Metadata, citation and similar papers at core.ac.u

Title Object co-location and memory reuse for Java programs
Author(s) Yu, ZCH; Lau, FCM; Wang, CL
Citation ACM Transactions on Architecture and Code Optimization, 2008,
V.4 n. 4, article no. 23, p. 23:1-23:36
Issued Date | 2008
URL http://hdl.handle.net/10722/165824
Rights ACM Transactions on Architecture and Code Optimization.

Copyright © Association for Computing Machinery, Inc.

k

https://core.ac.uk/display/37987939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Object Co-location and Memory Reuse for Java
Programs

ZOE C.H. YU, FRANCIS C.M. LAU, and CHO-LI WANG
The University of Hong Kong

We introduce a new memory management system, STEMA, which can improve the execution
time of Java programs. STEMA detects prolific types on-the-fly and co-locates their objects
in a special memory space which supports reuse of memory. We argue and show that memory
reuse and co-location of prolific objects can result in improved cache locality, reduced memory
fragmentation, reduced GC time, and faster object allocation. We evaluate STEMA using 16
benchmarks. Experimental results show that STEMA performs 2.7%, 4.0%, and 8.2% on average
better than MarkSweep, CopyMS, and SemiSpace.

Categories and Subject Descriptors: D.3.4 [Programming Languages|: Processors—Memory
management (garbage collection); D.4.2 [Operating Systems]|: Storage Management—Alloca-
tion/deallocation strategies

General Terms: Experimentation, Languages, Measurement, Performance
Additional Key Words and Phrases: Memory allocator, garbage collector, mutator, Java, object
co-location, memory reuse

1. INTRODUCTION

Java has been widely used on many systems ranging from high-end servers, PCs,
to embedded systems and mobile handsets. Java’s success derives in large part
from the success of the Java Virtual Machine (JVM) [Lindholm and Yellin 1999].
Among the outstanding functions of the JVM, automatic memory management,
which manages dynamically allocated memory for the programmer, contributes
significantly to the software engineering benefits and user-friendliness of Java. This
function includes a garbage collection (GC) mechanism to detect no-longer-needed
memory in the heap and reclaim them safely for future allocation. GC however can
have a negative impact on the runtime performance of programs, as it needs to be
triggered intermittently [Brecht et al. 2001]. Our first goal is to make the memory
management function (and GC) work faster. It has been observed that there is a
widening gap between processor speed and memory latency, the result of which is
that the effect of hardware cache misses on the performance of a runtime system
becomes increasingly significant [Sun Microsystems 2003]. Our second goal is to
find a way to improve the cache locality of the executing program. Faster memory

Authors’ address: Department of Computer Science, The University of Hong Kong, Pokfulam
Road, Hong Kong; E-mail: {chyu, fcmlau, clwang}@cs.hku.hk.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright /server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2007 ACM 0000-0000/2007/0000-0001 $5.00

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, February 2007, Pages 1-35.

2 . Zoe C.H. Yu et al.

management operations and improved cache locality combined is expected to lead
to increased execution speeds of the application programs.

A program will have a better time performance if it is provided with a large heap,
because fewer GCs will be necessary. But a large heap cannot always be taken for
granted, especially in view of the prolification of small-memory and multiprocess-
ing platforms. For embedded systems and mobile handsets, the memory resource is
constrained. For multiprogrammed systems, memory available for a program may
fluctuate intensely because of the competition from concurrent computational pro-
cesses [Yang et al. 2004]. Our third goal in the design of the memory management
system is to enable programs to run efficiently with a small memory footprint—i.e.,
small heap size.

Our strategies to achieve the above are embodied in a new memory management
system called STEMA (Space-Time Efficient Memory Allocator) which aims to im-
prove the total execution time of Java programs. Following the literature [Dijkstra
et al. 1978], the total execution time of a program consists of the mutator time
and the collector time. Mutator time is the actual time used to execute the user
program. Times to carry out some memory management related operations such
as object allocation and write barrier are included in the mutator time. Collector
time (also known as GC time) is the time spent in detecting and reclaiming no-
longer-needed heap memory. STEMA achieves better mutator cache locality and
reduced memory fragmentation, which gives rise to shorter mutator and GC time.

