
Title Variational blue noise sampling

Author(s) Chen, Z; Yuan, Z; Choi, YK; Liu, L; Wang, W

Citation IEEE Transactions on Visualization and Computer Graphics,
2012, v. 18 n. 10, p. 1784-1796

Issued Date 2012

URL http://hdl.handle.net/10722/165853

Rights IEEE Transactions on Visualization and Computer Graphics.
Copyright © IEEE



Variational Blue Noise Sampling
Zhonggui Chen, Zhan Yuan, Yi-King Choi, Ligang Liu, and Wenping Wang

Abstract—Blue noise point sampling is one of the core algorithms in computer graphics. In this paper, we present a new and versatile

variational framework for generating point distributions with high-quality blue noise characteristics while precisely adapting to given

density functions. Different from previous approaches based on discrete settings of capacity-constrained Voronoi tessellation, we cast

the blue noise sampling generation as a variational problem with continuous settings. Based on an accurate evaluation of the gradient

of an energy function, an efficient optimization is developed which delivers significantly faster performance than the previous

optimization-based methods. Our framework can easily be extended to generating blue noise point samples on manifold surfaces and

for multi-class sampling. The optimization formulation also allows us to naturally deal with dynamic domains, such as deformable

surfaces, and to yield blue noise samplings with temporal coherence. We present experimental results to validate the efficacy of our

variational framework. Finally, we show a variety of applications of the proposed methods, including nonphotorealistic image stippling,

color stippling, and blue noise sampling on deformable surfaces.

Index Terms—Point sampling, blue noise, centroidal Voronoi tessellation, capacity-constrained, quasi-Newton method.

Ç

1 INTRODUCTION

THE problem of sampling, or point set generation, is about
how to generate a point set with a certain distribution. It

plays an important role in computer graphics as well as
many other fields. In computer graphics, the quality of a
point set distribution is of major concern in diverse contexts
such as digital halftoning, point-based modeling and
rendering, antialiasing, and distributed ray tracing. It is
often desirable to have a uniformly distributed yet
randomly located point set. Repetitive patterns should be
avoided as they are prone to producing aliasing. A point set
which is uniformly distributed without regularity artifacts is
said to exhibit blue noise characteristics.

Lloyd’s method [1], which iteratively moves each point to
the centroid of the corresponding Voronoi cell, is a popular
optimization method for enhancing the blue noise proper-
ties of a given point set [2]. This method converges to a point
distribution corresponding to a Centroidal Voronoi Tessel-
lation (CVT) in which each point is the centroid of its
Voronoi cell. Although it produces a uniformly distributed
point set, such a point distribution exhibits regular patterns
because the Voronoi cells of a CVT are regular hexagons in
an asymptotic sense [3]. The problem of using Lloyd’s
method for generating blue noise sampling is, therefore, the
control of the number of iterations to avoid convergence. On
the other hand, using Lloyd’s method to compute a CVT is

slow, but Liu et al. [4] showed that the computation of CVT
can be accelerated by employing quasi-Newton methods.

Recently, Balzer et al. [5] presented a variant of Lloyd’s
method for generating point distribution by introducing the
Capacity-Constrained Voronoi Tessellation (CapVT), in
which each point obtains equal capacity (i.e., the mass of
its Voronoi cell). By requiring also that each point coincides
with the centroid of its Voronoi cell in the CapVT, the
resulting point distributions were shown to possess the blue
noise properties. However, their method is implemented
in the discrete setting, which is highly dependent on the
resolution of the discretization of the domain, and is
therefore computationally inefficient.

Inspired by Balzer et al. [5] and Liu et al. [4], we propose
a variational framework based on a new energy function
combining the CVT energy and the CapVT energy. Both the
capacity constraint and the centroid constraint are consid-
ered as soft constraints in our framework. The development
of this function is based on the observation that CVT
accounts for generating the uniform point distribution while
CapVT tends to generate point distribution without reg-
ularity artifact.

We derive formulae for accurate evaluation of the
gradient of the new energy function and present an efficient
numeric approach to optimizing the energy function that
integrates a fast local search based on the L-BFGS method
[6]. Our method is implemented in the continuous setting
and achieves significantly faster performance (generally two
orders of magnitude faster for a large number of points)
over the method of [5] without sacrificing blue noise
properties. We also study the accommodation of the density
functions and reveal the relationship between the density
functions used in the CVT and CapVT energy functions.

Our framework is flexible and can easily be extended to
other domains such as surfaces. Temporal sampling coher-
ence required in dynamic domains such as deformable
surfaces can also naturally be dealt with within this
optimization framework. We also show how our method
can be extended to handle multi-class sampling in which
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point samples in individual classes, as well as those in their
union, are required to exhibit blue noise properties simulta-
neously.

The contributions of this work are summarized as follows:

. A variational framework based on a new energy
formulation is developed for generating point dis-
tributions with blue noise characteristics. Based on the
accurate evaluation of gradient of the energy function,
we present an efficient optimization approach to
minimizing the energy function and gain significantly
faster performance than the method of [5].

. We extend our variational framework to generating
blue noise sampling points on other domains includ-
ing surfaces and dynamic domains. We also develop
a variational framework for handling multi-class
sampling. All the variational frameworks for these
different domains benefit from our efficient optimi-
zation methods and thus attain fast performances.

2 RELATED WORK

Due to its unique spatial and spectral properties, blue noise
sampling has been extensively studied in the literature [7].
We mainly review previous works which are most relevant
to our work.

