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Object Co-location and Memory Reuse for Java

Programs

ZOE C.H. YU, FRANCIS C.M. LAU, and CHO-LI WANG

The University of Hong Kong

We introduce a new memory management system, STEMA, which can improve the execution
time of Java programs. STEMA detects prolific types on-the-fly and co-locates their objects
in a special memory space which supports reuse of memory. We argue and show that memory
reuse and co-location of prolific objects can result in improved cache locality, reduced memory
fragmentation, reduced GC time, and faster object allocation. We evaluate STEMA using 16
benchmarks. Experimental results show that STEMA performs 2.7%, 4.0%, and 8.2% on average
better than MarkSweep, CopyMS, and SemiSpace.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Memory
management (garbage collection); D.4.2 [Operating Systems]: Storage Management—Alloca-
tion/deallocation strategies

General Terms: Experimentation, Languages, Measurement, Performance

Additional Key Words and Phrases: Memory allocator, garbage collector, mutator, Java, object
co-location, memory reuse

1. INTRODUCTION

Java has been widely used on many systems ranging from high-end servers, PCs,
to embedded systems and mobile handsets. Java’s success derives in large part
from the success of the Java Virtual Machine (JVM) [Lindholm and Yellin 1999].
Among the outstanding functions of the JVM, automatic memory management,
which manages dynamically allocated memory for the programmer, contributes
significantly to the software engineering benefits and user-friendliness of Java. This
function includes a garbage collection (GC) mechanism to detect no-longer-needed
memory in the heap and reclaim them safely for future allocation. GC however can
have a negative impact on the runtime performance of programs, as it needs to be
triggered intermittently [Brecht et al. 2001]. Our first goal is to make the memory
management function (and GC) work faster. It has been observed that there is a
widening gap between processor speed and memory latency, the result of which is
that the effect of hardware cache misses on the performance of a runtime system
becomes increasingly significant [Sun Microsystems 2003]. Our second goal is to
find a way to improve the cache locality of the executing program. Faster memory
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management operations and improved cache locality combined is expected to lead
to increased execution speeds of the application programs.

A program will have a better time performance if it is provided with a large heap,
because fewer GCs will be necessary. But a large heap cannot always be taken for
granted, especially in view of the prolification of small-memory and multiprocess-
ing platforms. For embedded systems and mobile handsets, the memory resource is
constrained. For multiprogrammed systems, memory available for a program may
fluctuate intensely because of the competition from concurrent computational pro-
cesses [Yang et al. 2004]. Our third goal in the design of the memory management
system is to enable programs to run efficiently with a small memory footprint—i.e.,
small heap size.

Our strategies to achieve the above are embodied in a new memory management
system called STEMA (Space-Time Efficient Memory Allocator) which aims to im-
prove the total execution time of Java programs. Following the literature [Dijkstra
et al. 1978], the total execution time of a program consists of the mutator time
and the collector time. Mutator time is the actual time used to execute the user
program. Times to carry out some memory management related operations such
as object allocation and write barrier are included in the mutator time. Collector
time (also known as GC time) is the time spent in detecting and reclaiming no-
longer-needed heap memory. STEMA achieves better mutator cache locality and
reduced memory fragmentation, which gives rise to shorter mutator and GC time.

STEMA extends and improves the work of Shuf et al. [2002], who referred to
frequently instantiated object types as prolific types and developed a type-based
collector based on them. Their idea is to collect prolific type objects (or simply
prolific objects) more frequently because these objects tend to have a shorter life-
time than other objects. They allocate these objects in a prolific region and other
objects in a non-prolific region so that partial GC on only the prolific objects can
be performed. By co-locating prolific objects that are connected by object refer-
ences, and visiting these objects before other objects at GC times, they improve
the collector cache locality.

STEMA rides on the notion of prolific types to optimize its decisions on memory
allocation and object co-location. It introduces reuse of memory blocks1 for prolific
objects, and allocates them in a reusable memory space (R-space), and the rest
in a non-reusable memory space (NR-space). Co-location of prolific objects in
the R-space happens in two different ways, which lead to improved mutator cache
locality and reduced memory fragmentation: objects of the same prolific type are
placed side-by-side in the same memory block; objects of different prolific types
that are created at similar times are arranged to be close to each other in their
respective memory blocks in the R-space. If all objects in a memory block are dead
at some GC time, instead of returning the block to the free virtual memory resource
pool of the JVM, STEMA retains the memory block in the heap; then by reusing

1A memory block is a chunk of memory which is partitioned into a certain number of size-k
memory cells; the size of a memory block is page aligned, i.e., a multiple of 4KB, for efficient
address computation; a memory cell is a unit of allocation in a memory block; a size-k memory
cell can be used to accommodate an object with size no larger than k bytes; the memory cells of
the same memory block have the same size.
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these retained blocks as soon as possible later on at allocation times, the memory
allocation process is simplified, and the number of L1 cache misses induced by the
new objects is reduced.

Unlike the work of Shuf et al. where they perform partial GC on prolific objects
more frequently and thus require the use of write barrier, STEMA applies GC to
both the R-region and the NR-region at GC times. Thus, STEMA does not have
any overhead due to write barrier and has a smaller minimum heap requirement.
Moreover, STEMA identifies the prolificacy of types on-the-fly using a low-overhead
online type sampling (OTS) mechanism. This dynamic prolific type information can
be used immediately by STEMA for its allocation decisions. The information can
also be recorded offline so that STEMA could make use of it in its future runs,
thus avoiding the online sample overhead in these runs. With online identification
of prolific types, STEMA does not require a profile run to collect prolific type
information before an actual run of the program.

We evaluate the performance of STEMA using the eight SPECjvm98 bench-
marks [SPEC 1998], seven of the DaCapo benchmarks [DaCapo 2004], and the
gcbench [Boehm 1997] benchmark. The experimental results show that STEMA
outperforms the MarkSweep, CopyMS, and SemiSpace collectors included in the
Jikes RVM over all the benchmarks by an average of 3.0%, 3.4%, and 28.8% for a
small heap; 2.6%, 6.7%, and 9.0% for a medium heap; and 2.4%, 5.3%, and 2.1%
for a large heap. We show that the performance improvement is due to better
mutator time and reduced memory fragmentation in most of the executions. Com-
pared with GenMS (a two-generational collector in the Jikes RVM), STEMA can
run all benchmarks including those that cannot be run to completion in GenMS
when given a small heap, and so STEMA may be a better choice for systems with
tight memory provision. Nevertheless, we do not expect STEMA to outperform
GenMS with a medium to large-size heap, because STEMA does not perform any
partial GC as in GenMS which can handle short-lived objects well.