STEMA extends and improves the work of Shuf et al. [2002], who referred to
frequently instantiated object types as prolific types and developed a type-based
collector based on them. Their idea is to collect prolific type objects (or simply
prolific objects) more frequently because these objects tend to have a shorter life-
time than other objects. They allocate these objects in a prolific region and other
objects in a non-prolific region so that partial GC on only the prolific objects can
be performed. By co-locating prolific objects that are connected by object refer-
ences, and visiting these objects before other objects at GC times, they improve
the collector cache locality.

STEMA rides on the notion of prolific types to optimize its decisions on memory
allocation and object co-location. It introduces reuse of memory blocks® for prolific
objects, and allocates them in a reusable memory space (R-space), and the rest
in a non-reusable memory space (NR-space). Co-location of prolific objects in
the R-space happens in two different ways, which lead to improved mutator cache
locality and reduced memory fragmentation: objects of the same prolific type are
placed side-by-side in the same memory block; objects of different prolific types
that are created at similar times are arranged to be close to each other in their
respective memory blocks in the R-space. If all objects in a memory block are dead
at some GC time, instead of returning the block to the free virtual memory resource
pool of the JVM, STEMA retains the memory block in the heap; then by reusing

1A memory block is a chunk of memory which is partitioned into a certain number of size-k
memory cells; the size of a memory block is page aligned, i.e., a multiple of 4KB, for efficient
address computation; a memory cell is a unit of allocation in a memory block; a size-k memory
cell can be used to accommodate an object with size no larger than k bytes; the memory cells of
the same memory block have the same size.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, February 2007.

Object Co-location and Memory Reuse for Java Programs : 3

these retained blocks as soon as possible later on at allocation times, the memory
allocation process is simplified, and the number of L1 cache misses induced by the
new objects is reduced.

Unlike the work of Shuf et al. where they perform partial GC on prolific objects
more frequently and thus require the use of write barrier, STEMA applies GC to
both the R-region and the NR-region at GC times. Thus, STEMA does not have
any overhead due to write barrier and has a smaller minimum heap requirement.
Moreover, STEMA identifies the prolificacy of types on-the-fly using a low-overhead
online type sampling (OTS) mechanism. This dynamic prolific type information can
be used immediately by STEMA for its allocation decisions. The information can
also be recorded offline so that STEMA could make use of it in its future runs,
thus avoiding the online sample overhead in these runs. With online identification
of prolific types, STEMA does not require a profile run to collect prolific type
information before an actual run of the program.

We evaluate the performance of STEMA using the eight SPECjvm98 bench-
marks [SPEC 1998], seven of the DaCapo benchmarks [DaCapo 2004], and the
gcbench [Boehm 1997] benchmark. The experimental results show that STEMA
outperforms the MarkSweep, CopyMS, and SemiSpace collectors included in the
Jikes RVM over all the benchmarks by an average of 3.0%, 3.4%, and 28.8% for a
small heap; 2.6%, 6.7%, and 9.0% for a medium heap; and 2.4%, 5.3%, and 2.1%
for a large heap. We show that the performance improvement is due to better
mutator time and reduced memory fragmentation in most of the executions. Com-
pared with GenMS (a two-generational collector in the Jikes RVM), STEMA can
run all benchmarks including those that cannot be run to completion in GenMS
when given a small heap, and so STEMA may be a better choice for systems with
tight memory provision. Nevertheless, we do not expect STEMA to outperform
GenMS with a medium to large-size heap, because STEMA does not perform any
partial GC as in GenMS which can handle short-lived objects well.

The organization of the paper is as follows. Section 2 introduces prolific types
and objects, and the method to identify them. Section 3 describes the properties of
prolific objects. Section 4 discusses STEMA, and how reusing memory can improve
the cache locality of memory references, reduce fragmentation, and speed up the
execution of Java programs. Section 5 presents the implementation of STEMA in
the Jikes RVM and the method used for performance evaluation. Section 6 presents
the experimental results. Section 7 discusses related work. Finally, we conclude the
paper and discuss possible future work.

2. ONLINE IDENTIFICATION OF PROLIFIC TYPES

Prolific types can be identified with offline profiling or online profiling. Offline
profiling simply counts the number of objects created in a program for each type.
Shuf et al. use this method to identify prolific types. In their experiment, a type
is regarded as prolific if its number of objects is larger than 1% of the program’s
total number of objects of any type.

Identifying prolific types offline has two problems. First, it needs an extra profile
run of the program to collect the required information; second, methods such as
Shuf et al. may miss some localized phenomena. Conversely, because the type count

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, February 2007.