2.1 Blue Noise Sampling in 2D

A Poisson disk sampling can yield a blue noise point
distribution [8]. Dart throwing is a classical method to
produce Poisson disk distributed point sets, in which
randomly located points are generated one by one and a
newly generated point is only accepted if there is no other
existing points lying within a given radius. This process is
simple but very slow. There are various works on accelerat-
ing the dart throwing approach [9], [10], [11], [12], [13]. The
acceleration is usually achieved by encoding the vacant
regions where it is legal to place a dart, or/and by parallel
implementation.

Another type of approaches [14], [15], [16] generates
blue noise samples in a set of small domains, called tiles,
with toroidal boundary conditions in a preprocessing step.
These tiles are then used for generating a nonperiodic tiling
of the plane. Ostromoukhov et al. proposed methods for
hierarchical importance sampling with blue-noise proper-
ties by using special tiles, Penrose tiles [17] and poly-
ominoes [18]. These methods are generally fast and allow
progressive refinement.

The relaxation approach moves the points in a given set to
enhance the blue noise properties. Lloyd’s method [1], [2] is
commonly used due to its simplicity. However, the points
converge to a regular hexagonal pattern and as pointed by
Balzer et al. [5], it is hard to decide a suitable iteration number
for Lloyd’s method in practice. To this end, Balzer et al. [5]
proposed a variant of Lloyd’s approach using the capacity
constraints, which makes all Voronoi cells have equal mass,
to achieve blue noise sampling. However, their proposed
implementation involves the discretization of the underlying
domain and is therefore slow (while its acceleration [19] by
parallel implementation is possible).

A recent method by Schmaltz et al. [20] models the points
as charged particles which repulse each other. The uniform
point distributions with high-quality blue-noise properties

are obtained by simulating the Coulomb interactions
between points. Fattal [21] describes an optimization-based
method for blue-noise point sampling by using kernel
density model. Like the CVT energy function, the global
minimizer of the energy function defined in [21] is given by a
hexagonal arrangement of points. To avoid the regularity
artifacts, a statistical model is defined to allow solutions that
are less energetically favorable. By iteratively enlarging the
minimum distance between points, Schlömer et al. [22]
construct irregular distributions with a significantly higher
minimum distance than previous methods.

2.2 Sampling on Surfaces

Point sampling on surfaces is also crucial to many important
applications in computer graphics, such as texturing,
remeshing, and rendering. By means of parameterization,
the relaxation method [23], [24] and tile-based method [25]
can be applied to blue noise sampling on surfaces. However,
these methods need precomputed parameterizations and are
thus unsuitable for applications with dynamic geometry. The
extensions of dart throwing method for surfaces are
described in [26], [27], and [28]. The computational complex-
ity and the approximation of the geodesic metric are the
major concerns in these extensions. The recent work of
Öztireli et al. [29] provides a new approach to improve
quality of the sampling of a surface by maximizing measures
derived from spectral analysis theorem. Although their
algorithm is shown to be able to handle adaptive surface
sampling, it seems hardly able to make the point distribu-
tions adapt to given density functions.

Our variational framework can easily be extended to
generating blue noise samples on surfaces from a given
initial configuration. We optimize the positions of points on
the surface directly, and no parameterization is needed.
Due to the optimization nature of our framework, it is
suitable for applications that require sampling coherence
on deformable surfaces.

2.3 Multi-Class Blue Noise Sampling

Recently, Wei [30] introduces the problem of multi-class
blue noise sampling in which not only each individual class
but also their union exhibit blue noise properties and
presents two approaches to generating such multi-class
blue noise samples. This is quite useful for applications
(e.g., object distribution and color stippling) that require a
well distribution of multiple classes of samples. Schmaltz et
al. [31] generalize the electrostatic halftoning approach [20]
for multi-class blue noise sampling. As pointed in [30],
Lloyd relaxation fails to handle multiple classes of samples.
With a variant of energy function and an elaborate initial
configuration, our capacity-constrained CVT method is
shown to be capable of generating high-quality multi-class
blue noise sampling.

3 VARIATIONAL APPROACH

In this section, we introduce our variational approach to
generating blue noise samplings.

3.1 Energy Formulation

3.1.1 Centroidal Voronoi Tessellation (CVT)

Let X ¼ fx1; . . . ;xng be a set of points, called sites, in a
compact domain � 2 IRd. Suppose that �ðxÞ � 0 is a density
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function defined in �. The Voronoi cell Vi of a site xi is
given by

Vi ¼ fx 2 � j dðx;xiÞ � dðx;xjÞ; 8j 6¼ i; j ¼ 1; . . . ; ng;

where dðx;yÞ is the euclidean distance between two points
x and y. The collection of the Voronoi cells fVigni¼1

constitutes a Voronoi tessellation of �. If each site xi
coincides with the mass centroid of Vi, i.e.,

xi ¼
R
Vi
�ðxÞxd�R

Vi
�ðxÞd� ;

where d� is the differential area element of �, then fVigni¼1 is
called a centroidal Voronoi tessellation.

From a variational standpoint, a CVT is characterized by
a critical point of the following CVT energy function [32]:

ECVTðXÞ ¼
Xn
i¼1

Z
Vi

�ðxÞkx� xik2 d�: ð1Þ

The most commonly used method for minimizing ECVTðXÞ
is the Lloyd’s method [1]. Recently Liu et al. [4] proved that
ECVTðXÞ is a C2 function and proposed an efficient quasi-
Newton method for minimizing it. The minimization of
ECVTðXÞ ensures that all the sites are isotropically uniform;
however, the site distribution exhibits regular patterns as is
shown in Fig. 1a.