The organization of the paper is as follows. Section 2 introduces prolific types
and objects, and the method to identify them. Section 3 describes the properties of
prolific objects. Section 4 discusses STEMA, and how reusing memory can improve
the cache locality of memory references, reduce fragmentation, and speed up the
execution of Java programs. Section 5 presents the implementation of STEMA in
the Jikes RVM and the method used for performance evaluation. Section 6 presents
the experimental results. Section 7 discusses related work. Finally, we conclude the
paper and discuss possible future work.

2. ONLINE IDENTIFICATION OF PROLIFIC TYPES

Prolific types can be identified with offline profiling or online profiling. Offline
profiling simply counts the number of objects created in a program for each type.
Shuf et al. use this method to identify prolific types. In their experiment, a type
is regarded as prolific if its number of objects is larger than 1% of the program’s
total number of objects of any type.

Identifying prolific types offline has two problems. First, it needs an extra profile
run of the program to collect the required information; second, methods such as
Shuf et al. may miss some localized phenomena. Conversely, because the type count
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Adaptive Sampling
System

Executing
Code

Detected
Hot Types

Prolific Type
Analysis

Offline
Repository

Prolific Type
Designations

Online Profile: The prolificacy of types affects
space allocation decisions for objects.

Profiling

Offline Profile: Prolific type information of previous program
runs is fed back to the system to influence allocation decisions.

Fig. 1. Architecture of the Online Type Sampling System

Sampling(size, type)
1 bytesAllocated← bytesAllocated + size

2 if bytesAllocated > BY TES ALLOCATED then

3 type.incrementCount(type.id)

4 bytesAllocated← 0

Fig. 2. Pseudocode for Sampling Prolific Types

is cumulative over the entire program execution, some sparingly allocated object
types may be marked as prolific.

STEMA determines type prolificacies on-the-fly (online), and takes into account
also the size of each sampled object. Based on the finding that most prolific objects
are small in size, STEMA skips those objects having a size larger than a certain
threshold. Figure 1 shows the architecture and flow of STEMA’s online type sam-

pling (OTS) mechanism. OTS extends the timer-driven sampling function in the
adaptive optimizing compilation system [Arnold et al. 2000] of the Jikes RVM.
OTS samples an allocating object for every BY TES ALLOCATED bytes of allo-
cation. The sampling interval, BY TES ALLOCATED, can be specified statically
or tuned dynamically. Figure 2 is the code fragment used for sampling object types.
Each object type has a counter field for keeping track of its number of instances.
Figure 3 outlines the procedure used to detect prolific types. The invocation of
the Threshold-Reached method occurs at thread switch points (i.e., method
prologues, method epilogues, and loop backedges). The “hotness” of each type is
updated periodically to reflect the current degree of the type’s prolificacy. A type
is marked as hot if the number of object instances of the type created is equal to
or above a predefined threshold, SAMPLES REQUIRED, over a certain time
interval.2 The type is marked as prolific if it is found to be hot in two or more time
intervals. This prolific type information can be used immediately by STEMA to
inform allocation and object co-location decisions.

To minimize mis-identification of prolific types because of heat accumulation,
STEMA decays the hotness of types continually (every 100 yield points) during
program execution (Figure 4). Thus, a type whose object instantiations are evenly
spread out over the entire course of execution may not be perceived as prolific. This

2In this work, we use the default sampling time interval of 20ms, and a buffer size of 10 samples
(i.e., SAMPLES REQUIRED).
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Threshold-Reached(recordedTypes)
1 for each type in recordedTypes do

2 if type.count > SAMPLES REQUIRED then

3 type.hotness← type.hotness + 1

4 if type.hotness > THRESHOLD then

5 type.isProlific← true

6 else

7 type.isProlific← false

8 type.count← 0

Fig. 3. Pseudocode for Determining the Prolificacy of Types

Decay-Hotness(recordedTypes)
1 for each type in recordedTypes do

2 type.hotness← type.hotness×DECAY RATE

Fig. 4. Decaying the Prolificacy of Types

helps separate out genuinely hot objects that are created in bursts.
STEMA provides the user with an option to record the prolific types detected

in an offline repository (implemented as a simple log file in our prototype). The
user can use this offline profile to carry out various optimizations, but avoid the
overhead of the online sampling.

3. PROPERTIES OF PROLIFIC OBJECTS

A number of important properties of prolific objects provide optimization opportu-
nities for the memory manager and the application programs. We have identified
seven such properties, labeled P1 to P7 in the following, which are true of most
prolific objects most of the time. The design of STEMA capitalizes on these prop-
erties.

P1. Prolific objects are small in size.

P2. Prolific objects die younger than non-prolific objects.

P3. Prolific objects, whether they are of the same type or not, are created in
bursts.

P4. Prolific objects repeat similar allocation patterns throughout the program
execution.

P5. Prolific objects of the same type have similar lifetimes in a program if they
are allocated at similar times.

P6. Prolific objects, not necessarily of the same type, tend to die simultaneously
if they are allocated at similar times.

P7. Objects of the same type tend to be accessed together.

P1 and P2 are due to [Shuf et al. 2002]. P3 through P7 are derived from our
own experiments [Yu et al. 2006]. If P1 is not true, the system would easily run
out of memory. P2 suggests that prolific objects have shorter lifetime than non-
prolific objects. Because of the importance of P2, we conducted an experiment
to confirm its truthfulness, where we used an instrumented version of the trace-
generation algorithm Merlin [Hertz et al. 2002] to generate perfect traces (using
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Table I. The Benchmarks

Benchmark Description

compress A modified Lempel-Ziv method (LZW) for data compression.
jess A Java Expert Shell System for puzzle solving.

raytrace A ray tracer which works on a scene depicting a dinosaur.
db Performs multiple database functions on memory resident database.

javac The Java compiler from JDK 1.0.2.
mtrt A multithreaded version of raytrace.
jack A Java parser generator.

antlr A parser generator and translator generator.
bloat A Java bytecode optimizer for optimizing Java bytecode files.

fop A Formatting Objects Processor for generating PDF from XSL-FO file.
hsqldb A SQL relational database engine for in-memory trasactions.
jython An implementation of the Python language in Java.

ps A postscript interpreter.
xalan An XSLT processor for transforming XML documents.

gcbench An artifical garbage collector benchmark.

