
Title Model-based probabilistic frequent itemset mining

Author(s) Bernecker, T; Cheng, R; Cheung, DW; Kriegel, HP; Lee, SD;
Renz, M; Verhein, F; Wang, L; Zuefle, A

Citation Knowledge and Information Systems, 2013, v. 37 n. 1, p. 181-217

Issued Date 2013

URL http://hdl.handle.net/10722/165826

Rights Creative Commons: Attribution 3.0 Hong Kong License

Knowl Inf Syst
DOI 10.1007/s10115-012-0561-2

REGULAR PAPER

Model-based probabilistic frequent itemset mining

Thomas Bernecker · Reynold Cheng · David W. Cheung ·
Hans-Peter Kriegel · Sau Dan Lee · Matthias Renz · Florian Verhein ·
Liang Wang · Andreas Zuefle

Received: 1 March 2011 / Revised: 30 April 2012 / Accepted: 29 July 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Data uncertainty is inherent in emerging applications such as location-based
services, sensor monitoring systems, and data integration. To handle a large amount of impre-
cise information, uncertain databases have been recently developed. In this paper, we study
how to efficiently discover frequent itemsets from large uncertain databases, interpreted
under the Possible World Semantics. This is technically challenging, since an uncertain data-
base induces an exponential number of possible worlds. To tackle this problem, we propose
a novel methods to capture the itemset mining process as a probability distribution func-
tion taking two models into account: the Poisson distribution and the normal distribution.
These model-based approaches extract frequent itemsets with a high degree of accuracy and

T. Bernecker · H.-P. Kriegel · M. Renz · F. Verhein · A. Zuefle
Department of Computer Science, Ludwig-Maximilians-Universität, Munchen, Germany
e-mail: bernecker@dbs.ifi.lmu.de

H.-P. Kriegel
e-mail: kriegel@dbs.ifi.lmu.de

M. Renz
e-mail: renz@dbs.ifi.lmu.de

F. Verhein
e-mail: verhein@dbs.ifi.lmu.de

A. Zuefle
e-mail: zuefle@dbs.ifi.lmu.de

R. Cheng (B) · D. W. Cheung · S. D. Lee · L. Wang
Department of Computer Science, University of Hong Kong, Pokfulam, Hong Kong
e-mail: ckcheng@cs.hku.hk

D. W. Cheung
e-mail: dcheung@cs.hku.hk

S. D. Lee
e-mail: sdlee@cs.hku.hk

L. Wang
e-mail: lwang@cs.hku.hk

123

T. Bernecker et al.

support large databases. We apply our techniques to improve the performance of the algo-
rithms for (1) finding itemsets whose frequentness probabilities are larger than some threshold
and (2) mining itemsets with the k highest frequentness probabilities. Our approaches support
both tuple and attribute uncertainty models, which are commonly used to represent uncertain
databases. Extensive evaluation on real and synthetic datasets shows that our methods are
highly accurate and four orders of magnitudes faster than previous approaches. In further
theoretical and experimental studies, we give an intuition which model-based approach fits
best to different types of data sets.

1 Introduction

In many applications, the underlying databases are uncertain. The locations of users obtained
through RFID and GPS systems, for instance, are not precise due to measurement errors [24,
32]. In habitat monitoring systems, data collected from sensors like temperature and humidity
are noisy [1]. Customer purchase behaviors, as captured in supermarket basket databases,
contain statistical information for predicting what a customer will buy in the future [4,39].
Integration and record linkage tools associate confidence values to the output tuples according
to the quality of matching [14]. In structured information extractors, confidence values are
appended to rules for extracting patterns from unstructured data [40]. Recently, uncertain
databases have been proposed to offer a better support for handling imprecise data in these
applications [10,14,21,23,30].1

In fact, the mining of uncertain data has recently attracted research attention [4]. For
example, in [26], efficient clustering algorithms were developed for uncertain objects; in [22]
and [41], naïve Bayes and decision tree classifiers designed for uncertain data were studied.
Here, we develop scalable algorithms for finding frequent itemsets (i.e., sets of attribute
values that appear together frequently in tuples) for uncertain databases. Our algorithms can
be applied to two important uncertainty models: attribute uncertainty (e.g., Table 1), and
tuple uncertainty, where every tuple is associated with a probability to indicate whether it
exists [13,14,21,30,31].

As an example of uncertain data, consider an online marketplace application (Table 1).
Here, the purchase behavior details of customers Jack and Mary are recorded. The value
associated with each item represents the chance that a customer may buy that item in the near
future. These probability values may be obtained by analyzing the users’ browsing histories.
For instance, if Jack visited the marketplace ten times in the previous week, out of which
video products were clicked five times, the marketplace may conclude that Jack has a 50 %
chance of buying, or simply being interested in videos.

To interpret uncertain databases, the Possible World Semantics (or PWS in short) is often
used [14]. Conceptually, a database is viewed as a set of deterministic instances (called
possible worlds), each of which contains a set of tuples. Thus, an uncertain transaction
database D generates a set of possible worlds W . Table 2 lists all possible worlds for the
database depicted in Table 1. Each world wi ∈ W , which consists of a subset of attributes
from each transaction, occurs with probability Pr(wi).

For instance, possible world w2 consists of two itemsets, {food} and
{clothing,video}, for Jack and Mary, respectively. The itemset {food} occurs with a proba-
bility of 1

2 , since this itemset corresponds to the set of events that Jack purchases food (prob-
ability of one), and Jack does not purchase video (probability of 1

2). Assuming independence

1 Manuscript received on Mar 01, 2011; revised on Apr 30, 2012; and accepted on Jul 29, 2012.

123

Model-based probabilistic frequent itemset mining

Table 1 An uncertain database Customer Purchase items

Jack (video:1/2),(food:1)

Mary (clothing:1),(video:1/3); (book:2/3)

Table 2 Possible worlds of
Table 1

W Tuples in W Prob.

w1 {food}; {clothing} 1/9

w2 {food}; {clothing, video} 1/18

w3 {food}; {clothing, book} 2/9

w4 {food}; {clothing, book, video} 1/9

w5 {food, video}; {clothing} 1/9

w6 {food, video}; {clothing, video} 1/18

w7 {food, video}; {clothing, book} 2/9

w8 {food, video}; {clothing, book, video} 1/9

between these events (i.e., the event that Jack buys food does not impact the probability of
Jack buying a video game), the joint probability of these events is 1 · 1

2 = 1
2 . Analogously,

the probability of obtaining the itemset {clothing,video} for Mary is 1 · 1
3 · 1

3 = 1
9 . As shown

in Table 2, the sum of possible world probabilities is one, and the number of possible worlds
is exponential in the number of probabilistic items.

Any query evaluation algorithm for an uncertain database has to be correct under PWS.
That is, the results produced by the algorithm should be the same as if the query is evaluated
on every possible world [14].

Definition 1 (Possible World Semantics (PWS)) Let W be the set of all possible worlds
derived from a given uncertain database D and let ϕ be a query predicate. Under possible
world semantics, the probability P(ϕ, D) that D satisfies ϕ is given as the total probability
of all worlds that satisfy ϕ, that is,

P(ϕ, D) =
∑

w∈W
P(w) · ϕ(w),

where ϕ(w) is an indicator function that returns 1 if world w satisfies predicate ϕ, and zero
otherwise, and P(w) is the probability of world w.

Our goal is to discover frequent patterns without expanding D into all possible worlds.
Although PWS is intuitive and useful, querying or mining under this notion is costly.

This is due to the fact that an uncertain database has an exponential number of possible
worlds. For example, the database in Table 1 has 23 = 8 possible worlds. Performing data
mining under PWS can thus be technically challenging. On the other hand, ignoring PWS
allows to find efficient solutions, for example using expected support only [11]. However,
such approaches do not consider probability distributions, that is, are not able to give any
probabilistic guarantees. In fact, an itemset whose expected support is greater than a threshold
may have a low probability of having a support greater than this threshold. An example of
such a scenario can be found in [39].

The frequent itemsets discovered from uncertain data are naturally probabilistic, in order
to reflect the confidence placed on the mining results. Figure 1 shows a Probabilistic Frequent

123

T. Bernecker et al.

Fig. 1 s-pmf of PFI {video}
from Table 1

1/2
1/3

1/6

0

0.2

0.4

0.6

0 1 2

Support Count

P
ro

b
ab

ili
ty

Itemset (or PFI) extracted from Table 1. A PFI is a set of attribute values that occur frequently
with sufficiently high probabilities. In Fig. 1, the support probability mass function (or s-pmf
in short) for the PFI {video} is shown. This is the pmf for the number of tuples (or support
count) that contain an itemset. Under PWS, a database induces a set of possible worlds, each
giving a (different) support count for a given itemset. Hence, the support of a frequent itemset
is described by a pmf. In Fig. 1, if we consider all possible worlds where itemset {video}
occurs twice, the corresponding probability is 1

6 .
A simple way of finding PFIs is to mine frequent patterns from every possible world and

then record the probabilities of the occurrences of these patterns. This is impractical, due to the
exponential number of possible worlds. To remedy this, some algorithms have been recently
developed to successfully retrieve PFIs without instantiating all possible worlds [39,46].
These algorithms are able to find a PFI in O(n2) time (where n is the number of tuples
contained in the database). However, our experimental results reveal that they require a long
time to complete (e.g., with a 300 k real dataset, the dynamic-programming algorithm in [39]
needs 30.1 h to complete).

In this paper, we propose an efficient approximate probabilistic frequent itemset mining
solution using specific models to capture the frequentness of an itemset. More precisely, we
generalize the model-based approach proposed in [43]. The basic idea is to use appropriate
standard parametric distributions to approximate the probabilistic support count, that is, the
probability distribution (pmf) of the support count, for both attribute- and tuple-uncertain
data. The advantage of such parametric distributions is that they can be computed very
efficiently from the transaction database while providing quite good approximation of the
support pmf. In particular, this paper introduces a generalized model-based frequent itemset
mining approach investigating and discussing three alternatives for modeling the support
pmf of itemsets. In addition to the Poisson distribution, which has been used for probabilistic
frequent itemset mining and probabilistic ranking [20,43], and the expected support [12], we
further investigated the normal distribution for probabilistic frequent itemset mining. Based
on these models, we show how the cumulative distribution (cdf) of an itemset associated with
the support pmf can be computed very efficiently by means of a single scan of the transaction
database. In addition, we provide an in-depth analysis of the proposed models on a theoretical
as well as experimental level where we focus on approximation quality and characteristics
of the underling data. Here, we evaluate and compare the three models in terms of efficiency,
effectiveness, and implementation issues. We show that some of the models are very accurate
while some models require certain properties of the data set to be satisfied in order to achieve
very high accuracy. An interesting observation is that some models allow us to further reduce
the runtime introducing specific pruning criteria, these models, however, lack effectiveness
compared to others. We show that the generalized model-based approach runs in O(n) time
and is thus more scalable to large datasets. In fact, our algorithm only needs 9.2 s to find all
PFIs, which is four orders of magnitudes faster than solutions that are based on the exact
support pmf.

123

Model-based probabilistic frequent itemset mining

In addition, we demonstrate how the model-based algorithm can work under two semantics
of PFI, proposed in [39]: (1) threshold-based, where PFIs with probabilities larger than
some user-defined threshold are returned; and (2) rank-based, where PFIs with the k highest
probabilities are returned. As we will show, these algorithms can be adapted to the attribute
and tuple uncertainty models. For mining threshold-based PFIs, we demonstrate how to
reduce the time scanning the database. For mining rank-based PFIs, we optimize the previous
algorithm to improve the performance.

