(a) (b) (c) (d) (e) (f) (g) (h)

Table 4. Comparison of algorithmic and human overall character scores for the strokes in Figure 7 (%).*

Character

Spatial layout Stroke consistency Whole character Human scores

Good So-so Bad Overall Good So-so Bad Overall Good So-so Bad Overall Good So-so Bad Overall

(a) 83.5 16.5 0 91.8 93.5 6.5 0 96.8 67.8 32.2 0 83.9 70 30 0 85

(b) 75.7 24.2 0 87.8 62.1 37.9 0 81.1 71.1 28.9 0 85.6 80 20 0 90

(c) 0 10.7 89.3 5.4 26.7 55.5 17.8 54.5 0 16.4 83.6 8.2 0 0 100 0

(d) 100 0 0 100 100 0 0 100 100 0 0 100 100 0 0 100

(e) 66.2 33.8 0 83.1 87.0 13.0 0 93.5 34.7 58.9 6.4 64.2 20 80 0 60

(f) 9.6 60.2 30.2 39.7 14.9 46.2 38.9 38.0 14.2 57.5 28.3 43.0 20 60 20 50

(g) 0 26.5 73.5 13.3 28.6 66.4 5.0 61.8 0 57.0 43.0 28.5 0 10 90 5

(h) 100 0 0 100 100 0 0 100 100 0 0 100 100 0 0 100

*The scores produced by our algorithm on the aesthetics of the whole character agree closely with the human scores, both of which are displayed in bold.

IS-27-03-XU.indd   70 6/18/12   2:55 PM



May/June 2012 www.computer.org/intelligent 71

previously unseen by our algorithm. 
The mean grading error is less than 
0.2 in the range of 0 to 1 for the 
whole-character grading results. 
Considering the fact that human cal-
ligraphists sometimes do not even 
agree with one another exactly on the 
aesthetics of a piece of calligraphic 
writing, such performance from our 
algorithm is quite satisfactory.

Automatic Generation of 
Aesthetic Calligraphy with 
Visual-Quality Feedback
We previously introduced a system 
that can generate a variety of stylistic  
calligraphic characters following 
an analogous-reasoning approach.3 
However, only a subset of the gen-
erated results is truly aesthetically 
pleasing, owing to the lack of a pow-
erful built-in judging mechanism. Us-
ing our proposed calligraphy grading 
method, we can add an elaborate and 
practical quality control module to 
that system.

We have integrated these algo-
rithms into our experimental sys-
tem. We use our grading algorithm 
to evaluate each font produced by 
the prior generation system. Ac-
cording to the overall visual-quality 
score, the generation parameters are 
varied from their original settings to 
yield a new font with a higher aes-
thetics score. The process repeats 
just like the case of a typical optimi-
zation problem. Assuming there are 
n parameters involved in the algo-
rithmic process to generate a char-
acter C, a scalar function f(C) with 
n input variables can be formulated 
whose output value is the overall 
aesthetics score of the whole char-
acter. The task of calligraphy beau-
tification is thus reduced to finding 
a point in the n-dimensional input 
variable space that can maximize the 
function value. We employ a gradient- 
descent method that iteratively optimizes  

the target function to search for the 
best possible quality improvement 
for the initial calligraphic writing. 
Figure 9 shows some examples of 
how our grading method can in-
crementally improve a calligraphic 
character.

Integrating our calligraphy aes-
thetics evaluation algorithm into the 
automatic calligraphy generation sys-
tem results in a significant improve-
ment in the quality of the calligra-
phy that the computer generates and 
outputs. Thus, our system is an “aes-
thetic calligraphy generation system.” 
Figure 10 shows a verse of poetry 
written in automatically generated 
calligraphy characters, both with 
and without our appearance grad-
ing method being employed as a feed-
back component in the generation 
process.

Our work attempts to evaluate 
the aesthetics of Chinese cal-

ligraphic characters through an in-
tegrated intelligence approach. Our 
approach is learning based, and it 
sheds light on the possibility of numer-
ical methods to assess beauty. We have 
obtained encouraging results from 
the experiments on the quantitative  

accuracy of our algorithms. In the 
future, we plan to investigate other 
alternative machine-learning ap-
proaches and feature designs to explore 
the optimal algorithm design for 
evaluating calligraphy aesthetics.
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Figure 9. Examples of improvements 
from our grading method. Each row 
shows four versions of the same 
character. The aesthetics scores increase 
from left to right, corresponding to 
incremental improvements in their 
automatic generation parameters based 
on the results of our grading algorithm.

IS-27-03-XU.indd   71 6/18/12   2:55 PM



72  www.computer.org/intelligent Ieee InTeLLIGenT SySTeMS

A e s t h e t i c  c A l l i g r A p h y  g e n e r A t i o n

DE-AC05-00OR22725. This manuscript  
has been authored by UT-Battelle, LLC. 
The publisher, by accepting the arti-
cle for publication, acknowledges that 
the US Government retains a nonexclu-
sive, paid-up, irrevocable, world-wide 
license to publish or reproduce the pub-
lished form of this manuscript, or al-
low others to do so, for US Government  
purposes.

References
1. A.M. Turing, “Computing Machin-

ery and Intelligence,” Mind, vol. 59, 

1950, pp. 433–460.

2. A. Shamir and A. Rappoport, “Com-

pacting Oriental Fonts by Optimizing 

Parametric Elements,” The Visual Com-

puter, vol. 15, no. 6, 1999, pp. 302–318.

3. S. Xu et al., “Automatic Generation of 

Artistic Chinese Calligraphy,” IEEE 

Intelligent Systems, vol. 20, no. 3, 

2005, pp. 32–39.

4. C. Neusius and J. Olszewski, “A Non-

iterative Thinning Algorithm,” ACM 

Trans. Mathematical Software, vol. 20, 

no. 1, 1994, pp. 5–20.

5. J. Rocha and T. Pavlidis, “A Shape 

Analysis Model with Applications to a 

Character Recognition System,” IEEE 

Trans. Pattern Analysis and Machine 

Intelligence, vol. 16, no. 4, 1994, 

pp. 393–404.

6. M. van Eede et al., “Canonical Skel-

etons for Shape Matching,” Proc. Int’l 

Conf. Pattern Recognition, 2006, 

pp. 64–69.

Figure 10. Twenty versions of an ancient poetic verse from the Tang Dynasty in the Eighth Century. The first five columns are 
learning samples from human calligraphy. The center section shows 10 automatic calligraphy versions using our visual-quality 
grading algorithm for the feedback. The last five versions are automatic-calligraphy but without our grading component as 
feedback. Chinese scholars participating in the experiment judged the visual quality of the center 10 examples as clearly and 
significantly better than those on the right.

Selected CS articles and columns 
are also available for free at 

http://ComputingNow.computer.org.

IS-27-03-XU.indd   72 6/18/12   2:55 PM