Table II. Average Lifetimes of Prolific, Non-Prolific, and Small Objects

Average Lifetime (in bytes allocated)
Prolific Objects Non-Prolific Objects Small Objects

Benchmark G.M. A.M. G.M. A.M. G.M. A.M.

compress 14 410 22 16682 19 12607
jess 3 3 33 5772 18 4353

raytrace 12 76 42 7510 14 800
db 5 13 11 20060 6 1599

javac 24 149 60 244767 55 222728
mtrt 11 109 22 449 17 299
jack 15 119 12 15312 13 10316

antlr 4 18 23 13277 16 10520
bloat 37 74 39 8260 37 68722

fop 7 29 27 10579 21 8622
hsqldb 48 179 24 43838 26 38158
jython 5 77 34 22289 8 5409

ps 65 88 24 1673 34 1095
xalan 9 88 25 11052 20 9050

gcbench 20 57 31 426 21 105

low trace granularity) of objects’ lifetimes for the first 64MB memory allocated for
the benchmarks shown in Table I. Merlin works by computing backward in time
to find when a garbage-collected object is last reachable (i.e., last used) so that
the actual lifetime of an object can be obtained. Table II compares the average
lifetimes of prolific objects, non-prolific objects, and small objects (objects which are
smaller than 256KB in size). The “G.M.” and the “A.M.” columns of each object
type category refer to the geometric mean and the arithmetic mean of objects’
average lifetimes respectively. Where the arithmetic mean is much larger than the
geometric mean, it indicates that the object type category contains some very long-
lived objects. Thus, Table II reveals that there are more long-lived non-prolific
objects than long-lived prolific objects, and that most longest-lived objects are
non-prolific. Comparing prolific objects with small objects of any type, more small
objects than prolific objects are long-lived. This means that we can filter out most
long-lived objects by the prolificacy of types, but not by object sizes.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, February 2007.
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Fig. 5. Size Distribution of Byte Arrays (Left) and Character Arrays (Right)

P3 states that prolific objects tend to be created in large numbers within a short
period of time. If P2 is not true, P3 cannot be true either because then the demand
of memory by the burst of requests would be far too great. To give an example of
P4, suppose T1 and T2 are two prolific types; if the instances of these two types
are created in the order of T1, T2, T2, T1, T2, T2 and so on, it is likely that this or
a similar instantiation pattern will repeat in the near future. P6 implies P5, but
we single out prolific objects of the same type in P5 because they are much more
likely than unrelated objects to die together, thus creating an opportunity for more
memory blocks to be reused. P7 is true of all objects, prolific or not, because
objects of the same type are usually related.

We have also identified three additional properties which are specific to arrays
and Java objects:

SP1. Arrays having potentially many different sizes are not suitable for reuse.
For example, character and byte arrays.

SP2. Interned objects are not suitable for reuse. For example, objects of String
type in the standard Java API.

SP3. Objects of types in the Java Collections Framework such as Hashtable and
Vector are not suitable for reuse.

Character arrays and byte arrays have various sizes—for example, from 20 bytes
or so to several kilobytes as illustrated in Figure 5. If they are allocated in the R-
space, they will present a hurdle to memory block reuse because very large objects
are usually long-lived. String type objects in standard Java API are not suitable
for reuse because String objects are immutable and interned in JVM (including the
Jikes RVM). SP3 is true because object types belonging to the Java Collections
Framework are more likely to be long-lived. For example, data structures such as
Hashtable, HashSet, Vector and the like are usually used for a long period of time be-
fore they are discarded, because they support convenient and efficient management
and manipulation of large amount of data. Table III shows the average lifetimes of
character arrays, byte arrays, String objects, and objects of types belonging to the
Java Collections Framework. When comparing these results with the corresponding
lifetimes of prolific objects and non-prolific objects in Table II, these special objects

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, February 2007.
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Table III. Average Lifetimes of Objects of Different Types

Average Lifetime (in bytes allocated)
Benchmark Object Class Name G.M. A.M.

compress byte[] 15 6202
java.util.HashMap$HashEntry[] 496 31158

jess char[] 15 60
java.lang.String 31 2007

raytrace java.lang.String 6 110

db char[] 16 7265
java.lang.String 33 198694
java.util.Vector 829704 4227402

javac java.lang.String 16 5350
java.util.Hashtable$HashEntry 622 1373917
java.util.Hashtable$HashEntry[] 151 310043

mtrt java.lang.String 33 89

jack java.lang.String 19 20055
java.util.Vector 851 31286

antlr char[] 12619 19087
java.lang.String 39 23739

bloat java.lang.String 29 4743
java.util.HashMap$HashEntry[] 464 93397

fop java.util.ArrayList 17 2359

hsqldb byte[] 13 116
java.lang.String 36 137
java.util.HashMap 91 855
java.util.HashMap$HashEntry[] 141 110879

jython char[] 24 8511
java.lang.String 92 46278
java.util.HashMap$HashEntry[] 1263044 2921728

ps java.lang.String 18 184
java.util.Stack 119 233

xalan java.lang.String 27 901

are as long-lived as non-prolific objects in many cases. Hence, we have SP2 and
SP3.

4. SPACE-TIME EFFICIENT MEMORY ALLOCATOR (STEMA)

STEMA performs the following actions in response to the properties of prolific
objects identified in Section 3.

A1. In response to P1, the check for prolificacy is skipped for large objects, and
these objects are directly allocated in the large object space.

A2. P2, together with P3 and P5, offers an opportunity for memory block reuse.
STEMA thus retains the memory block vacated by objects of a certain prolific type
at GC time and reuses the block as soon as possible for future objects of the type.

A3. In response to P7, STEMA tries to co-locate prolific objects of the same type
in the same memory block in the R-space. Because of P3 and P5, such co-location
is possible.

A4. Because of P4 and P6, memory blocks allocated at similar times to different
prolific objects are placed side-by-side in the heap.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, February 2007.
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Fig. 6. STEMA: Reuser, Memory Allocators, and Garbage Collector

A5. Because of SP1, STEMA would not allocate character arrays and byte arrays
in the R-space.

A6. By SP2 and SP3, STEMA would not allocate objects belonging to the Java
Collections Framework in the R-space.

The above actions speed up object instantiation, improve cache locality, and
reduce fragmentation, and as a result, the total execution time of Java programs is
shortened. Because of A2, coalescing memory blocks into the pool of free virtual
memory resources maintained by the JVM is deferred until necessary. And by
allocating the retained memory blocks as soon as possible, the header information
of the memory blocks can be reused. Both of these lead to faster memory allocation
as well as better L1 data cache locality. A3 helps improve the mutator L2 cache
locality of Java programs, because objects of the same prolific type are likely to be
accessed together; and the same is true of objects of different prolific types because
of A4. Co-location of objects (A3 and A4 ) can reduce fragmentation; so can A5

and A6 because objects of many different sizes and lifetimes would not all cram
together in the R-space. These actions thus lower the minimum space requirement
of Java programs.