We derive the time and space complexities of our approaches. As our experiments show,
model-based algorithms can significantly improve the performance of PFI discovery, with a
high degree of accuracy. To summarize, our contributions are:

– A generalized model-based approach to approximately compute PFIs efficiently and
effectively;

– In-depth study of three s-pmf approximation models based on standard probability mod-
els;

– A more efficient method to verify a threshold-based PFI;
– Techniques to enhance the performance of threshold and rank-based PFI discovery algo-

rithms, for both attribute and tuple uncertainty models; and
– An extensive experimental evaluation of the proposed methods in terms of efficiency and

effectiveness performed on real and synthetic datasets.

This paper is organized as follows. In Sect. 2, we review the related work. Section 3
discusses the problem definition. Section 4 describes our model-based support pmf (s-pmf)
approximation framework introducing and discussing three models to estimate the s-pmf
efficiently and accurately. Then, in Sects. 5 and 6, we present algorithms for discovering
threshold- and rank-based PFIs, respectively. Section 7 presents an in-depth experimental
evaluation of the proposed s-pmf approximation models in terms of effectiveness and per-
formance results. We conclude in Sect. 8.

2 Related work

Mining frequent itemsets is often regarded as an important first step of deriving association
rules [5]. Many efficient algorithms have been proposed to retrieve frequent itemsets, such
as Apriori [5] and FP-growth [18]. There are also a lot of adaptations for other transaction
database settings, like itemset mining in streaming environments [45]; a survey can be found
in [28]. While these algorithms work well for databases with precise and exact values, it is
interesting to extend them to support uncertain data. Our algorithms are based on the Apriori
algorithm. We are convinced that they can be used by other algorithms (e.g., FP-growth)
to support uncertain data. In [33], probabilistic models for query selectivity estimation in
binary transaction databases have been investigated. In contrast to our work, transactions are
assumed to be certain while the probabilistic models are associated with approximate queries
on such data.

Solutions for frequent itemset mining in uncertain transaction databases have been inves-
tigated in [3,12,42,44]. In [42], an approach for summarizing frequent itemset patterns based
on Markov Random Fields has been proposed. In [3,12,44], efficient frequent pattern mining
algorithms based on the expected support counts of the patterns have been developed. How-
ever, [39,46] found that the use of expected support may render important patterns missing.
Hence, they proposed to compute the probability that a pattern is frequent, and introduced
the notion of PFI. In [39], dynamic-programming-based solutions were developed to retrieve

123

T. Bernecker et al.

Table 3 Our contributions
(marked [√]) Uncertainty Threshold-PFI Rank-PFI

Attribute Exact [39] Exact [39]

Approx. [√] Approx. [√]
Tuple Exact [38]

Approx. (singleton) [46] Approx. [√]
Approx. (multiple items) [√]

PFIs from attribute-uncertain databases, for both threshold- and rank-based PFIs. However,
their algorithms have to compute exact probabilities and compute a PFI in O(n2) time. By
using probability models, our algorithms avoid the use of dynamic programming, and can
find a PFI much faster (in O(n) time). In [46], approximate algorithms for deriving threshold-
based PFIs from tuple-uncertain data streams were developed. While [46] only considered
the extraction of singletons (i.e., sets of single items), our solution discovers patterns with
more than one item. More recently, [38] developed an exact threshold-based PFI mining
algorithm. However, it does not support rank-based PFI discovery. Here, we also study the
retrieval of rank-based PFIs from tuple-uncertain data. To the best of our knowledge, this has
not been examined before. Table 3 summarizes the major work done in PFI mining.

Other works on the retrieval of frequent patterns from imprecise data include: [9], which
studied approximate frequent patterns on noisy data; [27], which examined association rules
on fuzzy sets; and [29], which proposed the notion of a “vague association rule”. However,
none of these solutions are developed on the uncertainty models studied here.

3 Problem definition

In Sect. 3.1, we discuss the uncertainty models used in this paper. Then, we describe the
notions of threshold- and rank-based PFIs in Sect. 3.2.

3.1 Attribute and tuple uncertainty

Let V be a set of items. In the attribute uncertainty model [10,23,32,39], each attribute value
carries some uncertain information. Here, we adopt the following variant [39]: a database
D contains n tuples, or transactions. Each transaction t j is associated with a set of items
taken from V . Each item v ∈ V exists in t j with an existential probability Pr(v ∈ t j) ∈
(0, 1], which denotes the chance that v belongs to t j . In Table 1, for instance, the existential
probability of video in tJack is Pr(videoJack) = 1/2. This model can also be used to describe
uncertainty in binary attributes. For instance, the item video can be considered as an attribute,
whose value is one, for Jack’s tuple, with probability 1

2 , in tuple tJack .
Under the possible world semantics (PWS), D generates a set of possible worlds W .

Table 2 lists all possible worlds for Table 1. Each world wi ∈ W , which consists of a subset
of attributes from each transaction, occurs with probability Pr(wi). For example, Pr(w2) is
the product of: (1) the probability that Jack purchases food but not video (equal to 1

2) and (2)
the probability that Mary buys clothing and video only (equal to 1

9). As shown in Table 2, the
sum of possible world probabilities is one, and the number of possible worlds is exponentially
large. Our goal is to discover frequent patterns without expanding D into possible worlds.

In the tuple uncertainty model, each tuple or transaction is associated with a probability
value. We assume the following variant [13,31]: each transaction t j ∈ D is associated with a

123

Model-based probabilistic frequent itemset mining

Table 4 Summary of notations

Notation Description

D An uncertain database of n tuples

n The number of tuples contained in D

V The set of items that appear in D

v An item, where v ∈ V

t j The j-th tuple with a set of items, where j = 1, . . . , n

W The set of all possible worlds

w j A possible world w j ∈ W

I An itemset, where I ⊆ V

minsup An integer between (0, n]
minprob A real value between (0, 1], used in threshold-based PFI

k An integer greater than zero, used in rank-based PFI

Pr I (i) Support probability (i.e., probability that I has a support count of i)

Pr f req (I) Frequentness probability of I

pI
j Pr(I ⊆ t j)

μI Expected value of X I

(μI)l Expected X I , up to l tuples

set of items and an existential probability Pr(t j) ∈ (0, 1], which indicates that t j exists in D
with probability Pr(t j). Again, the number of possible worlds for this model is exponentially
large. Table 4 summarizes the symbols used in this paper.

3.2 Probabilistic frequent itemsets (PFI)

Let I ⊆ V be a set of items, or an itemset. The support of I , denoted by s(I), is the number
of transactions in which I appears in a transaction database [5]. In precise databases, s(I)
is a single value. This is no longer true in uncertain databases, because in different possible
worlds, s(I) can have different values. Let S(w j , I) be the support count of I in possible
world w j . Then, the probability that s(I) has a value of i , denoted by Pr I (i), is:

Pr I (i) =
∑

w j ∈W,S(w j ,I)=i

Pr(w j) (1)

Hence, Pr I (i)(i = 1, . . . , n) form a probability mass function (or pmf) of s(I). We call Pr I

the support pmf (or s-pmf) of I . In Table 2, for instance, Pr {video}(2) = Pr(w6)+ Pr(w8) =
1
6 , since s(I) = 2 in possible worlds w6 and w8. Figure 1 shows the s-pmf of {video}.

Now, let minsup ∈ (0, n] be an integer. An itemset I is said to be frequent if s(I) ≥
minsup [5]. For uncertain databases, the frequentness probability of I , denoted by Pr f req(I),
is the probability that an itemset is frequent [39]. Notice that Pr f req(I) can be expressed as:

Pr f req(I) =
∑

i≥minsup

Pr I (i) (2)

In Fig. 1, if minsup = 1, then Pr f req({video}) = Pr {video}(1) + Pr {video}(2) = 2
3 .

123

T. Bernecker et al.

Using frequentness probabilities, we can determine whether an itemset is frequent. We
identify two classes of Probabilistic Frequent Itemsets (or PFI) below:

– I is a threshold-based PFI if its frequentness probability is larger than some thresh-
old [39]. Formally, given a real value minprob ∈ (0, 1], I is a threshold-based PFI, if
Pr f req(I) ≥ minprob. We call minprob the frequentness probability threshold.

– I is a rank-based PFI if its frequentness probability satisfies some ranking criteria. The
top-k PFI, proposed in [39], belongs to this class. Given an integer k > 0, I is a top-k
PFI if Pr f req(I) is at least the k-th highest, among all itemsets. We focus on top-k PFI
in this paper.

Before we move on, we would like to mention the following theorem, which was discussed
in [39]:

Theorem 1 Anti-Monotonicity: Let S and I be two itemsets. If S ⊆ I, then Pr f req(S) ≥
Pr f req(I).

This theorem will be used in our algorithms.
Next, we derive efficient s-pmf computation methods in Sect. 4. Based on these methods,

we present algorithms for retrieving threshold-based and rank-based PFIs in Sects. 5 and 6,
respectively.

4 Approximation of S-pmf

From the last section, we can see that the s-pmf s(I) of itemset I plays an important role in
determining whether I is a PFI. However, directly computing s(I) (e.g., using the dynamic
programming approaches of [39,46]) can be expensive. We now investigate alternative ways
of computing s(I). In the following, we study some statistical properties of s(I) and show
how to approximate the distribution of s(I) in a computationally efficient way by means of
the expected support (cf. Sect. 4.1) and two standard probability distributions: the Poisson
distribution (cf. Sect. 4.2) and the normal distribution (cf. Sect. 4.3). In Sect. 4.4, we discuss
all three alternatives.

An interesting observation about s(I) is that it is essentially the number of successful
Poisson trials [37]. To explain, we let X I

j be a random variable, which is equal to one if I is
a subset of the items associated with transaction t j (i.e., I ⊆ t j), or zero otherwise. Notice
that Pr(I ⊆ t j) can be easily calculated in our uncertainty models:

– For attribute uncertainty,

Pr(I ⊆ t j) =
∏

v∈I

Pr(v ∈ t j) (3)

– For tuple uncertainty,

Pr(I ⊆ t j) =
{

Pr(t j) if I ⊆ t j

0 otherwise
(4)

Given a database of size n, each I is associated with random variables X I
1 , X I

2 , . . . , X I
n . In

both uncertainty models considered in this paper, all tuples are independent. Therefore, these
n variables are independent, and they represent n Poisson trials. Moreover, X I = ∑n

j=1 X I
j

follows a Poisson binomial distribution.

123

Model-based probabilistic frequent itemset mining

Next, we observe an important relationship between X I and Pr I (i) (i.e., the probability
that the support of I is i):

Pr I (i) = Pr(X I = i) (5)

This is simply because X I is the number of times that I exists in the database. Hence, the
s-pmf of I , that is, Pr I (i), is the pmf of X I , a Poisson binomial distribution.

Using Eq. 5, we can rewrite Eq. 2, which computes the frequentness probability of I , as:

Pr f req(I) =
∑

i≥minsup

Pr I (i) (6)

= 1 − Pr(X I ≤ minsup − 1) (7)

Let Pr I≤(i) be the cumulative distribution function (cdf) of X I , that is,

Pr I≤(i) =
∑

j=0..i

Pr I (j). (8)

Therefore, if the cumulative distribution function Pr I≤(i) of X I is known, Pr f req(I) can
also be evaluated efficiently:

Pr f req(I) = 1 −
∑

i≤minsup−1

Pr I (i) (9)

= 1 − Pr I≤(minsup − 1). (10)

Next, we discuss approaches to approximate this cdf, in order to compute Pr f req(I)
efficiently.

4.1 Approximation by expected support

A simple and efficient way to evaluate the frequentness of an itemset in an uncertain trans-
action database is to use the expected support [3,12]. The expected support converges to
the exact support when increasing the number of transactions according to the “law of large
numbers.”