3.1.2 Capacity-Constrained Voronoi Tessellation

A Voronoi tessellation fVigni¼1 is called a capacity-con-
strained Voronoi tessellation [5] if its Voronoi cells satisfy
the constraints jVij ¼

R
Vi
%ðxÞ d� ¼ ci ði ¼ 1; . . . ; nÞ, where

%ðxÞ � 0 is a density function defined in � and the ci are
capacity constraints with ci > 0 and

Pn
i¼1 ci ¼

R
� %ðxÞ d�.

We formulate CapVT as a minimization of the functionPn
i¼1ð

R
Vi
%ðxÞ d�� ciÞ2. Assume each Voronoi cell has the

same capacity, that is ci ¼ c for all i. Hence,

Xn
i¼1

Z
Vi

%ðxÞ d�� ci
� �2

¼
Xn
i¼1

Z
Vi

%ðxÞ d�

� �2

�2c

Z
�

%ðxÞ d�þ
Xn
i¼1

c2:

Since the second and the third terms on the right hand side of
the above expression are constants, as far as function
minimization is concerned, we can define the CapVT energy
function as

ECapVTðXÞ ¼
Xn
i¼1

Z
Vi

%ðxÞ d�

� �2

: ð2Þ

Balzer [33] proposes to minimize (2) using the downhill
simplex method [34]. The method is derivative-free and
requires only function evaluations. However, it is inefficient
for large-scale optimization problem. As stated in [33], the
downhill simplex method usually computes millions of
function samples before it converges. Large sets of sites, with
many thousands or even millions of sites, are beyond the
computational feasibility of the method. We will show that
(2) can be efficiently optimized by quasi-Newton method.

Starting from a random initialization (so that site capa-
cities are not equal), minimizing ECapVTðXÞ in (2) gives an
irregular point distribution which is however nonuniform,
since the energy does not regulate point positions (Fig. 1b).

3.1.3 Our Variational Energy Function (CapCVT)

We propose a new energy function by combining the CVT
energy function ECVT and the CapVT energy function
ECapVT as

ECapCVTðXÞ ¼ ECVTðXÞ þ �ECapVTðXÞ

¼
Xn
i¼1

Z
Vi

�ðxÞkx� xik2d�þ �
Xn
i¼1

Z
Vi

%ðxÞd�
� �2

;
ð3Þ

where � is a weight to balance the two energy terms. We call
ECapCVT the capacity-constrained centroidal Voronoi tessellation
(CapCVT) energy function. Note that, we use different
density functions �ðxÞ and %ðxÞ for ECVT and ECapVT,
respectively. We will discuss about choosing �ðxÞ and %ðxÞ
in Section 3.3.

The energy term ECapVT in (3) functions as an equal
capacity constraint and serves to introduce irregularity to
avoid the regularity artifact in the site distribution often
found in a CVT. Therefore, minimizing the new CapCVT
energy function in (3) tends to generate uniform point
distribution with less regularity artifact as can be seen in
Fig. 1c.

3.2 Optimization with L-BFGS Method

3.2.1 Gradient of the Energy Function

The energy ECVT is proved to be C2 [4]. Similarly we can
prove that ECapVT is C2 and so is ECapCVT. The gradient of
ECVT is given in [32] as

@ECVTðXÞ
@xi

¼ 2jVijðxi � ciÞ; ð4Þ

where jVij ¼
R
Vi
�ðxÞd� and

ci ¼
R
Vi
�ðxÞxd�R

Vi
�ðxÞd� :

We have derived the formulation of the gradient of ECapVT

which is given by (see Theorem 3 and its proof in Section 3.5)

@ECapVTðXÞ
@xi

¼ 2
X
j2Ni

jVij � jVjj
kxj � xik

Z
Vij

%ðxÞðx� xiÞds;

where Ni is the set of indices of Voronoi cells adjacent to Vi
and Vij ¼ Vi \ Vj is the common face of Voronoi cells Vi and
Vj. Thus, the gradient of ECapCVT can be written explicitly as
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Fig. 1. Site distributions and Voronoi tessellations by optimizing the
three different energies. Site distribution is (a) uniform but regular; (b)
irregular but nonuniform; and (c) uniform and irregular. � is set to 30 in
ECapCVT.



@ECapCVTðXÞ
@xi

¼ @ECVTðXÞ
@xi

þ � @ECapVTðXÞ
@xi

: ð5Þ

3.2.2 L-BFGS Method

Since ECapCVT is C2 with an explicit gradient formula, we
can use Newton-type methods to minimize it. Specifically,
we apply the L-BFGS method [6], a fast local search
scheme which significantly improves the space require-
ment of the original BFGS method [35] while preserving its
superlinear convergence. Unlike the original BFGS method
which uses the gradient information of all the preceding
steps, the L-BFGS method computes the approximate
Hessian by accumulating the gradients over a small fixed
number of preceding iterations. Both the storage require-
ment and the computational cost of each iteration of L-
BFGS are of OðnÞ, where n is the number of variables. The
pseudocode of our algorithm working on a 2D domain is
given in Algorithm 1. The L-BFGS method terminates
when there is no significant decrease of the energy value.