4.1 Architecture of STEMA

STEMA consists of three components: two memory allocators, a garbage collector,
and a reuser (Figure 6). The garbage collector detects memory blocks in the R-space
containing only no-longer-needed prolific objects at GC times. The reuser retains
some of these memory blocks in the R-space based on history (to be discussed in
Section 4.3). The two memory allocators are for the R-space and the NR-space
respectively. The R-space allocator first requests a memory block from the reuser
(i.e., Request1 ) which can promptly allocate a memory block, if one is available,
from the list of retained blocks. If none is available, the R-space allocator requests a
new block from the pool of virtual memory resources maintained by the JVM (i.e.,
Request2 ), which takes longer time. On the other hand, the NR-space allocator
requests a memory block from the JVM’s pool (i.e., Request3 ) first. If the pool has
run out of memory, the reuser will transfer some unused retained blocks (if any) to
the NR-space (i.e., Request4 ), thus avoiding premature invocation of GC and over
retention of memory blocks in the heap. GC is triggered if the heap memory is
exhausted.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, February 2007.
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Fig. 7. Heap Layout of STEMA in the Jikes RVM

4.2 Dynamic Allocation Targets

Figure 7 shows the heap layout of STEMA. STEMA has six memory spaces:
reusable space (R-space), non-reusable space (NR-space), large object space, meta-
data space, immortal space, and boot image space. To enable the reuse of memory
blocks, prolific objects and non-prolific objects are allocated to the R-space and
the NR-space respectively. Large or very large objects (i.e., of size greater than
8K bytes) are allocated to the large object space. The meta-data space, immortal
space, and the boot image space are specific to the Jikes RVM and will not be
garbage-collected.

4.3 Memory Block Reuse Policies

In a garbage-collected system where stop-the-world GC is used, the mutator has
to be suspended whenever GC is triggered. STEMA keeps track of the number
of memory blocks allocated to each prolific type in each mutator phase. This
information is used by the garbage collector to estimate the number of memory
blocks to be retained for each type in the upcoming GC for future prolific object
allocations. A memory block is retained by inserting it into a linked-list in last-
in-first-out order instead of merging it into the JVM’s pool of virtual memory
resources. It is reasonable to assume that the number of memory blocks allocated
for each prolific type is more or less the same over two consecutive mutator phases.
So the number of memory blocks retained for each prolific type is no more than the
number allocated for each prolific type in the last mutator phase. A memory block
can be retained for future reuse only if all the objects it contains are found to be
dead at GC time.

Retaining and reusing memory blocks reduce unnecessary coalescing and splitting

of memory blocks at GC and memory allocation times. This helps speed up the
process of memory allocation. Figure 8 shows the memory allocation routine of
STEMA. At allocation time, when going through the fast path of the allocation
sequence (allocFast), if all memory cells of an active memory block for the type
in question in the R-space are occupied, STEMA will obtain a memory block from
the pool of retained blocks for allocation; if the pool is empty, a new memory block
is obtained from the free memory pool—the slow path (allocSlow). Allocating a
memory block from the pool of retained blocks (allocReuse, line 4 of the Alloc

method for ALLOC REUSER) requires just a conditional check for the availability
of the memory block in a linked-list; it does not require constructing a freelist of
allocation entries from scratch, which simplifies the allocation process.

4.4 Object Co-location

STEMA’s co-location strategy is divided into two courses of action. First, STEMA
co-locates objects of the same prolific type in the same memory block residing

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, February 2007.
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Alloc(size)
1 Address cell← allocFast(size)

2 if cell.isZero() then

3 return allocSlow(size)

4 else

5 return cell

(a) Allocation Routine in the Non-Reusable Memory Space (ALLOC DEFAULT )

Alloc(size, type)

1 Address cell← allocFast(size, type)

2 if cell.isZero() then

3 // Alloc memory block from the retained memory pool

4 cell← allocReuse(size, type)

5 if cell.isZero() then

6 return allocSlow(size, type)

7 return cell

(b) Allocation Routine in the Reusable Memory Space (ALLOC REUSER)

Fig. 8. Memory Block Allocation Routines in STEMA

in the R-space. This can improve the mutator cache locality of Java programs,
because objects of the same type are usually connected directly or indirectly, and
are likely to be accessed together during execution. Prolific objects being created
at about the same time are likely to have a similar lifespan. If they would die at
more or less the same time, the memory block they occupy can be conveniently
retained and reused. As shown in Figure 8(b), STEMA checks the type of the
object and allocates the object in the memory block dedicated to that prolific type
at allocation time. Thus, objects of the same prolific type are placed together in
the same memory block. Since prolific objects are created in bursts, prolific objects
residing in the same memory block tend to have similar lifetimes, which leads to
reduced fragmentation.

Second, STEMA co-locates memory blocks for different prolific types in the R-
space. We have observed that object creation patterns involving multiple types
tend to repeat. So if two memory blocks, each accommodating objects of a dif-
ferent prolific type, are sitting next to each other at the beginning of the program
execution, there is a good chance that their adjacency will persist for much longer
or until the end of program execution. Thus, retaining and reusing these memory
blocks preserve the cache locality of these object types, because they are likely to
be accessed together also.

4.5 Effects of Memory Block Reuse on Locality

During GC, memory blocks that are suitable for retention are inserted into per-
size stack-like lists so that the “top” pointer of each list always points to the most
recently retained blocks. To increase cache hits, STEMA preferentially allocates
prolific objects to memory cells of the recently accessed blocks which are the latest
blocks joining the retention pool in the R-space. This ensures that the prolific
objects always try to fill the retained memory blocks in the retained block lists,
which increases the chance that all prolific objects in the retained memory blocks
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become dead together at GC time. This also avoids using memory blocks with
only a few unused memory cells left; GC is likely to occur before these memory
cells can be used. This has a number of advantages. First, it avoids inducing more
cache misses which come with memory blocks that are not accessed for sometime.
Second, it avoids mixing old objects with newly created objects, which reduces
fragmentation. Each memory block in the R-space is homogeneous, meaning that
the prolific objects in the same memory block have the same type and size. This
can help improve the cache locality of programs, because these objects are likely to
be accessed together.

4.6 Fragmentation

Fragmentation occurs when the program has free memory which cannot be used
because the memory available is partitioned into small pieces of which not a single
one is large enough for an allocation request. Co-locating prolific objects at allo-
cation time can help reduce fragmentation because of the similar lifetime property
of prolific objects. Hence, we can retain and reuse the memory blocks allocated to
these objects. If less memory is wasted due to fragmentation, fewer GCs will need
to be triggered [Choi et al. 2005]. As a result, the GC time as well as the total
execution time of a program would be improved.

4.7 Aggressive Transfer of Unused Memory Blocks

To avoid premature GC invocations or out-of-memory errors due to excessive re-
tention of memory blocks for prolific objects, STEMA can transfer unused retained
memory blocks from the R-space to the NR-space. Normally, the NR-space al-
locator requests memory blocks via the slow path of the allocation sequence. If
however the free memory from the slow path is exhausted, and there are unused
retained memory blocks in the R-space, STEMA aggressively transfers all the un-
used retained memory blocks from the R-space to the NR-space. We decide to
transfer all the retained memory blocks because when in this situation, very few
prolific objects will be allocated in the remainder of a mutator phase. Releasing all
the retained memory blocks in the R-space ensures that there is no unused, empty
memory block in the heap before triggering a GC.