Definition 2 (Law of Large Numbers) A “law of large numbers” is one of several theorems
expressing the idea that as the number of trials of a random process increases, the percentage
difference between the expected and actual values goes to zero. Formally, given a sequence
of independent and identically distributed random variables X1, . . . , Xn , the sample average
1
n

∑n
i=1 Xi converges to the expected value μ = ∑n

i=1 E(Xi) for n → ∞. It can also
be shown ([17]), that the law of large numbers is applicable for non-identically distributed
random variables.

For notational convenience, let pI
j be Pr(I ⊆ t j). Since the expectation of a sum is the

sum of the expectations, the expected value of X I , denoted by μI , can be computed by:

μI =
n∑

j=1

pI
j (11)

Given the expected support μI , we can approximate the cdf Pr I≤(i) of X I as follows:

Pr I≤(i) =
{

0 if i < μI

1 else
(12)

123

T. Bernecker et al.

0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Support

P
ro

ba
bi

lit
y

Exact
Expected

0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Support

P
ro

ba
bi

lit
y

Exact
Poisson

(a) Expected approximation (b) Poisson approximation

Fig. 2 Approximations of the s-pmf of PFI {video} from Table 1

According to the above equation, the frequentness probability Pr f req(I) of itemset I is
approximated by 1, if μI is at least minsup and 0 otherwise. The computation of μI can
be efficiently done by scanning D once and summing up pI

j ’s for all tuples t j in D. As an
example, consider the support of itemset {video} in Table 1. Computing μI = 0.5 + 0.33
yields the approximated pmf depicted in Fig. 2a. Obviously, the expected support is only a
very coarse approximation of the exact support distribution. Important information about the
distribution, for example the variance, is lost with this approximation. In fact, we do not know
how confident the results are. In the following, we provide a more accurate approximation
for Pr I≤(i) by taking the (exact) distribution into consideration.

4.2 Poisson Distribution-Based Approximation

A Poisson binomial distribution can be well approximated by a Poisson distribution [8]
following the “Poisson law of small numbers”.

Definition 3 (Poisson Law of Small Numbers) Given a sequence of independent ran-
dom Bernoulli variables X1, . . . , Xn , with mean (μ)i , the density of the sample aver-
age X = 1

n

∑n
i=1 Xi is approximately Poisson distributed with λX = 1

n

∑n
i=1(μ)i if

max{P(X1), . . . , P(Xn)} tends to zero [19].

According to this law, Eq. 10 can be written as:

Pr f req(I) ≈ 1 − Fp(minsup − 1, μI) (13)

where Fp is the cdf of the Poisson distribution with mean μI , that is, Fp(minsup − 1, μI) =
1 − Γ (minsup,μI)

(minsup−1)! , where Γ (minsup, μI) = ∫ ∞
μI

tminsup−1e−t dt .
As an example, consider again the support of itemset {video} in Table 1. Computing

μ = λI = 0.5+0.33 yields the approximated pmf depicted in Fig. 2b. A theoretical analysis
of the approximation quality is shown in Appendix 8. The upper bound of the error is small.
According to our experimental results, the approximation is quite accurate.

To estimate Pr f req(I), we can first compute μI by scanning D once as described above
and evaluate Fp(minsup − 1, μI). Then, Eq. 13 is used to approximate Pr f req(I).

123

Model-based probabilistic frequent itemset mining

0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Support

P
ro

ba
bi

lit
y

Exact
Normal

0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Support

P
ro

ba
bi

lit
y

Exact
Normal+

(a) Normal distribution-based approximation (b) Approximation with continuity correction

Fig. 3 Itemset support distribution approximated with the normal distribution. a Normal distribution-based
approximation. b Approximation with continuity correction

4.3 Normal Distribution-Based Approximation

Provided |D| is large enough which usually holds for transaction databases, X I converges to
the normal distribution with mean μI and variance σ 2

I , where

σ 2
I = V ar(X I) =

∑

t j ∈D

Pr(I ⊆ t j) · (1 − Pr(I ⊆ t j)) =
n∑

j=1

pI
j ·

(
1 − pI

j

)

according to the “Central Limit Theorem”.

Definition 4 (Central Limit Theorem) Given a sequence of independent random vari-
ables X1, . . . , Xn , with mean μi and finite variance σ i

2, the density of the sample aver-
age X = 1

n

∑n
i=1 Xi is approximately normal distributed with μX = 1

n

∑n
i=1 μi and

σ 2
X = 1√

n

∑n
i=1 σ 2

i .

Lemma 1 The support probability distribution of an itemset I is approximated by the normal
distribution with mean μI and variance σ 2

I as defined above. Therefore,

Pr f req(I) ≈ 1 − Fn(minsup − 1, μI , σ
2
I) (14)

where Fn is the cdf of the normal distribution with mean μI and variance σ 2
I , that is,

Fn(minsup − 1, μI , σ
2
I) = 1

σI
√

2π

minsup−0.5∫

−∞
e
− (x−μI)2

2σ2
I (15)

Computing μ = 0.5 + 0.33 and sigma2 = 0.5 · 0.5 + 0.33 · 0.67 = 0.471 yields the
approximated pmf depicted in Fig. 3a. The continuity correction which is achieved by running
the integral up to minsup − 0.5 instead of minsup − 1 is an important and common method
to compensate the fact that X I is a discrete distribution approximated by a continuous normal
distribution. The effect of the continuity correction is shown in Fig. 3b.

123

T. Bernecker et al.

The estimation of Pr f req(I) can be done by first computing μI by scanning D once,
summing up pI

j ’s for all tuples t j in D and using Eq. 14 to approximate Pr f req(I). For an
efficient evaluation of Fn(minsup − 1, μI), we use the Abromowitz and Stegun approxima-
tion [2] which is necessary because the cumulative normal distribution has no closed-form
solution. The result is a very fast parametric test to evaluate the frequentness of an itemset.

While the above method still requires a full scan of the database to evaluate one frequent
itemset candidate, threshold- and rank-based PFIs can be found more efficiently.

4.4 Discussion

In this section, we have described three models to approximate the Poisson binomial distri-
bution. Now, we will discuss the advantages and disadvantages of each model theoretically,
while in Sect. 7 we will experimentally support the claims made here.

Each of the approximation models is based on a fundamental statistics theorem.
In particular, the Expected approach exploits the Law of Large Numbers [35], the Normal
Approximation approach exploits the Central Limit Theorem [16], and the Poisson Approxi-
mation approach exploits the Poisson Law of Small Numbers [34].

Approximation based on expected support In consideration of the “Law of large numbers,”
the Expected approach requires a large n, that is, a large number of transactions, where the
respective itemset is contained with a probability greater than zero. A thorough evaluation
of this parameter can be found in the experiments.

Normal distribution-based approximation The rule of thumb for the central limit theorem
is, is that for n ≥ 30, that is, for at least 30 transactions containing the respective itemset
with a probability larger than zero, the normal approximation yields good results. This rule
of thumb, however, depends on certain circumstances, namely, the probabilities P(Xi = 1)

should be close to 0.5. In our experiments, we will evaluate for what settings (e.g., databases
size, itemset probabilities) the normal approximation yields good results.

Poisson distribution-based approximation In consideration of the Poisson Law of Small
Numbers, the Poisson approximation theoretically yields good results, if all probabilities
P(Xi) are small. This seems to be a harsh assumption, since it forbids any probabilities of
one, which are common in real data sets. However, it can be argued that, for large itemsets,
the probability may always become small in some applications. In the experiments, we
will show how small max{P(X1), . . . , P(Xn)} is required to be, in order to achieve good
approximations, and how “a few” large probabilities impact the approximation quality. In
addition, our experiments aim to give an intuition, in what setting which approximation
should be used to achieve the best approximation results.

Computational complexity Each approximation technique requires to compute the
expected support E(X) = μ = λ = ∑n

i=1 P(Xi), which requires a full scan of the database
requiring O(n) time and O(1) space. The normal approximation additionally requires to
compute the sum of variances, which has the same complexity. This is all that has to be done
to compute the parameters of all three approximations. After that, the Expected approach only
requires to compare E(X) with MinSupp, at a cost of O(1) time. The normal approximation
approach in contrast requires to compute the probability that X > MinSupp, which requires
numeric integration, since the normal distribution it has no closed-form expression. However,
there exist very efficient techniques (such as the Abromowitz and Stegun approximation [2])
to quickly evaluate the normal distribution. Regardless, this evaluation is independent of the
database size and also requires constant time. The same rationale applies for the Poisson
approximation, which does also not have a closed-form solution, but for which there exist

123

Model-based probabilistic frequent itemset mining

manifold fast approximation techniques. In summary, each of the approximation techniques
has a total runtime complexity of O(n + Ci) and a space complexity of O(1). The constant
Ci depends on the approximation technique. In the experiments, we will see that the impact
of Ci can be neglected in runtime experiments. In summary, each of the proposed approxi-
mation techniques runs in O(n) time. These are more scalable methods compared to solutions
in [39,46], which evaluate Pr f req(I) in O(n2) time.

5 Threshold-based PFI mining

Can we quickly determine whether an itemset I is a threshold-based PFI? Answering this
question is crucial, since in typical PFI mining algorithms (e.g., [39]), candidate itemsets are
first generated, before they are tested on whether they are PFI’s. In Sect. 5.1, we develop a
simple method of testing whether I is a threshold-based PFI, without computing its frequent-
ness probability. This method is applicable for any s-pmf approximation proposed in Sect. 4.
We then enhance this method in Sect. 5.2 by adding pruning techniques that allow to decide
whether an itemset must (not) be frequent based on a subset of the database only. Finally,
we demonstrate an adaptation of these techniques in an existing PFI mining algorithm, in
Sect. 5.3.

5.1 PFI Testing

Given the values of minsup and minprob, we need to test whether I is a threshold-based
PFI. Therefore, we first need the following definition:

Definition 5 (p-value) Let X be a random variable with pmf pm fX on the domain R. The
p-value of X at x denotes the probability that X takes a value less than or equal to x .
Formally,

p-value(x, X) =
x∫

−∞
pm fX (x).

Given the cumulative mass function cm fX of X , this translates into

p-value(x, X) = cm fX (x)

The computation of the p-value is an inherent method in any statistical program package.
For instance, in the statistical computing package R, the p-value of a value x of a normal
distribution with meanμ and variance σ 2 is obtained using the function pnorm(x, μ, σ 2). For
the Poisson distribution, the function ppois(x, μ) is used. For the expected approximation,
simply return 1 is μ > minsup and 0 otherwise.

Since p-value(minsup, support (I)) corresponds to the probability that the support of
itemset I is equal or less than minsup, we can derive the probability Pr f req(I) that the
support is at least minsup simply as follows:

Pr f req(I) = 1 − (p-value(minsup, support (I)) + P(support (I) = minsup))

which is approximated by

1 − (p-value(minsup − ε, support (I)))

123

T. Bernecker et al.

where P(support (I) = minsup) is the probability that the support of I is exactly minsup,
and ε is a very small number (e.g., ε = 10{−10}).

Now, to decide whether I is a threshold-based PFI, given the values of minsup and
minprob we apply the following three steps:

– Compute the parameters μI (and σ 2
I for the normal case).

– Derive the probability Pr f req(I) = 1 − (p-value(minsup − ε, support (I)) given
minsup and the respective approximation model support(I).

– if Pr f req(I) > minprob, return I as a frequent itemset, otherwise, conclude that I is
not a frequent itemset.