Algorithm 1. Variational CapCVT framework on 2D

domain

Input: an initial point set X and a weight �

Output: a new point distribution X

1: Xð0Þ  X

2: �E  ECapCVT

�
Xð0Þ

�
3: k 0

4: while �E=ECapCVT

�
XðkÞ

�
> 10�5 do

5: Compute the Voronoi tessellation of XðkÞ

6: Compute the gradient rECapCVT

7: Compute �X using the L-BFGS updating rule

8: Xðkþ1Þ  XðkÞ þ�X

9: �E  ECapCVT

�
Xðkþ1Þ�� ECapCVT

�
XðkÞ

�
10: k kþ 1

11: end while

12: return XðkÞ

3.3 Discussions

3.3.1 Initialization

It is known that a local search method often ends up at a
local minimum for a nonconvex function like ECapCVT. One
may expect to use some global search scheme to find its
global minimum. In general, it is hard, if not impossible, to
depict a global optimizer of ECapCVT as it all depends on the
domain complexity, boundary effect, the number of sites,
the domain density, etc.

However, the global optimizer of ECapCVT might not give
the desirable results as far as blue noise properties are
concerned. In some special cases, the global optimizer will
indeed give a regular distribution of sites which is undesir-
able for blue noise sampling. Fig. 2 shows such an example in
which the Voronoi cells form a regular hexagonal lattice and

the sites are centrosymmetric. Both the CVT and CapVT
energies attain their respective global minimum in this case.
It is, therefore, expected that given such an initial point
pattern, optimizingECapCVT will not break its regularity. This
phenomenon is also true of several other energy function-
based methods. In our case, it is found that with an arbitrary,
random initialization, our method has high probability for
stopping at a local minimum which yields a desirable blue
noise point distribution. Hence, random point distribution
(e.g., error diffusion) is used as the initialization in Algo-
rithm 1. All the experiments we have tested show that the
results of point distributions have blue noise characteristics.

3.3.2 Density Function Adaptation

In many practical applications such as importance sampling
in computer graphics, the distribution of the sites is
expected to adapt to some given density function ’ðxÞ in
the region �, that is, the probability of one site locating in
some region (the density of site distribution) is supposed to
be equal to the density function at this site.

The density function �ðxÞ in ECVTðXÞ is simply set to be
’ðxÞ in general. Balzer et al. [5] observed that with this
density function, the CVT implicitly blurs the density
function so that fewer sites than expected are found in
regions of high density and more sites are found in low
density regions. We also noted this issue and further
discovered the relationship between �ðxÞ and ’ðxÞ in an
asymptotic sense (see the proof in Section 3.5). We found that
in a 2D domain �ðxÞ ¼ ’2ðxÞ should be used. This is done in
our system to achieve a given point density (Fig. 3). Simply
setting �ðxÞ in ECVTðXÞ directly to be ’ðxÞ indeed accounts
for the blurring by the traditional CVT reported in [5].

For the density function %ðxÞ in ECapVTðXÞ, since the
capacity of a site offers a good measurement of the quality
of a density function adaption for the site distribution, it is
therefore set as ’ðxÞ naturally.

3.3.3 Normalizing ECVTðXÞ and ECapVTðXÞ and the

Choice of �

The two energies ECVTðXÞ and ECapVTðXÞ have different
order of magnitudes and therefore normalization is needed.
We prove that in the asymptotic case, the value ratio of
ECVTðXÞ and ECapVTðXÞ is about 1 : 6, which is independent
of the number of the sites, size of the domain, and the given
density function. The proof can be found in Section 3.5.

The parameter � provides a mechanism to adjust the
relative importance of ECVTðXÞ and ECapVTðXÞ, thus
affecting the irregularity of the resulting point distributions
and therefore the blue noise properties. We evaluate the
point distributions obtained by our method with different �
values using the spatial and spectrum analysis by Schlömer
and Deussen [36]. For each � value, we perform 10 runs of
our method on 1,000 points with different initialization and
the averaged periodograms, radial mean power, and
anisotropy are computed (Figs. 4a, 4b, 4c, 4d, and 4e). We
also use the normalized Poisson disk radius � suggested by
Lagae and Dutré [7] to evaluate the point distribution
quality. The radius � is a value ranged between 0 and 1, with
0 corresponding to a distribution having two coinciding
points and 1 corresponding to a regular hexagonal lattice
distribution. Fig. 4f shows that the normalized Poisson disk
radius of the distribution generated by our methods
decreases gradually as � increases. It can also be seen that,
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when � is large and our method is working more toward a

CapVT, the normalized radius decreases significantly.
Lagae and Dutré [7] recommend � � 0:75 for high-quality

blue noise point sets. However, Schlömer et al. [22] show

that Poisson disk distributions can have radii up to 0.93 or
higher. Considering also the spectrum properties, we found
that our method with � 2 ½20; 100� gives a point distribution
with good blue noise characteristics. In our system, we use a
default value � ¼ 30.

3.3.4 Analysis and Comparisons

As shown in Algorithm 1, computing the Voronoi tessella-

tion is the most time-consuming part of our method. Let n

be the number of sites. We use CGAL [37] to compute the
Delaunay triangulation first which costs Oðn lognÞ time, and

then obtain the Voronoi tessellation as the dual of Delaunay

triangulation. Hence, the time complexity per iteration of
our method is Oðn lognÞ. Balzer et al. [5] implement a

variant of Lloyd’s method in a discrete domain � which is

represented by a set of points P . Let m be the number of
points of P . Then the time complexity per iteration of [5] is

Oðmn logm
nÞ. The accelerated implementation in [19] of the

same method brings down the time complexity to OðmnÞ.
Note that m is usually much bigger than n, hence our

method is expected to achieve significant acceleration.
We compare our method with [5] as well as its parallel

implementation [19] in terms of sampling quality and
running time, with varying number of points. The result is

shown in Fig. 5. We can achieve blue noise sampling with

comparable spatial and spectral properties to [5], [19]. Also,
our method is more than two orders of magnitude faster than

the original method proposed by Balzer et al. [5], and is about

10 times faster than the method by Li et al. [19]. All timing
data is taken on a workstation with Intel Xeon 3.16 GHz

quad-core CPUs and 8 GB memory. Both our method and the

method by Balzer et al. [5] run single-threaded, while the
method by Li et al. [19] runs four-threaded.