4 . Zoe C.H. Yu et al.

Executing Profiling Adaptive Sampling Detected Prolific Type
Code | b System Hot Types Analysis

Prolific Type

} Online Profile: The prolificacy of types affects
|

space allocation decisions for objects. Designations

— 1

Offline Profile: Prolific type information of previous program Offline

|___ runsis fed back to the system to influence allocation decisions. | Repository

Fig. 1. Architecture of the Online Type Sampling System

SAMPLING(size, type)
1 bytesAllocated «— bytesAllocated + size
2 if bytesAllocated > BYTES_ALLOCATED then
3 type.incrementCount(type.id)
4 bytesAllocated «— 0

Fig. 2. Pseudocode for Sampling Prolific Types

is cumulative over the entire program execution, some sparingly allocated object
types may be marked as prolific.

STEMA determines type prolificacies on-the-fly (online), and takes into account
also the size of each sampled object. Based on the finding that most prolific objects
are small in size, STEMA skips those objects having a size larger than a certain
threshold. Figure 1 shows the architecture and flow of STEMA’s online type sam-
pling (OTS) mechanism. OTS extends the timer-driven sampling function in the
adaptive optimizing compilation system [Arnold et al. 2000] of the Jikes RVM.
OTS samples an allocating object for every BYTES_ALLOCATED bytes of allo-
cation. The sampling interval, BYTES_ALLOCATED, can be specified statically
or tuned dynamically. Figure 2 is the code fragment used for sampling object types.
Each object type has a counter field for keeping track of its number of instances.
Figure 3 outlines the procedure used to detect prolific types. The invocation of
the THRESHOLD-REACHED method occurs at thread switch points (i.e., method
prologues, method epilogues, and loop backedges). The “hotness” of each type is
updated periodically to reflect the current degree of the type’s prolificacy. A type
is marked as hot if the number of object instances of the type created is equal to
or above a predefined threshold, SAMPLES_REQUIRED, over a certain time
interval.? The type is marked as prolific if it is found to be hot in two or more time
intervals. This prolific type information can be used immediately by STEMA to
inform allocation and object co-location decisions.

To minimize mis-identification of prolific types because of heat accumulation,
STEMA decays the hotness of types continually (every 100 yield points) during
program execution (Figure 4). Thus, a type whose object instantiations are evenly
spread out over the entire course of execution may not be perceived as prolific. This

2In this work, we use the default sampling time interval of 20ms, and a buffer size of 10 samples
(i.e., SAMPLES_REQUIRED).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, February 2007.

Object Co-location and Memory Reuse for Java Programs : 5

THRESHOLD-REACHED(recordedTypes)
1 for each type in recordedTypes do
2 if type.count > SAMPLES_REQUIRED then
type.hotness < type.hotness + 1
if type.hotness > THRESHOLD then
type.isProlific < true
else
type.isProlific — false

o N O UteWw

type.count — 0

Fig. 3. Pseudocode for Determining the Prolificacy of Types

DECAY-HOTNESS(recordedT ypes)
1 for each type in recordedTypes do
2 type.hotness « type.hotness x DECAY _RATE

Fig. 4. Decaying the Prolificacy of Types

helps separate out genuinely hot objects that are created in bursts.

STEMA provides the user with an option to record the prolific types detected
in an offline repository (implemented as a simple log file in our prototype). The
user can use this offline profile to carry out various optimizations, but avoid the
overhead of the online sampling.

3. PROPERTIES OF PROLIFIC OBJECTS

A number of important properties of prolific objects provide optimization opportu-
nities for the memory manager and the application programs. We have identified
seven such properties, labeled P1 to P7 in the following, which are true of most
prolific objects most of the time. The design of STEMA capitalizes on these prop-
erties.

P1. Prolific objects are small in size.

P2. Prolific objects die younger than non-prolific objects.

P3. Prolific objects, whether they are of the same type or not, are created in
bursts.

PJ. Prolific objects repeat similar allocation patterns throughout the program
execution.

P5. Prolific objects of the same type have similar lifetimes in a program if they
are allocated at similar times.

P6. Prolific objects, not necessarily of the same type, tend to die simultaneously
if they are allocated at similar times.

P7. Objects of the same type tend to be accessed together.