5. METHODOLOGY

In this section, we describe the tools used to develop STEMA. We also present
the methodology used to evaluate the system, the experimental platform, and the
benchmarks used and their key characteristics.

5.1 Jikes RVM and Its Compilers

We use IBM’s Jikes RVM v2.3.4 using GNU classpath 0.12 with CVS timestamp of
“2004/12/24 14:20:40 UTC” [Alpern et al. 2000; Alpern et al. 2005] for implement-
ing STEMA. The Jikes RVM is an open-source high-performance virtual machine
written mostly in Java. It has a baseline compiler and an optimizing compiler, but
no bytecode interpreter. The Jikes RVM generates machine code using its baseline
compiler for any methods that are initially executed. With its adaptive optimiza-
tion system [Arnold et al. 2000] enabled, the Jikes RVM compiles the frequently

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, February 2007.



Object Co-location and Memory Reuse for Java Programs · 13

executed methods using its optimizing compiler at an increased level of optimization
based on the method samples it collects during runtime.

We use the Fast configuration of the JIT compilation, which precompiles as much
code as possible, with the key libraries and the optimizing compiler included, and
the assertion checking turned off. This adaptive configuration uses timer-based
sampling to select hot methods for recompilation and optimization in order to
achieve high performance. However, this timer-based sampling introduces non-
determinism and thus a variation in the measured time performance when different
sets of hot methods are recompiled and optimized in different runs of the same
program [Eeckhout et al. 2003]. Therefore, we use the pseudo-adaptive compilation

method [Sachindran and Moss 2003] to control the non-determinism of the adaptive
compilation mechanism. We run each benchmark program five times, and collect
the log of hot methods and their corresponding optimization levels in each run. For
each program, we pick the log for which the program has the best execution time,
and use it to decide on the compilation level at which to compile a method using
the optimizing compiler in the evaluation runs of the program.

OTS piggybacks on the timer-based sampling mechanism of the Jikes RVM. It
suffers from the same non-determinism problem as the adaptive optimization sys-
tem in the Jikes RVM. We use the same approach just mentioned to collect type
prolificacy information for each benchmark program. This information is fed back
to the system to advice which object types should be allocated in the R-space
deterministically.

In our evaluation runs, each benchmark program execution goes through two
iterations. In the first iteration, the compiler optimizes the methods according to
the optimization levels specified in the log file. At the same time, the Jikes RVM
loads the type prolificacy information into the system to inform the allocation
decisions. Before the second iteration of the program, GC is triggered to flush the
compiler objects in the heap. We execute each program five times and report the
average result.

5.2 Memory Allocators and Collectors

STEMA is modified from the MarkSweep collector of the Memory Managment
Toolkit (MMTk) [Blackburn et al. 2004] in the Jikes RVM.

The MarkSweep collector has no concept of type prolificacy, and both prolific
objects and non-prolific objects are allocated in the NR-space. When the heap
is full, the MarkSweep collector triggers a GC. When that happens, the collector
traces and marks lived objects starting from the roots (i.e., static variables and
thread stacks) using bitmaps, and returns memory blocks containing only dead
objects to the virtual memory resource pool. STEMA introduces a new R-space
for accommodating prolific objects. STEMA does not return empty memory blocks
belonging to the R-space to the virtual memory resource pool immediately at GC
times, but retains a suitable amount of memory blocks for each prolific type in
the heap, thus reducing the need to coalesce or split memory blocks in the virtual
memory resource pool. The MarkSweep collector finds free memory cells in non-
empty memory blocks lazily to construct freelists for object allocations. STEMA
further defers the construction of such freelists by preferentially allocating prolific
objects in the retained memory blocks. It finds free memory cells to construct
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freelists for allocation only when the retained memory blocks are all used up. This
actually helps improve the execution time of programs. Finally, the MarkSweep
collector allocates objects of the same size in the same memory block, regardless of
their types. STEMA co-locates prolific objects of the same type at allocation time,
which leads to increased locality, less fragmentation, and improved performance of
the executing programs.

We also evaluate STEMA against two non-generational GC systems, SemiSpace
and CopyMS, and a generational GC system, GenMS. SemiSpace uses two copying
spaces. Objects are continuously allocated in one copying space by bumping a
pointer, and the other space is reserved for copying lived objects at GC time. The
two copying spaces are swapped after each collection. CopyMS is a hybrid version
of the SemiSpace and the MarkSweep collector. CopyMS allocates objects in a
copying space with a bump pointer allocator, and copies lived objects to a mark-
and-sweep space when the heap is full. CopyMS does not require a copy reserved as
in SemiSpace, and is thus more space efficient than SemiSpace. GenMS is an Appel-
style two-generation collector where the nursery space uses a copying collector, and
the mature space (the older generation) uses a mark-and-sweep collector. GenMS
requires a write barrier to record object references from the mature space to the
nursery space. When the nursery is full, GenMS triggers a partial collection. If the
partial collection cannot reclaim enough memory for object allocation, a full heap
collection is invoked.

5.3 Experimental Platform

We perform our experiments on an Intel Xeon 2.4GHz machine with user accessible
performance counters and hyper-threading enabled. The machine has an 8KB 4-
way set associative L1 data cache with 64-byte lines, a 12Kµops trace cache, a
512KB 8-way set associative L2 unified cache with 128-byte lines, a data TLB with
64 fully associative entries, and 512KB main memory. It runs Redhat Linux 9.0
with kernel version 2.4.20-28.9 including SMP support.

We use the processor’s performance counters to measure the numbers of in-
structions executed, retirement events, L1 data misses, L2 misses, as well as data
TLB misses of the mutator and collector of STEMA. Due to hardware limitation,
each event counter requires a separate run. We use the Linux/x86 performance-
monitoring counters software package v2.6.4 (perfctr-2.6.4) and the associated ker-
nel patch and libraries [Pettersson 2003] to access the event counters.