Example 1 Consider again the example given in Table 1. Assume that we want to decide
whether itemset {video} has a support of at least minsup = 1 with a probability of at least
60 %. Assume that we want to use the normal approximation model. Therefore, in the first
step, we compute the approximation parameters μ{video} = 0.5+0.33 = 0.83 and σ 2{video} =
0.5·0.5+0.33·0.67 = 0.47. Next, we compute p-value(minsup, support ({video})), which
corresponds to evaluating the dotted cdf in Fig. 3 at minsup = 1, which yields a probability
of about 90 %. Since this value is greater than minprob = 60%, we are able to conclude that
itemset {video} must be frequent for minsup = 1 and minprob = 60%.

In the following, we show pruning techniques which are applicable for the expected
support model as well as the Poisson approximation model. For the normal approximation,
we give a counter-example, why the proposed pruning strategy may yield wrong results.

5.2 Improving the PFI testing process for the poisson approximation

In Step 1 of the last section, D has to be scanned once to obtain μI and σ 2
I , for every itemset I .

This can be costly if D is large, and if many itemsets need to be tested. For example, in the
Apriori algorithm [39], many candidate itemsets are generated first before testing whether
they are PFIs. In the following, we will define a monotonicity criterion which can be used to
decide if I is frequent by only scanning a subset of the database. In the following, we will
show that for the model using expected support and for the Poisson approximation model,
the above lemma holds, that is, (Pr f req(I))i increases monotonically in i . For the normal
approximation, however, we will show a counter-example to illustrate that the above property
does not hold.

Definition 6 (n-Monotonicity) Let i ∈ (0, n]. Let (X I)i be an approximation model of the
support of itemset I , based on the first i transactions, that is, on the parameters (μI)i and
(σ 2

I)i . Also, let (Pr f req(I))i denote the probability that I has a support of at least minsup,
given these parameters. If (Pr f req(I))i ≥ minprob, then I is a threshold-based PFI.

Lemma 2 Property 6 holds for the approximation model using the expected support.

Proof Let (X I)i denote the approximation of the smf of itemset I using expected support.
Therefore, (Pr f req(I))i equals to 1, if (μI)i > minsup and to 0 otherwise. Now consider the

123

Model-based probabilistic frequent itemset mining

probability (Pr f req(I))i+1. Trivially, if (Pr f req(I))i = 0, then it holds that (Pr f req(I))i <

(Pr f req(I))i+1. Otherwise, it holds that (Pr f req(I))i = 1 which implies that (μI)i >

minsup. Since

(μI) j = (μI)i + p j ≥ (μI)i > minsup

it holds that (Pr f req(I))i+1 = 1.
Thus in all cases p-value(minsup, (X I)i) is non decreasing in i .
�

Lemma 3 Property 6 holds for the Poisson approximation model.

Proof In the previous proof, we have exploited that (μI)i increases monotonically in i . To
show that (Pr f req(I))i increases monotonically in i if the Poisson approximation is used,
we only have to show the following
�
Theorem 2 Pr f req(I), if approximated by Eq. 13, increases monotonically with μI .

The cdf of a Poisson distribution, Fp(i, μ), can be written as: Fp(i, μ) = Γ (i+1,μ)
i ! =

∫ ∞
μ t (i+1)−1e−t dt

i !
Since minsup is fixed and independent of μ, let us examine the partial derivative w.r.t. μ.

∂ Fp(i, μ)

∂μ
= ∂

∂μ

(∫ ∞
μ

t (i+1)−1e−t dt

i !

)

= 1

i !
∂

∂μ

⎛

⎝
∞∫

μ

t i e−t dt

⎞

⎠

= 1

i ! (−μi e
−μ)

= − f p(i, μ) ≤ 0

Thus, the cdf of the Poisson distribution Fp(i, μ) is monotonically decreasing w.r.t. μ,
when i is fixed. Consequently, 1 − Fp(i − 1, μ) increases monotonically with μ. Theorem 2
follows immediately by substituting i = minsup.

Note that intuitively, Theorem 2 states that the higher value of μI , the higher is the chance
that I is a PFI.

Lemma 4 Property 6 does not hold for the normal approximation model.

Proof For the normal approximation, we give a counter-example, which illustrates that Prop-
erty 6 does not hold.
�
Example 2 Assume that itemset I is contained in transactions t1 and t2 with probabilities
of 1 and 0.5, respectively. Assume that minsup = 1. Since p1 = P(I ∈ t1) = 1, we get
(μI)1 = 1 and (σ 2

I)1 = 1 · 0 = 0. Computing (Pr f req(I))1 yields 1, since the normal pmf
with parameters μ = 1 and σ 2 = 0 is 1 with a probability of 1 and thus is always greater
or equal than minsup = 1. Now, consider (Pr f req(I))2: To evaluate this, we use a normal
distribution with parameters (μI)2 = 1+0.5 = 1.5 and (σ 2

I)2 = 1 ·0 = 0+0.5 ·0.5 = 0.25.
Since the normal pmf is unbounded for σ 2 �= 0, it is clear that (Pr f req(I))2 < 1, since
p-value(1, Normal(1.5, 0.25)) > 0.

123

T. Bernecker et al.

Property 6 leads to the following:

Lemma 5 Let i ∈ (0, n] and assume that (Pr f req(I))i is approximated using the expected
support model or using Poisson approximation. Then, it holds that if (Pr f req(I))i >

minprob then Pr f req(I) > minprob and I can be returned as an approximate result.

Proof Notice that (μI)i monotonically increases with i . If there exists a value of i such that
(μI)i ≥ (μ)m , we must have μI = (μI)n ≥ (μI)i ≥ (μ)m , implying that I is a PFI.
�

Using Lemma 5, a PFI can be verified by scanning only a part of the database.
True hits Let (μI)l = ∑l

j=1 p j and (σ 2
I)l = ∑l

j=1 p j · (1 − p j), where l ∈ (0, n].
Essentially, (μI)l ((σ 2

I)l) is the “partial value” of μI (σ 2
I), which is obtained after scanning

l tuples. Notice that (μI)n = μI and (σ 2
I)n = σ 2

I .
To perform pruning based on the values of (μI)l and (σ 2

I)l , we first define the following
property:

Avoiding integration We next show the following. To perform the true hit detection as
proposed above, we require to evaluate (Pr f req(I))i for each i ∈ 1, . . . , n. In the case of the
expected support approximation, this only requires to check if (μI)i > minsup. However, for
the Poisson approximation, this requires to evaluate a poisson distribution at minsup. Since
the Poisson distribution has no closed-form solution, this requires a large number of numeric
integrations, which can be, depending on their accuracy, computationally very expensive.
In the following, we show how to perform pruning using the Poisson approximation model,
while avoiding the integrations.2

Given the values of minsup and minprob, we can test whether (Pr f req(I))i > minprob
as follows:

Step 1. Find a real number (μ)m satisfying the equation:

minprob = 1 − Fp/n(minsup − 1, (μ)m), (16)

where Fp/n denotes the cdf of the Poisson distribution. The above equation can be solved
efficiently by employing numerical methods, thanks to Theorem 2. This computation has
to be performed only once.
Step 2. Use Eq. 11 to compute (μI)i .
Step 3. If (μI)i ≥ (μ)m , we conclude that I is a PFI. Otherwise, I must not be a PFI.

To understand why this works, first notice that the right side of Eq. 16 is the same as that
of Eqs. 13 or 14, an expression of frequentness probability. Essentially, Step 1 finds out the
value of (μ)m that corresponds to the frequentness probability threshold (i.e., minprob). In
Steps 2 and 3, if μI ≥ (μ)m , Theorem 2 allows us to deduce that Pr f req(I) > minprob.
Hence, these steps together can test whether an itemset is a PFI.

In order to verify whether I is a PFI, once (μ)m is found, we do not have to evaluate
(Pr f req(I))i . Instead, we compute (μI)i in Step 2, which can be done in O(1) time using
(μI)i−1. In the next paragraph, we show how the observation made in this paragraph can be
used to efficiently detect true drops, that is, itemsets for which we can decide that μI < (μ)m

by only considering (μI)i .

2 Recall that true hit detection is not applicable for normal approximation, which is the reason why normal
approximation is omitted in this paragraph.

123

Model-based probabilistic frequent itemset mining

True Drops

Lemma 6 If I is a threshold-based PFI, then:

(muI)n−i ≥ (μ)m − i ∀i ∈ (0, �(μ)m�] (17)

Proof Let Dl be a set of tuples {t1, . . . , tl}. Then,

μI =
n∑

j=1

Pr(I ⊆ t j); (μI)i =
i∑

j=1

Pr(I ⊆ t j)

Since Pr(I ⊆ t j) ∈ [0, 1], based on the above equations, we have:

i ≥ μI − (μI)n−i (18)

If itemset I is a PFI, then μI ≥ (μ)m . In addition, (μI)n−i ≥ 0. Therefore,

i ≥ μI − (μI)n−i ≥ (μ)m − (μI)n−i f or 0 < i ≤ �(μ)m�
⇒ (μI)n−i ≥ (μ)m − i for 0 < i ≤ �(μ)m�

�
This lemma leads to the following corollary.

Corollary 1 An itemset I cannot be a PFI if there exists i ∈ (0, �(μ)m�] such that:

(μI)n−i < (μ)m − i (19)

We use an example to illustrate Corollary 1. Suppose that (μ)m = 1.1 for the database in
Table 1. Also, let I = {clothing, video}. Using Corollary 1, we do not have to scan the whole
database. Instead, only the tuple tJack needs to be read. This is because:

(μI)1 = 0 < 1.1 − 1 = 0.1 (20)

Since Eq. 19 is satisfied, we confirm that I is not a PFI without scanning the whole database.
We use the above results to improve the speed of the PFI testing process. Specifically,

after a tuple has been scanned, we check whether Lemma 5 is satisfied; if so, we immediately
conclude that I is a PFI. After scanning n −�(μ)m� or more tuples, we examine whether I is
not a PFI, by using Corollary 1. These testing procedures continue until the whole database
is scanned, yielding μI . Then, we execute Step 3 (Sect. 5.1) to test whether I is a PFI.

5.3 Case study: the Apriori algorithm

The testing techniques just mentioned are not associated with any specific threshold-based
PFI mining algorithms. Moreover, these methods support both attribute and tuple uncertainty
models. Hence, they can be easily adopted by existing algorithms. We now explain how to
incorporate our techniques to enhance the Apriori [39] algorithm, an important PFI mining
algorithms.

The resulting procedures (Algorithm 1 for Poisson approximation and expected support,
and Algorithm 2 for normal approximation) use the “bottom-up” framework of the Apriori:
starting from k = 1, size-k PFIs (called k-PFIs) are first generated. Then, using Theorem 1,
size-(k + 1) candidate itemsets are derived from the k-PFIs, based on which the k-PFIs are
found. The process goes on with larger k, until no larger candidate itemsets can be discovered.

123

T. Bernecker et al.

The main difference of Algorithm 1 and Algorithm 2 compared with that of Apriori [39]
is that all steps that require frequentness probability computation are replaced by our PFI
testing methods. In particular, Algorithm 1 first computes (μ)m (Line 2–3) depending on
whether the expected support model or the Poisson approximation model is used.

123

Model-based probabilistic frequent itemset mining

Then, for each candidate itemset I generated on Line 4 and Line 17, we scan D and
compute its (μI)i (Line 10) and (σ 2

I)i . Unless the normal approximation is used, pruning
can now be performed: If Lemma 5 is satisfied, then I is put to the result (Lines 11–13).
However, if Corollary 1 is satisfied, I is pruned from the candidate itemsets (Lines 14–16).
This process goes on until no more candidates itemsets are found.

Complexity. In Algorithm 1, each candidate item needs O(n) time to test whether it is a
PFI. This is much faster than the Apriori [39], which verifies a PFI in O(n2) time. Moreover,
since D is scanned once for all k-PFI candidates Ck , at most a total of n tuples is retrieved
for each Ck (instead of |Ck | · n). The space complexity is O(|Ck |) for each candidate set Ck ,
in order to maintain μI for each candidate.