P1 and P2 are due to [Shuf et al. 2002]. P3 through P7 are derived from our
own experiments [Yu et al. 2006]. If P is not true, the system would easily run
out of memory. P2 suggests that prolific objects have shorter lifetime than non-
prolific objects. Because of the importance of P2, we conducted an experiment
to confirm its truthfulness, where we used an instrumented version of the trace-
generation algorithm Merlin [Hertz et al. 2002] to generate perfect traces (using

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, February 2007.

6 . Zoe C.H. Yu et al.

Table I. The Benchmarks
| Benchmark || Description

compress || A modified Lempel-Ziv method (LZW) for data compression.
jess A Java Expert Shell System for puzzle solving.
raytrace A ray tracer which works on a scene depicting a dinosaur.
db Performs multiple database functions on memory resident database.
javac || The Java compiler from JDK 1.0.2.
mtrt A multithreaded version of raytrace.
jack A Java parser generator.
antlr A parser generator and translator generator.
bloat A Java bytecode optimizer for optimizing Java bytecode files.
fop A Formatting Objects Processor for generating PDF from XSL-FO file.
hsqldb A SQL relational database engine for in-memory trasactions.
jython An implementation of the Python language in Java.
ps A postscript interpreter.
xalan An XSLT processor for transforming XML documents.
gcbench An artifical garbage collector benchmark.

Table II. Average Lifetimes of Prolific, Non-Prolific, and Small Objects

Average Lifetime (in bytes allocated)
Prolific Objects Non-Prolific Objects Small Objects
Benchmark GM. | AM GM. | AM GM. | AM
compress 14 410 22 16682 19 12607
jess 3 3 33 5772 18 4353
raytrace 12 76 42 7510 14 800
db 5 13 11 20060 6 1599
javac 24 149 60 244767 55 222728
mtrt 11 109 22 449 17 299
jack 15 119 12 15312 13 10316
antlr 4 18 23 13277 16 10520
bloat 37 74 39 8260 37 68722
fop 7 29 27 10579 21 8622
hsqldb 48 179 24 43838 26 38158
jython 5 7 34 22289 8 5409
ps 65 88 24 1673 34 1095
xalan 9 88 25 11052 20 9050
gcbench 20 57 31 426 21 105

low trace granularity) of objects’ lifetimes for the first 64MB memory allocated for
the benchmarks shown in Table I. Merlin works by computing backward in time
to find when a garbage-collected object is last reachable (i.e., last used) so that
the actual lifetime of an object can be obtained. Table IT compares the average
lifetimes of prolific objects, non-prolific objects, and small objects (objects which are
smaller than 256KB in size). The “G.M.” and the “A.M.” columns of each object
type category refer to the geometric mean and the arithmetic mean of objects’
average lifetimes respectively. Where the arithmetic mean is much larger than the
geometric mean, it indicates that the object type category contains some very long-
lived objects. Thus, Table II reveals that there are more long-lived non-prolific
objects than long-lived prolific objects, and that most longest-lived objects are
non-prolific. Comparing prolific objects with small objects of any type, more small
objects than prolific objects are long-lived. This means that we can filter out most
long-lived objects by the prolificacy of types, but not by object sizes.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, February 2007.

Object Co-location and Memory Reuse for Java Programs . 7

16384 T 262144 T

Cha‘racter‘ Array‘s (chall[])
65536 A

Byte Arrays (bytel])

4096 B
16384 - B
1024 A
4096

256 - 7 1024

64 |] 256 -

64 |-

Number of Objects
Number of Objects

8 16 32 64 128 256 512 1024 2048 4096 8192 8 16 32 64 128 256 512 1024 2048 4096 8192
Object Size Buckets (in Bytes Allocated) Object Size Buckets (in Bytes Allocated)
(a) Byte Arrays in hsqldb (b) Character Arrays in antlr

Fig. 5. Size Distribution of Byte Arrays (Left) and Character Arrays (Right)

P3 states that prolific objects tend to be created in large numbers within a short
period of time. If P2 is not true, P8 cannot be true either because then the demand
of memory by the burst of requests would be far too great. To give an example of
P/, suppose T and T» are two prolific types; if the instances of these two types
are created in the order of Ty,T5, T, T1,T5,T> and so on, it is likely that this or
a similar instantiation pattern will repeat in the near future. P6 implies P35, but
we single out prolific objects of the same type in P5 because they are much more
likely than unrelated objects to die together, thus creating an opportunity for more
memory blocks to be reused. P7 is true of all objects, prolific or not, because
objects of the same type are usually related.