3.4 Extension to Surfaces

Our variational approach can easily be extended to surface

cases. Let the input surface S � IR3 be a triangular mesh

surface with a set of triangles f�k j k ¼ 1; . . . ;mg.
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Fig. 4. Control of irregularity by varying �. (a)-(e) Spectral analysis of distribution of 1,000 points obtained by CapCVT optimization. (f) Normalized

radius is around 0.75 for � 2 ½30; 60�.

Fig. 3. The quadratic ramp in (a) is used as density function. Starting

with the initial 1,000 sites in (b), our CVT, CapVT, and CapCVT results
show precise adaption with the density function. The percentages

indicate the density (i.e., the number of points) in each quarter.



3.4.1 Variational Formulation on Surface

The Voronoi diagram can be naturally defined on a surface
using geodesic distance, which results in the so-called
geodesic Voronoi diagram. However, it is difficult to
compute an exact geodesic Voronoi diagram, and existing
approximate algorithms for geodesic Voronoi diagram
computation are computationally expensive [38]. Instead,
we use the restricted Voronoi diagram [39] by approximating
the geodesic distance between two points with their
euclidean distance in 3D space, which can be efficiently
computed by Yan et al.’s method [40].

The CapCVT energy function on a surface S can be
written as

ECapCVTðXÞ ¼
Xn
i¼1

Z
Vi

�ðxÞkx� xik2d�

þ �
Xn
i¼1

Z
Vi

%ðxÞd�
� �2

;

ð6Þ

where Vi is the restriction of the 3D Voronoi cell of xi on S
and � is the weight, and d� is the area element of the
surface. As in 2D domains, we set �ðxÞ ¼ %2ðxÞ where %ðxÞ
is the desired point distribution function.

3.4.2 Gradient of the Energy Function

The gradient of ECVTðXÞ on surface domains is the same as
(4). Please refer to [41] for the derivation. We derive the
gradient of ECapVTðXÞ on surface domain as

@ECapVTðXÞ
@xi

¼ 2
X
j2Ni

ðjVij � jVjjÞ
X
�k2T

Z
Vij\�k

%ðxÞðx� xiÞ
kxj � xik�k

ds;

where T is the set of facets of S intersecting with Vij (the
common face of Vi and Vj), and kxk�k is the length of the
projection of the vector x onto the plane �k. Its proof is given
in Section 3.5. Thus, we have the explicit computation of
the gradient of ECapCVTðXÞ. As the sites have to be on the
surface S, the gradient must be computed within the tangent
space of S as

@ECapCVT

@xi

����
S

¼ @ECapCVT

@xi
� @ECapCVT

@xi
�NðxiÞ

� �
NðxiÞ;

where NðxiÞ is the normal of the triangle containing xi.

3.4.3 Algorithm

The algorithm for computing a point distribution on a
surface S by minimizing ECapCVT is given in Algorithm 2.

Algorithm 2. Variational CapCVT framework on surface

Input: an initial point set X on S and a weight �

Output: a new point distribution X on S

1: Xð0Þ  X

2: �E  ECapCVT

�
Xð0Þ

�
3: k 0

4: while �E=ECapCVT

�
XðkÞ

�
> 10�5 do

5: Compute the restricted Voronoi tessellation of

XðkÞ on S

6: Compute the gradient rECapCVTjS
7: Compute �X using the L-BFGS updating rule
8: Xðkþ1Þ  XðkÞ þ�X

9: Project Xðkþ1Þ onto surface S, denoted still by Xðkþ1Þ

10: �E  ECapCVT

�
Xðkþ1Þ�� ECapCVT

�
XðkÞ

�
11: k kþ 1

12: end while

13: return XðkÞ

Algorithm 2 differs from Algorithm 1 in a few steps. In
Step 5, we compute the restricted Voronoi tessellation of
XðkÞ on S which can be efficiently computed by the method
presented in [40]. In Step 6, we use the gradient of ECapCVT

within the tangent space of S. In Step 9, we have to project
the computed points onto S to guarantee that the resulting
points lie on the surface.

3.4.4 Results and Comparisons

Fig. 6 shows the results of blue noise sampling on a dog
surface with different � values. It can be seen that more
irregularities are introduced to the point distribution as �
increases. In Fig. 7, we show an adaptive sampling obtained
by minimizing the CapCVT function on a cat surface by the L-
BFGS method. The density function is defined according to
the curvature of the surface, so that regions of higher
curvature are of higher density distribution. We compare
our CapCVT method with other methods by the spectral
analysis method proposed by Bowers et al. [28] and the
results are shown in Fig. 8. Our method behaves similarly on
surfaces to its counterpart on 2D domains. From the spectral

CHEN ET AL.: VARIATIONAL BLUE NOISE SAMPLING 1789

Fig. 5. Comparisons of our method, the methods by Balzer et al. [5] and Li et al. [19]. The point distribution, spatial and spectral analysis of 4,096
sites (512 points per site in discrete setting) obtained by the three methods are shown in (b), (c), and (d), respectively.



analysis, we suggest that � 2 ½20; 100� is suitable for obtaining
blue noise sampling on surfaces with our framework.