6 Rank-based PFI mining

Besides mining threshold-based PFIs, the s-pmf approximation methods presented in Sec-
tion 4 can also facilitate the discovery of rank-based PFIs (i.e., PFIs returned based on their
relative rankings). In this section, we investigate an adaptation of our methods for finding
top-k PFIs, a kind of rank-based PFIs which orders PFIs according to their frequentness
probabilities.

Our solution (Algorithm 3) follows the framework in [39]: A bounded priority queue,
Q, is maintained to store candidate itemsets that can be top-k PFIs, in descending order of
their frequentness probabilities. Initially, Q has a capacity of k itemsets, and single items
with the k highest probabilities are deposited into it. Then, the algorithm iterates itself k
times. During each iteration, the first itemset I is popped from Q, which has the highest
frequentness probability among those in Q. Based on Theorem 1, I must also rank higher
than itemsets that are supersets of I . Hence, I is one of the top-k PFIs. A generation step is
then performed, which produces candidate itemsets based on I . Next, a testing step is carried
out, to determine which of these itemsets should be put to Q, with Q’s capacity decremented.
The top-k PFIs are produced after k iterations.

We now explain how the generation and testing steps in [39] can be redesigned, in Sects. 6.1
and 6.2, respectively.

123

T. Bernecker et al.

6.1 Candidate itemset generation

Given an itemset I retrieved from Q, in [39] a candidate itemset is generated from I by
unioning I with every single item in V . Hence, the maximum number of candidate itemsets
generated is |V |, which is the number of single items.

We argue that the number of candidate itemsets can actually be fewer, if the con-
tents of Q are also considered. To illustrate this, suppose Q = {{abc}, {bcd}, {efg}}, and
I ={abc} has the highest frequentness probability. If the generation step of [39] is used,
then four candidates are generated for I : {{abcd}, {abce}, {abcf}, {abcg}}). However,
Pr f req({abce}) ≤ Pr f req({bce}), according to Theorem 1. Since {bce} is not in Q, {bce}
must also be not a top-k PFI. Using Theorem 1, we can immediately conclude that {abce},
a superset of {bce}, cannot be a top-k PFI. Hence, {abce} cannot be a top-k PFI candidate.
Using similar arguments, {abcf } and {abcg} do not need to be generated, either. In this
example, only {abcd} should be a top-k PFI candidate.

Algorithm. Based on this observation, we redesign the generation step (Line 9 of Algo-
rithm 3) as follows: for any itemsets I ′ ∈ Q, if I and I ′ contain the same number of items,
and there is only one item that differentiates I from I ′, we generate a candidate itemset I ∪ I ′.
This guarantees that I ∪ I ′ contains items from both I and I ′.

Since Q has at most k itemsets, the new algorithm generates at most k candidates. In
practice, the number of single items (|V |) is large compared with k. For example, in the
accidents Dataset used in our experiments, |V | = 572. Hence, our algorithm generates fewer
candidates and significantly improves the performance of the solution in [39], as shown in
our experimental results.

6.2 Candidate itemset testing

After the set of candidate itemsets, C , is generated, [39] performs testing on them by first
computing their exact frequentness probabilities, then comparing with the minimal frequent-
ness probability, Prmin , for all itemsets in Q. Only those in C with probabilities larger than
Prmin are added to Q. As explained before, computing frequentness probabilities can be
costly. Here, we propose a faster solution based on the results in Sect. 4. The main idea is that
instead of ranking the itemsets in Q based on their frequentness probabilities, we order them
according to their μI values. Also, for each I ′ ∈ C , instead of computing Pr f req(I ′), we
evaluate μI ′ . These values are then compared with (μ)min , the minimum value of μI among
the itemsets stored in Q. Only candidates whose μI ′s are not smaller than (μ)min are placed
into Q. An itemset I ′ selected in this way has a good chance to satisfy Pr f req(I ′) ≥ Prmin ,
according to Theorem 2, as well as being a top-k PFI. Hence, by comparing the μI values,
we avoid computing any frequentness probability values.

Complexity. The details of the above discussions are shown in Algorithm 3. As we can
see, μI ′ , computed for every itemset I ′ ∈ C , is used to determine whether I ′ should be put
into Q. During each iteration, the time complexity is O(n + k). The overall complexity of
algorithm is O(kn + k2). This is generally faster than the solution in [39], whose complexity
is O(kn2 + k|V |).

We conclude this section with an example. Suppose we wish to find top-2 PFIs from
the dataset in Table 1. There are four single items, and the initial capacity of Q is k = 2.
Suppose that after computing the μI s of single items, {food} and {clothing} have the highest
values. Hence, they are put to Q (Table 5). In the first iteration, {food}, the PFI with the
highest μI is returned as the top-1 PFI. Based on our generation step, {food, clothing} is
the only candidate. However, μ{food, clothing} is smaller than (μ)min , which corresponds to the

123

Model-based probabilistic frequent itemset mining

Table 5 Mining Top-2 PFIs Iteration Answer Priority queue (Q)

0 ∅ { {food},{clothing}}

1 {food} {{clothing}}

2 {clothing} ∅

minimum μI among itemsets in Q. Hence, {food, clothing} is not put to Q. Moreover, the
capacity of Q is reduced to one. Finally, {clothing} is popped from Q and returned.

7 Results

We now present the experimental results on two datasets that have been used in recent related
work, for example [6,25,43]. The first one, called accidents, comes from the Frequent Itemset
Mining (FIMI) Dataset Repository.3 This dataset is obtained from the National Institute of
Statistics (NIS) for the region of Flanders (Belgium), for the period of 1991–2000. The data
are obtained from the ”Belgian Analysis Form for Traffic Accidents”, which are filled out by
a police officer for each traffic accident occurring on a public road in Belgium. The dataset
contains 340,184 accident records, with a total of 572 attribute values. On average, each
record has 45 attributes.

We use the first 10 k tuples and the first 20 attributes as our default dataset. The default
value of minsup is 20 % of the database size n.

The second dataset, called T10I4D100k, is produced by the IBM data generator.4 The
dataset has a size n of 100k transactions. On average, each transaction has 10 items, and a
frequent itemset has four items. Since this dataset is relatively sparse, we set minsup to 1 %
of n.

For both datasets, we consider both attribute and tuple uncertainty models. For attribute
uncertainty, the existential probability of each attribute is drawn from a Gaussian distribution
with mean 0.5 and standard deviation 0.125. This same distribution is also used to characterize
the existential probability of each tuple, for the tuple uncertainty model. The default values
of minprob and k are 0.4 and 10, respectively. In the results presented, minsup is shown as a
percentage of the dataset size n. Notice that when the values of minsup or minprob are large,
no PFIs can be returned; we do not show the results for these values. Our experiments were
carried out on the Windows XP operating system, on a work station with a 2.66-GHz Intel
Core 2 Duo processor and 2GB memory. The programs were written in C and compiled with
Microsoft Visual Studio 2008.

We first present the results on the real dataset. Sections 7.1 and 7.2 describe the results
for mining threshold- and rank-based PFIs, on attribute-uncertain data. We summarize the
results for tuple-uncertain data and synthetic data, in Section 7.3.

7.1 Results on threshold-based PFI mining

We now compare the performance of five threshold-based PFI mining algorithms mentioned
in this paper: (1) DP, the Apriori algorithm used in [39]; (2) Expected, the modified

3 http://fimi.cs.helsinki.fi/.
4 http://www.almaden.ibm.com/cs/disciplines/iis/.

123

http://fimi.cs.helsinki.fi/
http://www.almaden.ibm.com/cs/disciplines/iis/

T. Bernecker et al.

Table 6 Recall and precision of the approximations

minsup/n 0.1 0.2 0.3 0.4 0.5

(a) Expected approach.

Recall 0.99 0.98 1 1 1

Precision 1 1 1 1 1

Recall & precision vs. minsup

minprob 0.1 0.3 0.5 0.7 0.9

Recall 0.975 0.975 1 1 1

Precision 1 1 1 0.975 0.941

Recall & precision vs. minprob

n 1k 5k 10k 50k 100k

Recall 0.937 0.986 0.983 1 1

Precision 0.969 1 0.992 1 1

Recall & precision vs. n

(b) Normal approach.

Recall 1 1 1 1 1

Precision 1 1 1 1 1

Recall & precision vs. minsup

minprob 0.1 0.3 0.5 0.7 0.9

Recall 1 1 1 1 1

Precision 1 1 1 1 1

Recall & precision vs. minprob

n 1k 5k 10k 50k 100k

Recall 1 1 1 1 1

Precision 1 1 1 1 1

Recall & precision vs. n

(c) Poisson approach.
Recall 1 1 1 1 1

Precision 1 0.992 1 1 1

Recall & precision vs.minsup

minprob 0.1 0.3 0.5 0.7 0.9

Recall 1 1 1 0.983 0.985

Precision 0.986 1 0.985 1 1

Recall & precision vs. minprob

n 1k 5k 10k 50k 100k

Recall 1 1 1 1 1

Precision 0.989 1 0.992 1 1

Recall & precision vs. n

Apriori algorithm that uses the expected support only [12]; (3) Poisson, the modified
Apriori algorithm that uses the Poisson approximation employing the PFI testing method
(Sect. 5.1); (4) Normal, the modified Apriori algorithm that uses the normal approximation,
also employing the PFI testing method (Sect. 5.1); and (5) MBP, the algorithm that uses the
Poisson approximation utilizing the improved version of the PFI testing method (Sect. 5.2).

123

Model-based probabilistic frequent itemset mining

(i) Accuracy. Since the model-based approaches Expected, Poisson and Normal
each approximate the exact s-pmf, we first examine their respective accuracy with respect to
DP, which yields PFIs based on exact frequentness probabilities. Here, we use the standard
recall and precision measures [7], which quantify the number of negatives and false posi-
tives. Specifically, let MB∈ {Expected, Poisson, Normal} be one of the model-based
approximation approaches, and let FD P be the set of PFIs generated by DP and FM B be the
set of PFIs produced by MB. Then, the recall and the precision of MB, relative to DP, can be
defined as follows:

recall = |FD P ∩ FM B |
|FD P | (21)

precision = |FD P ∩ FM B |
|FM B | (22)

In these formulas, both recall and precision have values between 0 and 1. Also, a higher value
reflects a better accuracy.

Table 6(a) to (c) shows the recall and the precision of the MB approaches, for a wide
range of minsup, n, and minprob values. As we can see, the precision and recall values
are generally very high. Hence, the PFIs returned by the MB approaches are highly similar
to those returned by DP. In particular, we see that the Expected approach generally yields
the worst results, having precision and recall values of less than 95 % in some setting. The
Poisson approach performs significantly better in these experiments. Yet in some settings,
thePoisson approach reports false hits, while in other settings, it performs false dismissals.
The Normal approach is most notable in this experiment. In this set of experiments, the
Normal approach never had a false dismissal, nor did it report a single false hit. This
observation also remained true for further experiments in this line, which are not depicted
here. In the next set of experiments, we will experimentally investigate the effectivity of the
MB approach.