We have also identified three additional properties which are specific to arrays
and Java objects:

SP1. Arrays having potentially many different sizes are not suitable for reuse.
For example, character and byte arrays.

SP2. Interned objects are not suitable for reuse. For example, objects of String
type in the standard Java API.

SP3. Objects of types in the Java Collections Framework such as Hashtable and
Vector are not suitable for reuse.

Character arrays and byte arrays have various sizes—for example, from 20 bytes
or so to several kilobytes as illustrated in Figure 5. If they are allocated in the R-
space, they will present a hurdle to memory block reuse because very large objects
are usually long-lived. String type objects in standard Java API are not suitable
for reuse because String objects are immutable and interned in JVM (including the
Jikes RVM). SP3 is true because object types belonging to the Java Collections
Framework are more likely to be long-lived. For example, data structures such as
Hashtable, HashSet, Vector and the like are usually used for a long period of time be-
fore they are discarded, because they support convenient and efficient management
and manipulation of large amount of data. Table III shows the average lifetimes of
character arrays, byte arrays, String objects, and objects of types belonging to the
Java Collections Framework. When comparing these results with the corresponding
lifetimes of prolific objects and non-prolific objects in Table II, these special objects

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, February 2007.

8 Zoe C.H. Yu et al.
Table ITI. Average Lifetimes of Objects of Different Types
Average Lifetime (in bytes allocated)
Benchmark Object Class Name G.M. | A.M.
compress || bytel] 15 6202
java.util.HashMap$HashEntry[] 496 31158
jess || char[] 15 60
java.lang.String 31 2007
raytrace java.lang.String 6 110
db || char[] 16 7265
java.lang.String 33 198694
java.util.Vector 829704 4227402
javac java.lang.String 16 5350
java.util.Hashtable$HashEntry 622 1373917
java.util.Hashtable$HashEntry[] 151 310043
mtrt || java.lang.String 33 89
jack || java.lang.String 19 20055
java.util.Vector 851 31286
antlr || char[] 12619 19087
java.lang.String 39 23739
bloat || java.lang.String 29 4743
java.util.HashMap$HashEntry[] 464 93397
fop || java.util.ArrayList 17 2359
hsqldb || bytell 13 116
java.lang.String 36 137
java.util.HashMap 91 855
java.util.HashMap$HashEntry[] 141 110879
jython char[] 24 8511
java.lang.String 92 46278
java.util.HashMap$HashEntry[] 1263044 2921728
ps java.lang.String 18 184
java.util.Stack 119 233
xalan java.lang.String 27 901

are as long-lived as non-prolific objects in many cases. Hence, we have SP2 and

SP3.

4. SPACE-TIME EFFICIENT MEMORY ALLOCATOR (STEMA)

STEMA performs the following actions in response to the properties of prolific
objects identified in Section 3.

A1. In response to P1, the check for prolificacy is skipped for large objects, and
these objects are directly allocated in the large object space.

A2. P2, together with P3 and P, offers an opportunity for memory block reuse.
STEMA thus retains the memory block vacated by objects of a certain prolific type
at GC time and reuses the block as soon as possible for future objects of the type.

A38. Inresponse to P7, STEMA tries to co-locate prolific objects of the same type
in the same memory block in the R-space. Because of P3 and P¥3, such co-location
is possible.

A4. Because of P4 and P6, memory blocks allocated at similar times to different
prolific objects are placed side-by-side in the heap.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, February 2007.

Object Co-location and Memory Reuse for Java Programs : 9

Request2
Allocation : :)
Request | Memory Allocator , Requestl Reuser Retain
B —— (Reusable Space)
—________. Reques4
s I ‘
Allocation
Request : Memory Allocator ; Garbage
<— (Non-Reusable Space) |: Request3 Collector

Fig. 6. STEMA: Reuser, Memory Allocators, and Garbage Collector

Ab. Because of SP1, STEMA would not allocate character arrays and byte arrays
in the R-space.

A6. By SP2 and SP3, STEMA would not allocate objects belonging to the Java
Collections Framework in the R-space.