5.4 Benchmarks

Table IV shows the benchmark programs we use and their characteristics. They
are the SPECjvm98 benchmark suite, seven benchmarks of the DaCapo suite and
gcbench. In Table IV, the “Total Alloc (MB)” column shows the total amount of
memory allocated in megabytes for each benchmark program using STEMA with
the adaptive optimization system enabled. The “R-space Alloc (MB)” column
shows the amount of memory allocated in megabytes in the R-space of STEMA.
The “R-space Alloc %” column indicates the percentage of total memory allocated
in the R-space. The “alloc:min” column lists the ratio of the total amount of
memory allocated to the minimum heap size of the program in execution using
STEMA. This ratio reflects upon the GC load in a program. The “P-Type #”
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Table IV. The 16 Benchmarks and Their Characteristics

Total Alloc alloc R-space Alloc R-space Alloc P-Type
Benchmark (MB) :min (MB) % #

jess 280.7 31:1 231.8 82.6 13
mtrt 163.0 10:1 116.9 71.7 19

raytrace 156.9 12:1 115.1 73.4 17
javac 226.6 8:1 65.6 29.0 25
jack 248.1 21:1 50.1 20.2 20
db 88.4 6:1 40.4 45.7 6

mpegaudio 31.0 3:1 0.8 2.7 5
compress 120.6 6:1 0.2 0.2 3

bloat 693.2 28:1 253.8 36.6 19
jython 442.3 22:1 247.1 55.9 26
hsqldb 503.2 22:1 172.3 34.3 36

ps 533.0 38:1 58.7 11.0 16
xalan 186.0 2:1 52.0 27.9 14
antlr 279.0 17:1 30.7 11.0 13

fop 104.2 3:1 10.2 9.8 17

gcbench 356.4 18:1 345.6 97.0 2

column shows the number of prolific types detected by OTS for each program.
According to Table IV, we group the benchmark programs into different cate-

gories. jess, mtrt, raytrace, bloat, jython, hsqldb, and gcbench feature a large amount
of prolific objects with a high ratio of total allocation to minimum survival heap
size (i.e., high GC load). javac, jack, xalan, and fop are allocation intensive, but
they have a relatively small GC load and a moderate percentage of memory allo-
cated in the R-space. db has a relatively high percentage of memory allocated in
the R-space, but has a relatively low GC load. ps and antlr have a high GC load,
but a low memory reuse percentage. mpegaudio and compress both produce mainly
non-prolific objects and are not GC intensive. Due to the page limit, we choose
six benchmarks—compress, raytrace, db, hsqldb, jython, and gcbench—for detailed
presentation in this paper, which belong to different benchmark suites and are of
different application types. In particular, we include compress and db because of
their unique and interesting behavior. A summary of the performance of the other
benchmarks can be found in Section 6, Tables VI, VII, VIII and IX. Complete
results are available in [Yu et al. 2006].

6. EXPERIMENTAL EVALUATION

In this section, we present the evaluation of STEMA. We first report the measured
overheads of OTS, including that of the dynamic check for the type prolificacies at
memory allocation time. We compare the performance of STEMA with the com-
monly used collectors. We also discuss the effect of being selective in identifying
prolific types. We finally show that STEMA does reduce fragmentation as antici-
pated, which in turn results in fewer GCs and overall performance improvement.

6.1 Overheads of Online Profiling of Prolific Types

To compute the overheads of OTS for detecting type prolificacies, we measure
the time performance of the first iteration of the benchmark programs where the
adaptive optimizing compiler is active on a moderate heap size (2 × minimum
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Table V. Overheads of Online Type Sampling (OTS)

OTS (32K) OTS (64K) OTS (128K)
Benchmark Default Time Overhead Time Overhead Time Overhead

jess 8.25s 8.33s -0.96% 8.28s -0.36% 8.14s 1.35%
mtrt 7.84s 8.00s -2.00% 7.95s -1.38% 7.81s 0.38%

raytrace 7.34s 7.44s -1.34% 7.30s 0.55% 7.28s 0.82%
javac 12.04s 12.25s -1.71% 12.06s -0.17% 12.01s 0.25%
jack 7.48s 7.52s -0.53% 7.45s 0.40% 7.39s 1.22%
db 18.64s 18.96s -1.69% 18.73s -0.48% 18.66s -0.11%

mpegaudio 8.00s 8.24s -2.91% 7.92s 1.01% 7.92s 1.01%
compress 8.28s 8.41s -1.55% 8.29s -0.12% 8.39s -1.31%

bloat 19.21s 19.18s 0.14% 19.23s -0.10% 19.19s 0.10%
jython 16.86s 17.04s -1.06% 16.70s 0.96% 16.73s 0.78%
hsqldb 15.94s 16.25s -1.91% 15.74s 1.27% 16.21s -1.67%

ps 19.10s 19.74s -3.24% 19.50s -2.05% 19.30s -1.04%
xalan 7.05s 7.18s -1.81% 7.15s -1.40% 7.14s -1.26%
antlr 26.35s 26.51s -0.60% 26.38s -0.11% 26.26s 0.34%
fop 4.25s 4.33s -1.85% 4.29s -0.93% 4.22s 0.71%

gcbench 4.15s 4.29s -3.26% 4.24s -2.12% 4.21s -1.43%

G.M. -1.65% -0.32% 0.01%

heap requirement). For each benchmark program, we pick the fastest five runs and
compute their average. The programs carry out the additional runtime work of OTS
to sample the objects at creation time to determine the prolificacy of types, and to
check for prolificacy at allocation time. They do not however allocate prolific objects
in the R-space nor reuse any memory blocks occupied by prolific objects. Therefore,
the experiment does only the work of prolific type detection. Table V compares
the performance of the original system with the augmented system running OTS
with sampling rates (i.e., BY TES ALLOCATED) of 32K, 64K, and 128K bytes
of memory allocated.

From Table V, we see that OTS adds at most 3.26%, 2.12%, and 1.67% of runtime
overhead to the system when the sampling rates of 32K, 64K, and 128K are used
respectively. However, these overheads become insignificant when we compare them
with those of the timer-based sampling which are much more dominant. In the
remaining experiments, we use the sampling rate of 64K.

6.2 Total Execution Times

From here onwards, we apply the pseudo-adaptive methodology when evaluating
the performance of the benchmark programs—that is, we only report the applica-
tion behavior, but not the compiler behavior. Tables VI and VII show the total
execution times of the benchmarks with two small heap sizes (1 and 1.25 times
of the minimum heap size). Tables VIII and IX show the average total execution
times of the benchmarks over the medium heap range (1.75–2.25 times of the min-
imum heap size) and the large heap range (2.5–3 times of the minimum heap size).
In these four tables, the “STEMA”, “MS”, “CMS”, “SS”, and “GenMS” columns
are the total execution times of the benchmark programs using STEMA, Mark-
Sweep, CopyMS, SemiSpace, and GenMS respectively. The “%” columns show the
percentage improvement of STEMA over the corresponding collector system, using
STEMA as the base. The “G.M.” row is the average percentage improvement (ge-
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Table VI. Average Total Execution Times (1× Minimum Heap Size)