Figure 4 shows the exact pmf, as well as the pmfs approximated by the Poisson and
the Normal approach, for a variety of settings. In particular, we scaled both the dataset
size and the size of the itemsets whose pmf is to be approximated. Since, in this setting, the
probabilities of individual items are uniformly sampled in the [0, 1] interval, and since due
to the assumption of item independence, it holds that P(I) = ∏

i∈I P(i), a large itemset I
implies smaller existence probabilities. In Fig. 4a, it can be seen that for single itemsets (i.e.,
large probability values), the pmf acquired by the Poisson approximation is too shallow—
that is, for support values close to μI the exact pmf is underestimated, while for support
values far from μI , the pmf is overestimated. In Fig. 4d, g it can be observed that this
situation does not improve for the Poisson approximation. However, this shortcoming of
the Poisson approximation can be explained: Since the Poisson approximation does only
have one parameter μI , but no variance parameter σ 2

I , it is not able to differ between
a set of five transactions with occurrence probabilities of 1, and five million transactions
with occurrence probabilities of 10−6, since in both scenarios it holds that μI = 5 · 1 =
5 · 106 · 10−6 = 5. Clearly, the variance is much greater in the later case, and so are the tails
of the corresponding exact pmf. Since the Poisson distribution is the distribution of the low
probabilities, the Poisson assumes the later case, i.e., a case of very many transactions, each
having a very low probability. In contrast, the normal distribution is able to adjust to these
different situations by adjusting its σ 2

I parameter accordingly. Figure 4b, e, h show the same
experiments for itemsets consisting of two items, that is, for lower probabilities I ⊆ ti . It can
be observed that with lower probabilities, the error of the Poisson approximation decreases,

123

T. Bernecker et al.

0 1 2 3 4 5 6 7 8 9 11

0.
00

0.
10

0.
20

0.
30

Support

P
ro

ba
bi

lit
y

Exact
Poisson
Normal

0 1 2 3 4 5 6 7 8 9 11

0.
00

0.
10

0.
20

0.
30

Support

P
ro

ba
bi

lit
y

Exact
Poisson
Normal

0 1 2 3 4 5 6 7 8 9 11

0.
0

0.
2

0.
4

0.
6

0.
8

Support

P
ro

ba
bi

lit
y

Exact
Poisson
Normal

40 46 52 58 64 70

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Support

P
ro

ba
bi

lit
y

Exact
Poisson
Normal

10 16 22 28 34 40

0.
00

0.
05

0.
10

0.
15

Support

Exact
Poisson
Normal

0 1 2 3 4 5 6 7 8 9

0.
00

0.
10

0.
20

0.
30

Support

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

Exact
Poisson
Normal

440 460 480 500 520 540

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Support

P
ro

ba
bi

lit
y

Exact
Poisson
Normal

200 220 240 260 280 300

0.
00

0.
01

0.
02

0.
03

0.
04

Support

P
ro

ba
bi

lit
y

Exact
Poisson
Normal

15 25 35 45 55

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Support

P
ro

ba
bi

lit
y

Exact
Poisson
Normal

(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

Fig. 4 Illustration of the approximation quality of Normal and Poisson for various settings. a n = 10;
|I | = 1. b n = 10; |I | = 2. c n = 10; |I | = 5. d n = 100; |I | = 1. e n = 100; |I | = 2. f n = 100; |I | = 5. g
n = 1, 000; |I | = 1. h n = 1, 000; |I | = 2. i n = 1, 000; |I | = 5

Table 7 # Itemsets

n Model 1 2 5

10 Normal 0.020 0.078 0.180

Poisson 0.526 0.283 0.077

100 Normal 0.0003 0.0020 0.0134

Poisson 0.0515 0.0283 0.0052

1,000 Normal 2.39E-6 6.12E-6 0.0004

Poisson 5.24E-3 2.85E-3 0.0007

while (as we will see later, in Table 7) the quality of the normal approximation decreases.
Finally, for itemsets of size 5, the Poisson approximation comes very close to the exact
pmf.

123

Model-based probabilistic frequent itemset mining

(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

Fig. 5 Accuracy of model-based algorithms versus n. a minsup = 0.49. b minsup = 0.50. c minsup = 0.51.
d minsup = 0.49. e minsup = 0.50. f minsup = 0.51. g p-value, minsup = 0.50. h error,
minsup=0.50.ierror, minsup = 0.50

To gain a better intuition of the approximation errors, we have repeated each of the
experiments shown in Fig. 4 one hundred times and measured the total approximation error.
That is, we have measured for each approximation DP∈{Normal, Poisson} the distance
to the exact pmf, computed by the DP approach:

D(M P, D P) =
n∑

i=0

|M Ppm f − D Ppm f |.

The results of this experiment are shown in Table 7. Clearly, the approximation quality of
the Normal approach decreases when the size of the itemsets increases (i.e., the probabilities
become smaller), while the Poisson approach actually improves. An increase in the database
size, is beneficial for both approximation approaches.

The impact of increasing the database size on the individual approximation models has
been investigated further in Fig. 5. In this experiment, we use a synthetic itemset where each
item is given a random probability uniformly distributed in [0, 1]. In Fig. 5a–c, the average
frequentness probability Pr f req(I) that item I is frequent is depicted for all itemsets I con-
sisting of one item. Since all probabilities are uniformly [0, 1] distributed, it is clear that μI

123

T. Bernecker et al.

(a) (b)

Fig. 6 Accuracy of the model-based algorithms versus percentage of low probability values. a lowP <= 0.10.
b lowP <= 0.01

is about n
2 . Thus, for minsup=0.49, the probability that an item is frequent increases in the

database size, for minsup = 0.5, about half of the items are frequent, and for minsup = 0.51,
the number of frequent items decreases in the database size. First, it can be observed that
the Normal approximation is nearly perfect, since no error between the exact Pr f req(I) and
it’s Normal approximated value can be observed visually. This is also confirmed by Fig.
5d–f, which show the respective error, that is, the differences between the exact frequent-
ness probability and the approximated frequentness probabilities. In contrast, the Poisson
approximation does show a significant error for smaller databases. For minsup = 0.49 and
minsup = 0.51, the Poisson approximation is also able to yield very good approximation for
database sizes larger than 50.000 while the expected support yields good results for even
smaller databases. The reason is that in this case, all the exact frequentness probabilities
quickly converge to 1 (0), which can easily be guessed by the expected approach. However,
the interesting case is the case where minsup = 0.5, since in this case, the items are expected to
have an average frequentness probability of 0.5. However, in this case, the expected approach
is forced to guess, since it may only take the values 0 and 1. This explains the large error of
the expected approach, which does not decrease in the database size. The Poisson approach
performs significantly better than the expected approach, but still the error is relatively high,
which matches our previous experiments for large probabilities. To achieve a better setting
for the Poisson approximation, we changed the interval from which the item probabilities
are sampled, from [0, 1] to [0, 0.1], and repeated the experiment for minsup=0.5. The results
are depicted in Fig. 5g, h). It can be observed that in this setting, the Poisson approximation
achieves extremely good results, even slightly outperforming the Normal approximation. In
Fig. 5i, the expected approach is omitted, to give a better view on the difference of the normal
and the Poisson error.

In the previous setting, we have evaluated the performance of the model-based approxi-
mation approaches in the case where all items have the same occurrence probabilities. We
have seen that for small probabilities, the Poisson approximation works well. Next we will
evaluate how many probability values are allowed to be large, in order for the Poisson approx-
imation to still yield good results. In the following experiment, we introduce a new parameter
lowP , which denotes the fraction of the item probabilities, which are chosen from a smaller
interval, such as the interval [0, 0.01], while the remaining 1−lowP fraction of the items has
their probabilities chosen from the [0, 1] interval. The result of the experiment evaluating the
impact of lowP is given in Fig. 6. It can be seen that the mean absolute approximation error

123

Model-based probabilistic frequent itemset mining

Fig. 7 Performance comparison
of model-based approaches

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

0.1 0.2 0.3 0.4 0.5

minsup

R
u

n
ti

m
e

(s
ec

o
n

d
)

DP
MB

0

100

200

300

400

500

0.1 0.2 0.3 0.4 0.5

minsup

N
u

m
b

er
 o

f
P

F
Is

DP
MB

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

minprob

R
u

n
ti

m
e

(s
ec

o
n

d
)

DP
MB

(c)(b)(a)

Fig. 8 Threshold-based PFI mining: efficiency of model-based algorithm MB versus dynamic programming
DP. a Runtime versus minsup. b |P F I | versus minsup. c Runtime versus minprob

of the Normal approximation increases as the fraction lowP of small probabilities increases.
In contrast, the approximation error of the Poisson approximation slightly decreases. How-
ever, only for lowP > 0.98, the Poisson approximation begins to outperform the Normal
approximation. Thus, if the dataset only contains a few probability values that are not small,
then the Normal approximation outperforms the Poisson approximation.

While in the previous experiment, the approximation quality has been measured for indi-
vidual itemsets, we now compare the effectivity of the model-based approaches for the
complete Apriori-based algorithm.

(ii) MB vs.DP. Next, we compare the performance (in log scale) of the model-based
approaches (MB) and the dynamic programming-based DP. First, we will compare the run-
time of the three (MB)s to each other. The result is shown in Fig. 7. It can be seen that the
approach using expected support, since it only has to perform a single value comparison
(μI ≥ minsup), is faster than the other model-based approaches by a factor of about two.
The normal and the Poisson approximation take about the same time to compute. While
in our Java experiments (shown here), the Poisson approximation slightly outperforms the
normal approximation, our experiments in R (not depicted here) show the opposite situation.
In summary, we can say that Poisson and normal approximation take about the same time to
evaluate, except for some possibly implementation specific differences.

In the following runtime experiments, we will for simplicity only show one graph for the
model-based (MB) approaches, which corresponds to the runtime of the normal and Poisson
approximation. For the runtime of the expected approach, simply divide the result by two
due to the observations made in Fig. 7.

Figure 8a. Observe that MB is about two orders of magnitude faster than DP, over a
wide range of minsup. This is because MB does not compute exact frequentness probabil-
ities as DP does; instead, MB only computes the μI values, which can be obtained faster.

123

T. Bernecker et al.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5

minsup

R
u

n
ti

m
e

(s
ec

o
n

d
)

MB
MBP

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5

minsup

D
B

 S
ca

n
n

ed
 (

%
)

MB

MBP

(a) (b)

Fig. 9 Efficiency of MBP versus MB. a Runtime versus minsup. b DB scanned (%) versus minsup

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 50 100 150 200 250 300

n (k)

R
u

n
ti

m
e

(s
ec

o
n

d
)

DP
MB
MBP

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

G1 G2 G3 G4 Un

Prob. Distributions

R
u

n
ti

m
e

(s
ec

o
n

d
)

DP
MB
MBP

(a) (b)

Fig. 10 Other results for threshold-based PFIs. a Scalability. b Prob. Distributions

We also notice that the running times of both algorithms decrease with a higher minsup.
This is explained by Figure 8b, which shows that the number of PFIs generated by the two
algorithms, |P F I |, decreases as minsup increases. Thus, the time required to compute the
frequentness probabilities of these itemsets decreases. We can also see that |P F I | is almost
the same for the two algorithms, reflecting that the results returned by MB closely resemble
those of DP.

Figure 8c examines the performance of MB and DP (in log scale) over different minprob
values. Their execution times drop by about 6 % when minprob changes from 0.1 to 0.9. We
see that MB is faster than DP. For instance, at minprob = 0.5, MB needs 0.3 s, while DP
requires 118 s, delivering an almost 400-fold performance improvement.

(iii) MB vs. MBP. We then examine the benefit of using the improved PFI testing method
(MBP) over the basic one (MB). Figure 9(a) shows that MBP runs faster than MB over differ-
ent minsup values. For instance, when minsup = 0.5, MBP has about 25 % of performance
improvement. Moreover, as minsup increases, the performance gap increases. This can be
explained by Fig. 9b, which presents the fraction of the database scanned by the two algo-
rithms. When minsup increases,MBP examines a smaller fraction of the database. For instance,
at minsup = 0.5, MBP scans about 80 % of the database. This reduces the I/O cost and the
effort for interpreting the retrieved tuples. Thus, MBP performs better than MB.