The above actions speed up object instantiation, improve cache locality, and
reduce fragmentation, and as a result, the total execution time of Java programs is
shortened. Because of A2, coalescing memory blocks into the pool of free virtual
memory resources maintained by the JVM is deferred until necessary. And by
allocating the retained memory blocks as soon as possible, the header information
of the memory blocks can be reused. Both of these lead to faster memory allocation
as well as better L1 data cache locality. A8 helps improve the mutator L2 cache
locality of Java programs, because objects of the same prolific type are likely to be
accessed together; and the same is true of objects of different prolific types because
of A4. Co-location of objects (A3 and A/) can reduce fragmentation; so can A5
and A6 because objects of many different sizes and lifetimes would not all cram
together in the R-space. These actions thus lower the minimum space requirement
of Java programs.

4.1 Architecture of STEMA

STEMA consists of three components: two memory allocators, a garbage collector,
and a reuser (Figure 6). The garbage collector detects memory blocks in the R-space
containing only no-longer-needed prolific objects at GC times. The reuser retains
some of these memory blocks in the R-space based on history (to be discussed in
Section 4.3). The two memory allocators are for the R-space and the NR-space
respectively. The R-space allocator first requests a memory block from the reuser
(i.e., Requestl) which can promptly allocate a memory block, if one is available,
from the list of retained blocks. If none is available, the R-space allocator requests a
new block from the pool of virtual memory resources maintained by the JVM (i.e.,
Request?2), which takes longer time. On the other hand, the NR-space allocator
requests a memory block from the JVM’s pool (i.e., Request3) first. If the pool has
run out of memory, the reuser will transfer some unused retained blocks (if any) to
the NR-space (i.e., Request/), thus avoiding premature invocation of GC and over
retention of memory blocks in the heap. GC is triggered if the heap memory is
exhausted.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, February 2007.

10 . Zoe C.H. Yu et al.

Reusable | Non-Reusable Large Object | Meta—data | Immortal | Boot Image
Space Space : Space Space Space Space
Hi ——— Lo

Fig. 7. Heap Layout of STEMA in the Jikes RVM

4.2 Dynamic Allocation Targets

Figure 7 shows the heap layout of STEMA. STEMA has six memory spaces:
reusable space (R-space), non-reusable space (NR-space), large object space, meta-
data space, immortal space, and boot image space. To enable the reuse of memory
blocks, prolific objects and non-prolific objects are allocated to the R-space and
the NR-space respectively. Large or very large objects (i.e., of size greater than
8K bytes) are allocated to the large object space. The meta-data space, immortal
space, and the boot image space are specific to the Jikes RVM and will not be
garbage-collected.

4.3 Memory Block Reuse Policies

In a garbage-collected system where stop-the-world GC is used, the mutator has
to be suspended whenever GC is triggered. STEMA keeps track of the number
of memory blocks allocated to each prolific type in each mutator phase. This
information is used by the garbage collector to estimate the number of memory
blocks to be retained for each type in the upcoming GC for future prolific object
allocations. A memory block is retained by inserting it into a linked-list in last-
in-first-out order instead of merging it into the JVM’s pool of virtual memory
resources. It is reasonable to assume that the number of memory blocks allocated
for each prolific type is more or less the same over two consecutive mutator phases.
So the number of memory blocks retained for each prolific type is no more than the
number allocated for each prolific type in the last mutator phase. A memory block
can be retained for future reuse only if all the objects it contains are found to be
dead at GC time.

Retaining and reusing memory blocks reduce unnecessary coalescing and splitting
of memory blocks at GC and memory allocation times. This helps speed up the
process of memory allocation. Figure 8 shows the memory allocation routine of
STEMA. At allocation time, when going through the fast path of the allocation
sequence (allocFast), if all memory cells of an active memory block for the type
in question in the R-space are occupied, STEMA will obtain a memory block from
the pool of retained blocks for allocation; if the pool is empty, a new memory block
is obtained from the free memory pool—the slow path (allocSlow). Allocating a
memory block from the pool of retained blocks (allocReuse, line 4 of the ALLOC
method for ALLOC_REUSER) requires just a conditional check for the availability
of the memory block in a linked-list; it does not require constructing a freelist of
allocation entries from scratch, which simplifies the allocation process.

4.4 Object Co-location

STEMA’s co-location strategy is divided into two courses of action. First, STEMA
co-locates objects of the same prolific type in the same memory block residing

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, February 2007.