3.5 Properties of the CapCVT Energy

In this section, we give the derivation of the gradient of the
CapVT energy as well as several other properties regarding
the CapCVT energy.

3.5.1 Gradient of ECapVTðXÞ
We derive the computation of the gradient of the CapVT
energy function ECapVTðXÞ on surface domains (with 2D
domains as special cases) in this section. First, we introduce
the generalized Leibniz rule [43], also called the Leibniz-
Reynolds transport theorem, concerning the differentiation
under the integral sign.

Theorem 1 (Leibniz-Reynolds Transport Theorem). Sup-
pose Dt is a 2D domain changing smoothly with time t. We are
given a smooth function gðx; tÞ;x 2 Dt. Denote v ¼ @x=@t as
the velocity vector at a boundary point x of Dt and denote b as
the outward unit normal at the boundary. Then, we have

d

dt

Z
Dt

gðx; tÞd� ¼
Z
@Dt

gðx; tÞv � bdsþ
Z
Dt

@gðx; tÞ
@t

d�; ð7Þ

where ds is the element of arc length on the closed boundary
curve @Dt.

Note that (7) also holds for a 3D orientable surface domain,
whose closed boundary curve @Dt changes smoothly with t.
In this case, b is the binormal to the space curve @Dt.

Theorem 2. The gradient of ECapVTðXÞ on surface domains is

@ECapVTðXÞ
@xi

¼ 2
X
j2Ni

ðjVij � jVjjÞ
X
�k2T

Z
Vij\�k

%ðxÞðx� xiÞ
kxj � xik�k

ds;

where Vij ¼ Vi \ Vj is the common face of Voronoi cells Vi and
Vj, T is the set of triangles intersecting with Vij, and kxk�k is
the length of the projection of the vector x onto the plane �k, as
shown in Fig. 9.

Proof. Assume that we apply a sufficiently small perturba-
tion to the location of site xi, then only the shapes of the
Voronoi region Vi and its adjacent Voronoi regions
fVj j j 2 Nig will change due to the movement of site xi.
Let the coordinates of xi be ðxi1 ; xi2 ; xi3Þ, then

@ECapVTðXÞ
@xil

¼ 2jVij
@jVij
@xil

þ
X
j2Ni

2jVjj
@jVjj
@xil

; l ¼ 1; 2; 3: ð8Þ

By Theorem 1, we have

@jVij
@xil

¼
P

j2Ni

R
Vij
%ðxÞv � b ds;

@jVjj
@xil

¼ �
R
Vij
%ðxÞv � b ds; j 2 Ni;

8>><
>>:

where v ¼ @x=@xil and b is the outward unit binormal
at boundary point x of the region Vi. Thus, (8) can be
written as

@ECapVTðXÞ
@xil

¼
X
j2Ni

2ðjVij � jVjjÞ
Z
Vij

%ðxÞv � b ds: ð9Þ
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Fig. 6. Sampling on a surface by the CapCVT method with different �. It
takes about 16 seconds to obtain a distribution with 2,000 samples.

Fig. 7. Adaptive blue noise sampling on surfaces. Left: density function
defined according to the curvature. The final Voronoi tessellation
(middle) and the samples (right).

Fig. 8. Spectral comparison of the samples by our CapCVT method
using different �’s, the CVT method (which is equivalent to our method
with � ¼ 0), the retiling method [42], and Bowers et al.’s method [28].
The radial means (dark) and anisotropy (orange) are generated using
the method proposed by Bowers et al. [28].

Fig. 9. Computation of the gradient of CapVT function on surface.



We still have to compute v � b in the above equation. The
common face Vij of Vi and Vj is the intersection of the
perpendicular bisecting plane of the segment xixj and
the surface S. Consider a segment of Vij on triangle �k,
which satisfies the equations

x� xi þ xj
2

	 

� ðxj � xiÞ ¼ 0;

ðx� p�kÞ � n�k ¼ 0;

(

where n�k is the normal of �k and p�k is a vertex of �k.
By differentiating the above equations with respect to
xil , we get

@x

@xil

�
xj � xi

�
¼ ðx� xiÞ � el;

@x

@xil
n�k ¼ 0;

8>><
>>:

where el is a 3D vector with lth element being 1 and
other elements being 0. The unit binormal b is given by

b ¼ ðxj � xiÞ � ððxj � xiÞ � n�kÞn�k
kðxj � xiÞ � ððxj � xiÞ � n�kÞn�kk

:

Thus, we have

v � b ¼ ðx� xiÞ � ek
kxj � xik�k

:

Substituting this into (9) completes the proof. tu
The gradient of ECapVTðXÞ in 2D domain can be directly

obtained by replacing the triangles �k with a constant plane
x � e3 ¼ 0 in Theorem 2, which then leads to the following
theorem.

Theorem 3. The gradient of ECapVTðXÞ on 2D domains is

@ECapVTðXÞ
@xi

¼ 2
X
j2Ni

jVij � jVjj
kxj � xik

Z
Vij

%ðxÞðx� xiÞds;

where Ni is the set of indices of Voronoi cells adjacent to Vi,
and Vij ¼ @Vi \ @Vj is the common face of Voronoi cells Vi and

Vj.

3.5.2 Relationship between �ðxÞ and ’ðxÞ
By Gersho’s conjecture [3], the energy of each site in a CVT
is equal asymptotically. Then, we have

R
Vi
�ðxÞkxk2d� ¼R

Vj
�ðxÞkxk2d�, for all i 6¼ j. Here, we can assume �ðxÞ is

constant inside a Voronoi cell, and hence �ðxiÞ
R
Vi
kxk2d� ¼

�ðxjÞ
R
Vj
kxk2d�.