(iv) Scalability. Figure 10a examines the scalability of the three algorithms. Both MB and
MBP scale well with n. The performance gap between MB/MBP and DP also increases with
n. At n = 20k, MB and DP need 0.62 and 657.7 s, respectively; at n = 100k, MB finishes in

123

Model-based probabilistic frequent itemset mining

Table 8 Existential probability Mean Standard deviation

G1 0.8 0.125

G2(default) 0.5 0.125

G3 0.5
√

1/12 ≈ 0.289

G4 0.5 0.5

Un 0.5
√

1/12 ≈ 0.289

Table 9 Recall and precision of E-top-k

n 1k 5k 10k 50k

Recall & Precision 1 1 1 1

Recall & Precision vs. n

k 1 10 50 100

Recall & precision 1 1 0.98 0.99

Recall & precision vs. k

minsup/n 0.1 0.2 0.3 0.4

Recall & precision 1 1 1 1

Recall & precision vs. minsup

3.1 s while DP spends 10 h. Hence, the scalability of our approaches is clearly better than that
of DP.

(v) Existential probability. We also examine the effect of using different distributions to
characterize an attribute’s probability, in Fig. 10b. We use Un to denote a uniform distribution
and Gi (i = 1, . . . , 4) to represent a Gaussian distribution. The details of these distributions
are shown in Table 8.

We observe that MB and MBP perform better than DP over different distributions. All
algorithms run comparatively slower on G1. This is because G1 has high mean (0.8) and low
standard deviation (0.125), which generates high existential probability values. As a result,
many candidates and PFIs are generated. Also note that G3 and Un, which have the same
mean and standard deviation, yield similar performance. Lastly, we found that the precision
and the recall of MB and MBP over these distributions are the same and are close to 1. Hence,
the PFIs retrieved by our methods closely resemble those returned by DP.

7.2 Results on rank-based PFI mining

We now compare the first top-k solution proposed in [39] (called top-k) and our enhanced
algorithm (called E-top-k).

(vi) Accuracy. We measure the recall and precision ofE-top-k relative to that oftop-k,
by using formulas similar to Eqs. 21 and 22. Table 9 shows the recall and the precision of
E-top-k for a wide range of n, k and minsup values. We observe that the recall values
are equal to the precision values. This is because number of PFIs returned by top-k and
E-top-k are the same. As We can also see the recall and precision values are always higher
than 98 %. Hence, E-top-k can accurately return top-k PFIs.

(vii) Performance. Figure 11a–c compare the two algorithms under different values of
n, k, and minsup. Similar to the case of threshold-based PFIs, our solution runs much faster

123

T. Bernecker et al.

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0 50 100 150 200 250 300

n (k)

R
u

n
ti

m
e

(s
ec

o
n

d
)

Top-k
E-Top-k

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1 21 41 61 81 101

k

R
u

n
ti

m
e

(s
ec

o
n

d
)

Top-k
E-Top-k

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0.1 0.2 0.3 0.4 0.5
minsup

R
u

n
ti

m
e

(s
ec

o
n

d
)

Top-k
E-Top-k

(a) (b) (c)

Fig. 11 Performance of rank-based PFI mining algorithms. a Runtime versus n. b Runtime versus k.
c Runtime versus minsup

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

0.2 0.3 0.4 0.5

minsup

R
u

n
ti

m
e

(s
ec

o
n

d
) DP

TODIS
MB
MBP

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1 21 41 61 81 101

k

R
u

n
ti

m
e

(s
ec

o
n

d
)

Top-k

E-Top-k

(a) (b)

Fig. 12 Results for tuple uncertainty. a Runtime versus minsup. b Runtime versus k

than top-k. When n = 10k, for example, E-top-k finishes in only 0.2 s, giving an almost
20,000-fold improvement over that of top-k, which completes in 1.1 hours. In Fig. 11a, we
see that the runtime of top-k increases faster than that of E-top-kwith a bigger database.
In Fig. 11b, observe that theE-top-k is about four orders of magnitude faster thantop-k.In
Fig. 11c, with the increase in minsup, top-k needs more time, but the runtime of E-top-k
only slightly increases. This is because (1) fewer candidates are produced by our generation
step and (2) the testing step is significantly improved by using our model-based methods.

7.3 Other experiments

We have also performed experiments on the tuple uncertainty model and the synthetic dataset.
Since they are similar to the results presented above, we only describe the most representative
ones. For the accuracy aspect, the recall and precision values of approximate results on these
datasets are still higher than 98 %. Thus, our approaches can return accurate results.

Tuple uncertainty. We compare the performance of DP, TODIS, MB, and MBP in
Figure 12(a). TODIS [38] is proposed to retrieve threshold-based PFIs from tuple-uncertain
databases. It shows that bothMB andMBP perform much better thanDP andTODIS, under dif-
ferent minsup values. For example, when minsup = 0.3, MB needs 1.6 s, but DP and TODIS
complete in 581 and 81 s, respectively. In Fig. 12b, we also see that E-top-k consistently
outperforms top-k by about two orders of magnitude. This means that our approach, which
avoids computing frequentness probabilities, also works well for the tuple uncertainty model.

Synthetic dataset. Finally, we run the experiments on the synthetic dataset. Figure 13a
compares the performance ofMB,MBP, andDP, for attribute uncertainty model. We found that
MB and MBP still outperform DP. Figure 13b tests the performance of top-k and E-top-k,

123

Model-based probabilistic frequent itemset mining

1.E+00

1.E+01

1.E+02

1.E+03

0.01 0.02 0.03 0.04

minsup

R
u

n
ti

m
e

(s
ec

o
n

d
)

DP
MB
MBP

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1 21 41 61 81 101

k

R
u

n
ti

m
e

(s
ec

o
n

d
)

Top-k

E-Top-k

(a) (b)

Fig. 13 Results for synthetic dataset. a Runtime versus minsup. b Runtime versus k

for tuple uncertainty model. Again, E-top-k runs faster than top-k, by around two orders
of magnitude. Thus, our approach also works well for this dataset.

8 Conclusions

We propose model-based approaches to discover Probabilistic Frequent Itemsets (PFIs) from
uncertain databases. Our methods represent the s-pmf of a PFI using probability models, in
order to find PFIs quickly. These methods can efficiently extract threshold- and rank-based
PFIs. They also support attribute and tuple uncertainty models, which are two common
data models. We develop new approximation methods to evaluate frequentness probabilities
efficiently. As shown theoretically and experimentally, our algorithms are more efficient and
scalable than existing ones. They are also highly accurate, although some models require
certain properties of the dataset to be satisfied in order to achieve very high accuracy. We
have theoretically and experimentally compared our proposed model-based approaches and
shown properties of the data which are required for each model to perform well. To conclude,
a summary of the pros and cons of each model is as follows:

Expected support: Easy to implement and efficiently to compute, since the total runtime
is about twice as fast as the other approaches, and pruning can be performed. However,
this approach lacks effectivity, since this model requires a very large number of transactions
containing an itemset I with a probability greater than zero, in order to achieve acceptable
results. Except for very small itemsets, which are usually not interesting because they are
trivially frequent, this requirement is hardly satisfied. Also, the parameter minprob cannot
be integrated into this approach, so that the level of significance of frequent items cannot be
determined.

Poisson approximation: Easy to implement and efficiently to compute, since pruning can
be performed. However, this model requires that almost all transactions containing I have a
very low probability, in order to obtain good approximation results. This requirement is hardly
ever met on real data, since such datasets generally contain some transaction containing I
with a probability of 1. However, this model is not robust since a few larger probabilities will
significantly lower the approximation quality.

Normal approximation: The implementation must make sure to apply continuity correction
to acquire the best results. Pruning cannot be performed so that for each itemset, the whole
database has to be scanned. The experiments have shown that pruning only increases the
total runtime marginally. Regarding the approximation quality, the normal approximation

123

T. Bernecker et al.

overall yields by far the best results. Even for a small number of Poisson trials, the Normal
approximation yields highly accurate results. On real datasets, it is very difficult to create a
scenario where the normal approximation does not yield precision and recall values of one.

In summary, we propose to generally use the Normal approximation, except in very special
settings, since the Normal approximation yields the best trade-off between approximation
quality, which is nearly always one, and efficiency, which is in O(n) like the other approxi-
mation approaches.

In the future, we will examine how the model-based approach can be used to handle
other mining problems (e.g., clustering) in uncertain databases. We will also study how other
approximation techniques, such as sampling, can be used to mine PFIs.

Acknowledgments This work was supported by the Research Grants Council of Hong Kong (GRF Projects
513508 and 711309E). We would like to thank the anonymous reviewers for their insightful comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.

Appendix A: Quality of the poisson approximation (Sect. 4.2)

In Sect. 4.2, we use the Poisson distribution to approximate the Poisson binomial distribution.
Here, we summarize the results of this approximation quality, discussed in [37].

Let X1, X2, . . . , Xn be a set of Poisson trials such that Pr(X j = 1) = p j and X =∑n
j=1 X j . Then, X follows a Poisson binomial distribution. Suppose μ = E[X] =

∑n
j=1 p j .

The probability of X = i and X ≤ i can be approximated by the probability distribution
function (PDF) and the cumulative distribution function (CDF) of the Poisson distribution,

Pr(X = i) ≈ f (i, μ) = μi

i ! e−μ

Pr(X ≤ i) ≈ F(i, μ) = Γ (i+1,μ)
i !

[37] gives an upper bound of the error of the approximation:

|Pr(X ≤ i) − F(i, μ)| ≤ (μ−1 ∧ 1)

n∑

j=1

p2
j (23)

for i = 0, 1, 2, . . . , n where μ−1 ∧ 1 = min(μ−1, 1).
Now, we want to compute a bound on the expression on the right-hand side. Since μ =∑n
j=1 p j ,

(μ−1 ∧ 1)

n∑

j=1

p2
j = min

(
1∑n

j=1 p j
, 1

)
n∑

j=1

p2
j

Obviously the above expression is greater than or equal to 0.
When 0 ≤ ∑n

j=1 p j ≤ 1,

(μ−1 ∧ 1)

n∑

j=1

p2
j =

n∑

j=1

p2
j ≤

n∑

j=1

p j ≤ 1

123

Model-based probabilistic frequent itemset mining

When
∑n

j=1 p j > 1,

(μ−1 ∧ 1)

n∑

j=1

p2
j =

∑n
j=1 p2

j∑n
j=1 p j

≤
∑n

j=1 p j∑n
j=1 p j

= 1

So, in either case:

0 < (μ−1 ∧ 1)

n∑

i=1

p2
i ≤ 1 (24)

The upper bound of the error is very small. As also verified by our experiments, the Poisson
binomial distribution can be approximated well.

Appendix B: Quality of the normal approximation (Sect. 4.3)

In Sect. 4.3, we use a normal distribution to approximate a Poisson binomial distribution.
Here, we will summarize the current state of research in theoretical quality of this approxi-
mation. Therefore, let X1, . . . , Xn be independent Poisson trials with respective probabilities
p1, . . . , pn , and let X denote the random variable corresponding to the average 1

n

∑n
i=1 Xi

of these random variables. Also, let Y denote the CDF of X ·√(n)
σ

, that is, the normalized CDF
of X . In [15], the author was able to prove that the maximum error between Y and the CDF
Φ of the standard normal distribution is bounded as follows:

sup
x

|Y − Φ| ≤ CΨ,

where Ψ = (
∑n

i=1 σ 2
i)

−3
2 · ∑n

i=1 ρi , σ 2
i is the variance of Xi and ρi is the third moment of

Xi . C is a constant that was successively lowered from the original estimate of 7.59 ([15])
to the current best estimate of 0.5600 by [36].