Object Co-location and Memory Reuse for Java Programs . 11

ALLoc(size)
1 Address cell — allocFast(size)
2 if cell.isZero() then
3 return allocSlow(size)
4 else
5 return cell

(a) Allocation Routine in the Non-Reusable Memory Space (ALLOC_DEFAULT)

ALLOC(size, type)

1 Address cell — allocFast(size,type)

2 if cell.isZero() then

3 // Alloc memory block from the retained memory pool
cell — allocReuse(size, type)
if cell.isZero() then

return allocSlow(size, type)

SIS IS

return cell

(b

=

Allocation Routine in the Reusable Memory Space (ALLOC_REUSER)

Fig. 8. Memory Block Allocation Routines in STEMA

in the R-space. This can improve the mutator cache locality of Java programs,
because objects of the same type are usually connected directly or indirectly, and
are likely to be accessed together during execution. Prolific objects being created
at about the same time are likely to have a similar lifespan. If they would die at
more or less the same time, the memory block they occupy can be conveniently
retained and reused. As shown in Figure 8(b), STEMA checks the type of the
object and allocates the object in the memory block dedicated to that prolific type
at allocation time. Thus, objects of the same prolific type are placed together in
the same memory block. Since prolific objects are created in bursts, prolific objects
residing in the same memory block tend to have similar lifetimes, which leads to
reduced fragmentation.

Second, STEMA co-locates memory blocks for different prolific types in the R-
space. We have observed that object creation patterns involving multiple types
tend to repeat. So if two memory blocks, each accommodating objects of a dif-
ferent prolific type, are sitting next to each other at the beginning of the program
execution, there is a good chance that their adjacency will persist for much longer
or until the end of program execution. Thus, retaining and reusing these memory
blocks preserve the cache locality of these object types, because they are likely to
be accessed together also.

4.5 Effects of Memory Block Reuse on Locality

During GC, memory blocks that are suitable for retention are inserted into per-
size stack-like lists so that the “top” pointer of each list always points to the most
recently retained blocks. To increase cache hits, STEMA preferentially allocates
prolific objects to memory cells of the recently accessed blocks which are the latest
blocks joining the retention pool in the R-space. This ensures that the prolific
objects always try to fill the retained memory blocks in the retained block lists,
which increases the chance that all prolific objects in the retained memory blocks

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, February 2007.

12 . Zoe C.H. Yu et al.

become dead together at GC time. This also avoids using memory blocks with
only a few unused memory cells left; GC is likely to occur before these memory
cells can be used. This has a number of advantages. First, it avoids inducing more
cache misses which come with memory blocks that are not accessed for sometime.
Second, it avoids mixing old objects with newly created objects, which reduces
fragmentation. Each memory block in the R-space is homogeneous, meaning that
the prolific objects in the same memory block have the same type and size. This
can help improve the cache locality of programs, because these objects are likely to
be accessed together.

4.6 Fragmentation

Fragmentation occurs when the program has free memory which cannot be used
because the memory available is partitioned into small pieces of which not a single
one is large enough for an allocation request. Co-locating prolific objects at allo-
cation time can help reduce fragmentation because of the similar lifetime property
of prolific objects. Hence, we can retain and reuse the memory blocks allocated to
these objects. If less memory is wasted due to fragmentation, fewer GCs will need
to be triggered [Choi et al. 2005]. As a result, the GC time as well as the total
execution time of a program would be improved.

4.7 Aggressive Transfer of Unused Memory Blocks

To avoid premature GC invocations or out-of-memory errors due to excessive re-
tention of memory blocks for prolific objects, STEMA can transfer unused retained
memory blocks from the R-space to the NR-space. Normally, the NR-space al-
locator requests memory blocks via the slow path of the allocation sequence. If
however the free memory from the slow path is exhausted, and there are unused
retained memory blocks in the R-space, STEMA aggressively transfers all the un-
used retained memory blocks from the R-space to the NR-space. We decide to
transfer all the retained memory blocks because when in this situation, very few
prolific objects will be allocated in the remainder of a mutator phase. Releasing all
the retained memory blocks in the R-space ensures that there is no unused, empty
memory block in the heap before triggering a GC.

5. METHODOLOGY

In this section, we describe the tools used to develop STEMA. We also present
the methodology used to evaluate the system, the experimental platform, and the
benchmarks used and their key characteristics.