Benchmark STEMA MS % CMS % SS % GenMS %

jess 109.12s – ∞ – ∞ – ∞ – ∞
mtrt 14.02s 14.19s 1.24 12.31s -12.23 – ∞ 11.72s -16.39

raytrace 14.04s 14.27s 1.65 15.08s 7.39 – ∞ 16.22s ∞
javac 17.06s 18.14s 6.32 16.02s -6.10 27.37s 60.47 13.07s -23.37
jack 12.64s 12.11s -4.21 16.98s 34.35 19.87s 57.18 22.99s 81.86
db 30.03s 29.71s -1.04 34.07s 13.47 – ∞ 36.63s 21.98

mpegaudio 5.81s 5.77s -0.73 5.96s 2.54 – ∞ – ∞
compress 7.19s – ∞ – ∞ – ∞ – ∞

bloat 45.67s 50.11s 9.73 – ∞ – ∞ – ∞
jython 26.64s 27.80s 4.37 26.76s 0.46 33.04s 24.02 13.83s -48.07
hsqldb 29.33s – ∞ 34.96s 19.20 – ∞ 30.06s 2.47

ps 22.27s 22.04s -1.06 23.12s 3.80 25.50s 14.47 11.91s -46.51
xalan 5.23s 10.16s 94.38 3.90s -25.46 – ∞ 4.66s -10.92
antlr 65.87s – ∞ – ∞ – ∞ – ∞
fop 8.61s 9.26s 7.57 4.86s -43.56 – ∞ 2.77s -67.85

gcbench 10.89s 10.40s -4.46 16.06s 47.45 – ∞ 6.85s -37.12

G.M. 7.30 0.54 37.60 -23.04

∞/+ve/-ve 4/7/5 4/8/4 12/4/0 6/3/7

Table VII. Average Total Execution Times (1.25× Minimum Heap Size)

Benchmark STEMA MS % CMS % SS % GenMS %

jess 30.49s – ∞ – ∞ 46.89s 53.78 – ∞
mtrt 6.96s 7.01s 0.68 7.68s 10.42 – ∞ 3.36s -51.71

raytrace 7.26s 7.62s 4.99 8.57s 18.16 – ∞ 8.32s 14.64
javac 11.39s 11.25s -1.28 11.81s 3.67 14.92s 30.97 9.52s -16.40
jack 9.75s 9.41s -3.47 11.69s 19.90 13.30s 36.39 4.76s -51.71
db 20.94s 21.14s 0.93 22.95s 9.56 – ∞ 23.62s 12.80

mpegaudio 5.80s 5.84s 0.67 5.92s 2.08 5.72s -1.40 5.85s 0.96
compress 7.29s – ∞ 8.58s 17.77 8.91s 22.26 8.53s 17.06

bloat 27.27s 29.02s 6.42 – ∞ – ∞ 16.94s -37.88
jython 20.05s 19.60s -2.24 25.87s 29.03 22.84s 13.89 13.21s -33.07
hsqldb 21.23s 23.69s 11.59 20.56s -3.19 25.17s 18.56 20.03s -5.65

ps 18.73s 19.12s 2.08 19.45s 3.85 21.02s 12.26 11.92s -36.35
xalan 3.88s 3.90s 0.54 3.40s -12.57 3.56s -8.31 4.05s 4.30
antlr 35.44s 35.19s -0.71 – ∞ 58.10s 63.94 – ∞
fop 4.78s 4.43s -7.22 3.35s -29.91 5.66s 18.45 2.49s -47.98

gcbench 7.22s 7.46s 3.34 10.38s 43.74 – ∞ 3.97s -45.05

G.M. 1.07 7.10 22.03 -23.77

∞/+ve/-ve 2/9/5 3/10/3 5/9/2 2/5/9

ometric mean) of STEMA over the 16 benchmarks. In Tables VI and VII, we use
“–” to indicate that the collector is unable to run the application because of insuf-
ficient memory, and “∞” to represent the corresponding percentage improvement
of STEMA. The “∞/+ve/-ve” row summarizes in each “%” column the number
of benchmarks that cannot run to completion with the testing collector system;
STEMA can achieve a performance improvement; and STEMA results in a perfor-
mance degradation, respectively. In Tables VIII and IX, the total execution times
are the geometric means of the total execution times of the benchmark programs
across the suggested heap ranges.

Table VI shows that of all the runnable benchmarks, STEMA performs 7.30%,
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Table VIII. Average Total Execution Times (1.75× to 2.25× Minimum Heap Size)

Benchmark STEMA MS % CMS % SS % GenMS %

jess 9.92s 10.35s 4.35 10.77s 8.51 13.11s 32.10 3.23s -67.49
mtrt 4.54s 4.73s 4.24 5.02s 10.68 5.84s 28.76 3.33s -26.63

raytrace 4.57s 4.72s 3.29 5.10s 11.56 6.01s 31.60 3.08s -32.61
javac 9.93s 9.78s -1.49 9.76s -1.71 10.07s 1.45 9.00s -9.31
jack 6.43s 6.30s -2.16 7.45s 15.86 7.94s 23.45 4.00s -37.83
db 19.23s 19.28s 0.22 20.23s 5.21 19.19s -0.20 20.12s 4.64

mpegaudio 5.88s 5.89s 0.13 5.85s -0.57 5.73s -2.40 5.83s -0.79
compress 7.28s 7.51s 3.13 7.21s -1.05 7.18s -1.38 7.27s -0.18

bloat 18.90s 19.20s 1.59 16.49s -12.74 18.23s -3.52 14.52s -23.15
jython 14.92s 15.26s 2.32 25.88s 73.47 15.85s 6.27 13.37s -10.36
hsqldb 13.90s 16.37s 17.72 14.51s 4.32 14.65s 5.39 13.30s -4.32

ps 15.38s 15.81s 2.83 15.60s 1.41 16.28s 5.88 11.89s -22.68
xalan 3.48s 3.52s 1.06 3.26s -6.37 2.92s -16.11 3.60s 3.41
antlr 26.11s 25.39s -2.76 26.48s 1.39 27.29s 4.52 23.43s -10.28
fop 2.84s 2.86s 0.80 2.47s -13.11 2.61s -8.04 2.08s -26.63

gcbench 4.28s 4.61s 7.81 5.81s 35.78 6.83s 59.64 3.17s -25.79

G.M. 2.33 6.72 8.99 -20.75

∞/+ve/-ve 0/13/3 0/10/6 0/10/6 0/2/14

Table IX. Average Total Execution Times (2.5× to 3× Minimum Heap Size)