Denote s as the diameter of a Voronoi cell. ThenR
Vi
kxk2d� / s4. To keep the sites distributed in accordance

with a given density ’, we need the area of a Voronoi cell
being inversely proportional to ’, that is, areaðViÞ / 1=’.
Since areaðViÞ / s2, it follows that

R
Vi
kxk2d� / ð1=’Þ2. We

also have density being inversely proportional to
R
Vi
kxk2d�.

Therefore, we have � / ’2.

3.5.3 Ratio of ECVTðXÞ and ECapVTðXÞ
Assume that each Voronoi region is a regular hexagon with
edge length r and the density function %ðxÞ is constant for
each Voronoi region. The CVT energy and CapVT energy in
Vi are given by

ECVTðViÞ ¼
Z
Vi

%2kx� xik2d� ¼ 5
ffiffiffi
3
p

8
r4%2;

ECapVTðViÞ ¼
Z
Vi

% d�

� �2

¼ 27

4
r4%2:

8>>><
>>>:

Thus, we get

ECVTðXÞ
ECapVTðXÞ

¼ 5
ffiffiffi
3
p

54
� 1

6
:

3.5.4 Normalization of ECapCVTðXÞ
When the capacity constraint of the CapCVT energy is
satisfied, each Voronoi cell has the same CapVT energy. Thus,
we have

ECapVTðXÞ �
Xn
i¼1

j�j
n

� �2

¼ j�j
2

n
;

where j�j ¼
R

� %ðxÞdx and n is the number of the sites. Then,
we havenECapVTðXÞ / j�j2. SinceECapVTðXÞ / ECVTðXÞ, we
have

nECapCVTðXÞ / j�j2:

We call the above equation nECapCVTðXÞ the normalization
of ECapCVTðXÞ, whose value is independent of the number
of sites n.

4 VARIATIONAL MULTI-CLASS BLUE NOISE

SAMPLING

Wei [30] first introduces the notion of multi-class blue noise
sampling which requires that blue noise property be
observed not only by the samples in the union of all classes,
but also by the samples in the individual classes simulta-
neously. In this regard, we devise a multi-class CapCVT
energy function which accounts for the CapCVT energies of
the union and the individual classes.

4.1 Variational Formulation

Given N classes of points Xi, i ¼ 1; . . . ; N , with X ¼ [i Xi,
the multi-class CapCVT energy function of X, EM

CapCVTðXÞ,
is defined as

EM
CapCVTðXÞ ¼ � �N � E	CapCVTðXÞ þ

XN
i¼1

E	CapCVTðXiÞ; ð10Þ

where � > 0 is a weight. The term E	CapCVTðXÞ is the
normalized CapCVT energy function which equals
nECapCVTðXÞ, since the value of ECapCVTðXÞ is inversely
proportional to n, where n is the number of seeds in X(see
Section 3.5 for the proof).

4.2 Algorithm

The multi-class CapCVT energy in (10) is simply a
combination of the CapCVT energies of the union set and
the individual classes. A naı̈ve application of minimizing
(10) of a multi-class point set at first glance seems to be able
to optimize the point distribution of the union as well as the
individual classes all at the same time. However, due to
the diversified interests of these different considerations,
the optimal gradient directions for each energy term may
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conflict with each other, thereby introducing a combined

gradient which in general does not favor any of the

sampling distributions, neither in the union set nor in the

individual classes. This behavior is also confirmed by our

experiments that blue noise sampling in neither the union

class nor the individual classes can be accomplished by

directly minimizing (10) for a multi-class point set.
Surprisingly, if we start with individual classes Xi of

point distribution with minimized ECapCVTðXiÞ, (10) can

now be interpreted with a different perspective. The first

term of (10) serves to achieve a good point distribution with

respect to the CapCVT energy for the union set, while the

latter terms are responsible for preserving the optimal

distributions of the individual classes. Based on this under-

standing, we devise a two-stage algorithm: the first stage is

to obtain optimal blue noise sampling for each individual

class, while the second stage is to achieve multi-class blue

noise sampling by minimizing (10). The detailed steps are

given in Algorithm 3.

Algorithm 3. Variational multi-class CapCVT framework

Input: the initial N classes of points Xi ði ¼ 1; . . . ; NÞ
and a weight � > 0

Output: new distributions of points X̂i for the N classes

1: for each class i do

2: Apply Algorithm 1 (for 2D) or 2 (for surface) on

Xi to obtain a blue noise sampling X0i
3: end for

4: X [i X0i
5: Apply Algorithm 1 (for 2D) or 2 (for surface) on X,

with the energy function replaced by EM
CapCVTðXÞ to

obtain the blue noise sampling of the union as X̂ as

well as that of the individual classes as X̂i.

6: return X̂i ði ¼ 1; . . . ; NÞ

4.3 Results and Comparisons

We evaluate the quality of our multi-class sampling

method on 2D domain using the same number of points

in each class as in the example sets given by Wei [30]. The

results of three example sets are shown in Figs. 10 and 11

(for N ¼ 2) and Fig. 12 (for N ¼ 3). The spatial and spectral

analysis show that our multi-class sampling results are

comparable to that of Wei’s multi-class sampling by dart

throwing [30].
We also apply Algorithm 3 for generating multi-class

blue noise samples on surfaces. Fig. 13 shows a 2-class
sampling on the surface of a 3D model.