References

1. Deshpande A et al (2004) Model-driven data acquisition in sensor networks. In: VLDB
2. Abramowitz and Stegun (1972) Handbook of mathematical functions with formulas, graphs, and mathe-

matical tables. 10 edition
3. Aggarwal C, Li Y, Wang J, Wang J (2009) Frequent pattern mining with uncertain data. In: KDD
4. Aggarwal C, Yu P (2009) A survey of uncertain data algorithms and applications. TKDE 21(5): 609–623
5. Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large data-

bases. In: SIGMOD
6. Bernecker T, Kriegel H-P, Renz M, Verhein F, Züfle A (2008) Probabilistic frequent itemset mining in

uncertain databases. In: Proceedings of the 15th ACM SIGKDD conference on knowledge discovery and
data mining (KDD’09), Paris, France, pp 119–128

7. van Rijsbergen CJ (1979) Information retrieval. Butterworth
8. Cam LL (1960) An approximation theorem for the poisson binomial distribution. Pacific J Math 10:

1181–1197
9. Cheng H, Yu P, Han J (2008) Approximate frequent itemset mining in the presence of random noise.

SCKDDM
10. Cheng R, Kalashnikov D, Prabhakar S (2003) Evaluating probabilistic queries over imprecise data.

In: SIGMOD
11. Chui CK, Kao B, Hung E (2007) Mining frequent itemsets from uncertain data. In 11th Pacific-Asia

conference on advances in knowledge discovery and data mining, PAKDD 2007, Nanjing, China,
pp 47–58

123

T. Bernecker et al.

12. Chui CK, Kao B, Hung E (2007) Mining frequent itemsets from uncertain data. In: PAKDD
13. Cormode G, Garofalakis M (2007) Sketching probabilistic data streams. In: SIGMOD
14. Dalvi N, Suciu D (2004) Efficient query evaluation on probabilistic databases. In: VLDB
15. Esseen C-G (1942) On the Liapunoff limit of error in the theory of probability. Arkiv för matematik,

astronomi och fysik
16. Feller W (1945) The fundamental limit theorems in probability. Bull Amer Math Soc 51: 800–832
17. Feller W (1968) The strong law of large numbers, in an introduction to probability theory and its appli-

cations. Wiley, New York
18. Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: SIGMOD
19. Hodges J, le Cam L (1959) The poisson approximation to the poisson binomial distribution. The annals

of mathematical statistics. Institute of Mathematical Statistics
20. Hua M, Pei J, Zhang W, Lin X (2008) Ranking queries on uncertain data: a probabilistic threshold

approach. In: Wang JT-L (ed) Proceedings of the ACM SIGMOD international conference on management
of data, SIGMOD 2008, Vancouver, BC, Canada, June 10–12, 2008, pp 673–686. ACM

21. Huang J et al (2009) MayBMS: a probabilistic database management system. In: SIGMOD
22. Ren J, Lee S, Chen X, Kao B, Cheng R, Cheung D (2009) Naive Bayes classification of uncertain data.

In: ICDM
23. Jampani R, Perez L, Wu M, Xu F, Jermaine C, Haas P (2008) MCDB: a Monte Carlo approach to managing

uncertain data. In: SIGMOD
24. Khoussainova N, Balazinska M, Suciu D (2006) Towards correcting input data errors probabilistically

using integrity constraints. In: MobiDE
25. Kozawa Y, Amagasa T, Kitagawa H (2011) Fast frequent itemset mining from uncertain databases using

gpgpu. In: DBRank, pp 55–62
26. Kriegel H, Pfeifle M (2005) Density-based clustering of uncertain data. In: KDD
27. Kuok C, Fu A, Wong M (1998) Mining fuzzy association rules in databases. SIGMOD record
28. Liu H, Lin Y, Han J (2011) Methods for mining frequent items in data streams: an overview. Knowl Inf

Syst 26(1):1–30
29. Lu A, Ke Y, Cheng J, Ng W (2007) Mining vague association rules. In: DASFAA
30. Mutsuzaki M et al (2007) Trio-one: layering uncertainty and lineage on a conventional dbms. In: CIDR
31. Yiu M, et al. (2009) Efficient evaluation of probabilistic advanced spatial queries on existentially uncertain

data. TKDE 21(9): 108–122
32. Sistla P, et al. (1998) Querying the uncertain position of moving objects. In: Temporal databases: research

and practice. Springer, New York
33. Pavlov D, Mannila H, Smyth P (2003) Beyond independence: probabilistic models for query approxima-

tion on binary transaction data. IEEE Trans Knowl Data Eng 15(6):1409–1421
34. Poisson S (1837) Recherches sur la probilité des Jugements
35. Renze J, Weisstein E. Law of large numbers
36. Shevtsova IG (2010) An improvement of convergence rate estimates in the Lyapunov theorem. Doklady

Math 82:862–864
37. Stein C (1986) Approximate computation of expectations. Institute of mathematical statistics lecture

notes—monograph series, 7
38. Sun L, Cheng R, Cheung DW, Cheng J (2010) Mining uncertain data with probabilistic guarantees.

In: SIGKDD
39. Bernecker T et al (2009) Probabilistic frequent itemset mining in uncertain databases. In: KDD
40. Jayram T et al (2006) Avatar information extraction system. IEEE Data Eng Bull 29(1): 40–48
41. Tsang S, Kao B, Yip KY, Ho W, Lee S (2009) Decision trees for uncertain data. In: ICDE
42. Wang C, Parthasarathy S (2006) Summarizing itemset patterns using probabilistic models. In: Proceed-

ings of the twelfth ACM SIGKDD international conference on knowledge discovery and data mining,
Philadelphia, PA, USA, August 20–23, 2006, pp 730–735

43. Wang L, Cheng R, Lee SD, Cheung DW-L (2010) Accelerating probabilistic frequent itemset mining: a
model-based approach. In: CIKM, pp 429–438

44. Weng C-H, Chen Y-L (2010) Mining fuzzy association rules from uncertain data. Knowl Inf Syst
23(2):129–152

45. Yang B, Huang H (2010) Topsil-miner: an efficient algorithm for mining top- k significant itemsets over
data streams. Knowl Inf Syst 23(2):225–242

46. Zhang Q, Li F, Yi K (2008) Finding frequent items in probabilistic data. In: SIGMOD

123

Model-based probabilistic frequent itemset mining

Author Biographies

Thomas Bernecker is an Academic Assistant in the database sys-
tems and data mining group of Hans-Peter Kriegel at the Ludwig-
Maximilians-Universität München, Germany. His research interests
include query processing in uncertain databases, spatio-temporal data
mining, and similarity search in spatial, temporal, and multimedia data-
bases.

Reynold Cheng received the B.Eng degree in computer engineer-
ing and the MPhil in computer science and information systems from
the University of Hong Kong (HKU) in 1998 and 2000, respec-
tively, and the M.Sc. and Ph.D. degrees from the Department of
Computer Science, Purdue University, in 2003 and 2005, respectively.
He is an associate professor in the Department of Computer Science at
HKU. He was the recipient of the 2010 Research Output Prize in the
Department of Computer Science of HKU. From 2005 to 2008, he was
an assistant professor in the Department of Computing at Hong Kong
Polytechnic University, where he received two Performance Awards.
He is a member of IEEE, ACM, ACM SIGMOD, and UPE. He has
served on the program committees and review panels for leading data-
base conferences and journals. He is a member of the editorial board of
Information Systems and DAPD journal. He is also a guest editor for
a special issue in TKDE. His research interests include database man-
agement, as well as querying and mining of uncertain data.

David W. Cheung received the M.Sc. and Ph.D. degrees in com-
puter science from Simon Fraser University, Canada, in 1985 and
1989, respectively. Since 1994, he has been a faculty member of the
Department of Computer Science in The University of Hong Kong.
His research interests include database, data mining, database secu-
rity and privacy. Dr. Cheung was the Program Committee Chairman of
PAKDD 2001, Program Co-Chair of PAKDD 2005, Conference Chair
of PAKDD 2007 and 2011, Conference Co-Chair of CIKM 2009, and
Conference Co-Chair of PAKDD 2011.

123

T. Bernecker et al.

Hans-Peter Kriegel is a full-time professor for database systems
and data mining in the Department “Institute for Informatics” at the
Ludwig-Maximilians-Universität München, Germany, and has served
as the department chair or vice chair over the last years. His research
interests are in spatial and multimedia database systems, particularly
in query processing, performance issues, similarity search, high-
dimensional indexing as well as in knowledge discovery and data
mining. He has published over 300 refereed conference and journal
papers, and he received the “SIGMOD Best Paper Award” 1997 and
the “DASFAA Best Paper Award” 2006 together with members of his
research team. He is an Associate Editor for The VLDB Journal and
ACM TKDD. THe ACM nominated Hans-Peter Kriegel 2009 ACM
Fellow for contributing fundamental knowledge to the field, in particu-
lar for his contributions to knowledge discovery and data mining, sim-
ilarity search, spatial data management, and access methods for high-
dimensional data.

Sau Dan Lee was a Post-doctoral Fellow at the University of Hong
Kong. He received his Ph.D. degree from the University of Freiburg,
Germany in 2006 and his M.Phil. and B.Sc. degrees from the Univer-
sity of Hong Kong in 1998 and 1995. He is interested in the research
areas of data mining, machine learning, uncertain data management
and information management on the WWW. He has also designed and
developed backend software systems for e-Business and investment
banking.

Matthias Renz is an Assistant Professor in the database systems and
data mining group of Hans-Peter Kriegel at the Ludwig-Maximilians-
Universität München, Germany. He finished his P.h.D thesis on query
processing in spatial and temporal data in winter 2006. His research
interests include query processing in uncertain databases, spatio-
temporal data mining and similarity search in spatial, temporal, and
multimedia databases.

123

Model-based probabilistic frequent itemset mining

Florian Verhein completed his PhDs in parallel, obtaining one
from the Faculty of Engineering and IT at the University of Sydney,
Australia and the other from the Faculty of Mathematics, Computer
Science and Statistics at Ludwig-Maximilians-Universität, München,
Germany. He also holds qualifications in Software Engineering and
Business and is a past Microsoft Research Asia Fellow. Florian’s
research covers various areas in data mining and machine learning,
with an emphasis on statistics and algorithms. He currently works at
Optiver, a leading market maker and proprietary trading company.

Liang Wang received the B.Eng. degree in computer science from
Shanghai Jiaotong University in 2008 and the M.Phil. degree majoring
in computer science from the University of Hong Kong in 2011. His
research interest is uncertain database, data mining and data manage-
ment. Now, He is a software engineer at Microsoft Corporation.

Andreas Zuefle is an Academic Assistant in the database systems and
data mining group of Hans-Peter Kriegel at the Ludwig-Maximilians-
Universität München, Germany. His research interests include query
processing in uncertain databases, spatio-temporal data mining and
similarity search in spatial, temporal, and multimedia databases.

123

	Model-based probabilistic frequent itemset mining
	Abstract
	1 Introduction
	2 Related work
	3 Problem definition
	3.1 Attribute and tuple uncertainty
	3.2 Probabilistic frequent itemsets (PFI)

	4 Approximation of S-pmf
	4.1 Approximation by expected support
	4.2 Poisson Distribution-Based Approximation
	4.3 Normal Distribution-Based Approximation
	4.4 Discussion

	5 Threshold-based PFI mining
	5.1 PFI Testing
	5.2 Improving the PFI testing process for the poisson approximation
	5.3 Case study: the Apriori algorithm

	6 Rank-based PFI mining
	6.1 Candidate itemset generation
	6.2 Candidate itemset testing

	7 Results
	7.1 Results on threshold-based PFI mining
	7.2 Results on rank-based PFI mining
	7.3 Other experiments

	8 Conclusions
	Acknowledgments
	References