5.1 Jikes RVM and lts Compilers

We use IBM’s Jikes RVM v2.3.4 using GNU classpath 0.12 with CVS timestamp of
“2004/12/24 14:20:40 UTC” [Alpern et al. 2000; Alpern et al. 2005] for implement-
ing STEMA. The Jikes RVM is an open-source high-performance virtual machine
written mostly in Java. It has a baseline compiler and an optimizing compiler, but
no bytecode interpreter. The Jikes RVM generates machine code using its baseline
compiler for any methods that are initially executed. With its adaptive optimiza-
tion system [Arnold et al. 2000] enabled, the Jikes RVM compiles the frequently

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, February 2007.

Object Co-location and Memory Reuse for Java Programs : 13

executed methods using its optimizing compiler at an increased level of optimization
based on the method samples it collects during runtime.

We use the Fast configuration of the JIT compilation, which precompiles as much
code as possible, with the key libraries and the optimizing compiler included, and
the assertion checking turned off. This adaptive configuration uses timer-based
sampling to select hot methods for recompilation and optimization in order to
achieve high performance. However, this timer-based sampling introduces non-
determinism and thus a variation in the measured time performance when different
sets of hot methods are recompiled and optimized in different runs of the same
program [Eeckhout et al. 2003]. Therefore, we use the pseudo-adaptive compilation
method [Sachindran and Moss 2003] to control the non-determinism of the adaptive
compilation mechanism. We run each benchmark program five times, and collect
the log of hot methods and their corresponding optimization levels in each run. For
each program, we pick the log for which the program has the best execution time,
and use it to decide on the compilation level at which to compile a method using
the optimizing compiler in the evaluation runs of the program.

OTS piggybacks on the timer-based sampling mechanism of the Jikes RVM. It
suffers from the same non-determinism problem as the adaptive optimization sys-
tem in the Jikes RVM. We use the same approach just mentioned to collect type
prolificacy information for each benchmark program. This information is fed back
to the system to advice which object types should be allocated in the R-space
deterministically.

In our evaluation runs, each benchmark program execution goes through two
iterations. In the first iteration, the compiler optimizes the methods according to
the optimization levels specified in the log file. At the same time, the Jikes RVM
loads the type prolificacy information into the system to inform the allocation
decisions. Before the second iteration of the program, GC is triggered to flush the
compiler objects in the heap. We execute each program five times and report the
average result.

5.2 Memory Allocators and Collectors

STEMA is modified from the MarkSweep collector of the Memory Managment
Toolkit (MMTk) [Blackburn et al. 2004] in the Jikes RVM.

The MarkSweep collector has no concept of type prolificacy, and both prolific
objects and non-prolific objects are allocated in the NR-space. When the heap
is full, the MarkSweep collector triggers a GC. When that happens, the collector
traces and marks lived objects starting from the roots (i.e., static variables and
thread stacks) using bitmaps, and returns memory blocks containing only dead
objects to the virtual memory resource pool. STEMA introduces a new R-space
for accommodating prolific objects. STEMA does not return empty memory blocks
belonging to the R-space to the virtual memory resource pool immediately at GC
times, but retains a suitable amount of memory blocks for each prolific type in
the heap, thus reducing the need to coalesce or split memory blocks in the virtual
memory resource pool. The MarkSweep collector finds free memory cells in non-
empty memory blocks lazily to construct freelists for object allocations. STEMA
further defers the construction of such freelists by preferentially allocating prolific
objects in the retained memory blocks. It finds free memory cells to construct

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, February 2007.

14 . Zoe C.H. Yu et al.

freelists for allocation only when the retained memory blocks are all used up. This
actually helps improve the execution time of programs. Finally, the MarkSweep
collector allocates objects of the same size in the same memory block, regardless of
their types. STEMA co-locates prolific objects of the same type at allocation time,
which leads to increased locality, less fragmentation, and improved performance of
the executing programs.

We also evaluate STEMA against two non-generational GC systems, SemiSpace
and CopyMS, and a generational GC system, GenMS. SemiSpace uses two copying
spaces. Objects are continuously allocated in one copying space by bumping a
pointer, and the other space is reserved for copying lived objects at GC time. The
two copying spaces are swapped after each collection. CopyMS is a hybrid version
of the SemiSpace and the MarkSweep collector. CopyMS allocates objects in a
copying space with a bump pointer allocator, and copies lived objects to a mark-
and-sweep space when the heap is full. CopyMS does not require a copy reserved as
in SemiSpace, and is thus more space efficien