More examples of our multi-class method working on

applications such as color stippling can be found in Section 5.
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Fig. 10. Multi-class blue noise sampling by variational CapCVT with
N ¼ 2. All classes have the same number of samples. Our result is
shown in the left column and Wei’s result [30] is in the right column. Only
a central portion of the 2D domain is displayed.

Fig. 11. Multi-class blue noise sampling by variational CapCVT with
N ¼ 2. Each class has different number of samples. Only a central
portion of the 2D domain is displayed.

Fig. 12. Multi-class (N ¼ 3) blue noise sampling by variational CapCVT.
The three classes have different numbers of samples. Only a central
portion of the 2D domain is displayed.



5 APPLICATIONS

In this section, we demonstrate some applications and

evaluate the performance of our variational sampling frame-

work in different contexts.

5.1 Image Stippling

Fig. 14 gives the result of our method for stippling of a gray

scale image using 10,000 points. The density function is

defined based on the intensity values of the input image.

We first obtain an initial point distribution that adapts to

the density function using error diffusion (Fig. 14b). Our

method can then achieve a desired sampling using only 30

iterations of optimization (Fig. 14c). The overall time taken

is about 20 seconds.

5.2 Color Stippling

We apply our multi-class CapCVT method for color stippling

with seven classes of colored dots (red, green, blue, cyan,

magenta, yellow, and black). Fig. 15 shows our result against

the multi-class sampling by dart throwing [30] on a color

image. We define a particular density function for each

individual class based on the color intensities of the image

(see Appendix A, which can be found on the Computer

Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TVCG.2012.94). We aim to have more dots in
the area where the corresponding color is dominant and
fewer dots in the other regions. It can be seen that our method
can achieve comparable results as [30] in terms of point
distribution. Note that the visual quality depends also on the
color decomposition (i.e., how the underlying densities for
the color classes are defined), for which we adopt differently
from that used in [30].

5.3 Object Placement on Surfaces

Object placement is also an important application in which
objects are required to arrange in a visually pleasing layout
without regularity artifacts. Fig. 16 shows our method
working for object placement. The box surface in Fig. 16a is
decorated with a mosaic of tiles which is the resulting
Voronoi tessellation of our CapCVT method. Another
example shows a texture of two objects on a surface
generated using our multi-class sampling results.

5.4 Dynamic Domains

For sampling in dynamic domains such as deformable
surfaces, a major issue is to ensure temporal coherence of
samples when the underlying domain changes against time.
A sample may well represent an object which are expected to
move smoothly on a surface so as to avoid flickering. Our
variational framework is very suitable for sampling with
temporal coherence in the dynamic domains (see Fig. 17 and
the accompanying video). By taking the result of the
previous frame as the initialization of the next frame, we
can generate blue noise sampling in only a few iterations. For
the sequence in Fig. 17, it takes 38 iterations to generate the
blue noise sampling in the first frame. Only 5-10 iterations
are then needed to produce each of the subsequent frames.
Due to the optimization nature of our framework, the
identity of each sample can be carried forward to the next
time instant naturally. The sampling therefore guarantees
temporal coherence to be observed over time change. This
property is not possessed automatically by any stochastic
blue noise sampling method, such as dart throwing, without
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Fig. 14. Image stippling. (a) Input image as a density map; (b) initial point set obtained by error diffusion; (c) the result after 30 iterations, overall

taking 22.0 s; (d) and (e) zoom-in views in the hair and face regions highlighted with the boxes in (c).

Fig. 13. Multi-class blue noise sampling on a surface. From left to right:
union point distribution, point distributions for classes 1 and 2.



the use of auxiliary information or processing (such as
optical flow).

6 CONCLUSION

We present a novel variational approach to generating blue
noise sampling points. The energy function is a combination
of the CVT energy function and the CapVT energy. Based on
the derivation of the gradient of the energy function, we
propose an efficient L-BFGS method to minimize the energy
function. Our algorithm achieves better results and runs two
orders of magnitude faster than the previous optimization-
based method [5]. Our variational framework is flexible and

can easily be extended to surface cases. We also develop a
new method for generating multi-class blue noise sampling
based on the variational framework. We demonstrate the
applicability of our variational approach in various applica-
tions including image stippling, color stippling, and gen-
erating dynamic blue noise samplings in dynamic domains.

It is promising to further study this variational approach
for generating blue noise sampling. First, it is straightfor-
ward to extend the variational framework to blue noise
sampling in 3D volumetric domain. The energy function is
the same except that the domain is in 3D. Second, we will
investigate speedup of Voronoi tessellation (or Delaunay
triangulation) computation using GPU, for which there has
been some related work in the literature. Third, it is
worthwhile to develop a variational approach to generating
anisotropic blue noise sampling [44], which we feel is
possible but not straightforward.
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Fig. 16. Object placement on surfaces. (a) The mosaic tile placement on surface by using the CapCVT Voronoi tessellation; (b) our multi-class blue
noise samples are used to guide the placement of textures.

Fig. 15. Color stippling with seven classes of color dots: red, green, blue, cyan, magenta, yellow, and black. A total of 280k samples are used in the
seven classes following the color decomposition described in Appendix A, available in the online supplemental material. Our result using the
CapCVT method in (b) is comparable to that in (c) by the dart throwing method [30] in terms of point distribution. We note here that the two methods
use different color decomposition functions. (b) and (c) are zoom-in views of the region highlighted by the black box in (a). The stippling result of the
entire image in vector format is provided in Appendix B, available in the online supplemental material.

Fig. 17. Object placement on a deformable surface. Our method
naturally provides temporal coherence while maintaining a desired
density distribution when the domain changes continuously. See also
the accompanying video.
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