Benchmark STEMA MS % CMS % SS % GenMS %

jess 7.08s 7.80s 10.10 7.45s 5.17 8.46s 19.43 3.22s -54.58
mtrt 3.95s 4.11s 4.26 4.28s 8.52 4.54s 15.07 3.35s -15.22

raytrace 3.90s 4.09s 4.93 4.30s 10.38 4.54s 16.33 3.07s -21.25
javac 9.20s 9.02s -1.96 9.12s -0.88 9.19s -0.10 8.74s -5.04
jack 5.55s 5.53s -0.25 6.09s 9.75 6.37s 14.89 3.95s -28.86
db 18.80s 18.93s 0.73 19.69s 4.75 17.46s -7.11 19.87s 5.70

mpegaudio 5.89s 5.89s 0.00 5.87s -0.28 5.73s -2.69 5.85s -0.66
compress 7.31s 7.33s 0.35 6.97s -4.57 6.88s -5.80 6.82s -6.62

bloat 16.77s 16.73s -0.26 13.47s -19.71 14.48s -13.70 14.00s -16.53
jython 13.47s 13.73s 1.95 25.87s 92.10 13.87s 2.96 13.37s -0.75
hsqldb 12.32s 13.41s 8.79 12.79s 3.81 12.44s 0.96 12.60s 2.24

ps 14.02s 14.68s 4.76 14.18s 1.16 14.45s 3.14 11.87s -15.28
xalan 3.25s 3.30s 1.60 3.08s -5.10 2.64s -18.61 3.44s 6.00
antlr 24.24s 23.33s -3.75 23.45s -3.25 23.86s -1.57 21.72s -10.40
fop 2.52s 2.50s -0.66 2.20s -12.74 2.15s -14.86 2.10s -16.45

gcbench 3.33s 3.66s 9.64 4.28s 28.41 4.72s 41.61 2.95s -11.46

G.M. 2.44 5.28 2.11 -13.34

∞/+ve/-ve 0/11/5 0/9/7 0/8/8 0/3/13

0.54%, 37.60% better than MarkSweep, CopyMS, and SemiSpace respectively with
a tight heap. Table VII shows that with a more relaxed heap, STEMA outperforms
MarkSweep, CopyMS, and SemiSpace by 1.07%, 7.10%, and 22.03%. Moreover,
STEMA can run all the benchmark programs, while MarkSweep, CopyMS, and
SemiSpace have 4, 4, and 12 benchmark programs that ran out of memory. The
results demonstrate that with a small heap, STEMA performs well convincingly
among the commonly used non-generational collectors. In these two tables, we
also compare STEMA with GenMS. With a tight heap, although GenMS achieves
a better time performance than STEMA in seven benchmarks, it cannot run six
of the benchmark programs properly because of its larger heap size requirement
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than STEMA. This suggests that STEMA may be a better choice than GenMS for
memory constrained devices or systems.

Table VIII shows that STEMA outperforms CopyMS and SemiSpace on average
by 6.72% and 8.99% with a moderate heap. Table IX shows that when CopyMS and
SemiSpace are provided with a large heap, STEMA is 5.28% and 2.11% better than
CopyMS and SemiSpace. These two tables reveal that CopyMS and SemiSpace can
get close to the time performance of STEMA, when they are provided with sufficient
memory. Neither CopyMS nor SemiSpace is a suitable choice for handheld devices
and multiprogrammed systems because of their large memory requirement. With
a moderate to a large heap, both CopyMS and SemiSpace are ahead of STEMA
for bloat, fop, and xalan. These outliers are probably due to their use of a bump
pointer allocator which places objects side-by-side in the heap according to the
allocation order; the time performance would become better if these objects are
accessed according to their allocation order, which is not necessarily always the
case in real applications. We do not use a bump pointer allocator in STEMA
because we are interested in improving the performance of non-copying mark-and-
sweep systems which are more space-efficient. Our techniques should be applicable
to copying collectors too. GenMS is shown to have excellent performance with a
medium to a large heap ranges in Tables VIII and IX. It not only outperforms all
non-generational collectors (including STEMA), but can also run all the benchmark
programs for such heap ranges. Thus, GenMS is suitable for modern systems having
plenty of memory. As STEMA and GenMS have their edge with different heap
ranges, this suggests that STEMA may work adaptively with GenMS to achieve
good performance for all heap sizes.

To probe deeper into the true behavior of STEMA, we examine the performance
breakdown of the benchmark programs. We focus on the four programs that are
in the first group as discussed in Section 5.4. Since these programs, which belong
to different benchmark suites and are of different application types, allocate a rel-
atively large portion of memory in the R-space and exhibit a high GC load, their
performance due to reusing memory blocks varies substantially. We also study com-
press and db, because of their unique and interesting behavior—the former creates
very few prolific objects, and the latter produces mostly long-lived objects. We
compare the performance of STEMA with the MarkSweep, CopyMS, and SemiS-
pace collectors in the MMTk toolkit, to demonstrate the strength of STEMA among
non-generational collectors.

Figures 9, 10, and 11 display the total execution time, mutator time, and GC
time, respectively, of the six benchmark programs. STEMA attains the best time
performance when the heap size is tight in most cases. SemiSpace has the poorest
time performance with a small heap. It either cannot run the benchmark program,
or takes a much longer time than other collectors to complete the execution. Similar
results can be found in Tables VI and VII. SemiSpace reserves half of the memory
space for copying lived objects at GC time. This reserved space is unused at mutator
time. Thus, more GCs are needed to make enough room for future allocations,
which results in a longer total GC time.

Compared with MarkSweep, STEMA improves the mutator time of gcbench, ray-
trace, hsqldb, and jython by 21.64%, 9.07%, 15.69%, and 4.34% on average (geomet-
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Fig. 9. STEMA vs. Other Collectors (Total Execution Time)

ric mean) over the entire heap ranges (1–3 times the minimum heap requirement).
However, STEMA achieves either very little or no improvement on the mutator time
for db and compress. Compared with CopyMS and SemiSpace, STEMA shows a
poorer mutator time in almost all cases. Both CopyMS and SemiSpace achieve very
good mutator time because of the use of the bump pointer allocator. We discuss
this further in Section 6.3 in the context of cache locality. Nonetheless, STEMA
achieves a better total execution time than CopyMS and SemiSpace for these six
benchmarks with a small to a medium heap size. This is because STEMA’s GC
time is much shorter than that of CopyMS or SemiSpace. In particular, STEMA’s
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Fig. 10. STEMA vs. Other Collectors (Total Mutator Time)

GC time is 110.41% and 115.17% better than SemiSpace for compress and db, and
is 250.10% better than CopyMS for jython. The poor GC time of CopyMS for
jython is likely due to the repeated copying of long-lived objects. CopyMS allocates
objects to the copying space at allocation time, and copies reachable objects to and
reclaims unreachable objects in the mark-and-sweep space at GC time. If many
objects are reachable during GC time, CopyMS will have significant copying over-
head. This will greatly increase the total GC time and hence the total execution
time, as we can see in jython.

Of the six benchmarks, hsqldb is the only one using multiple threads. STEMA
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Fig. 11. STEMA vs. Other Collectors (Total GC Time)

performs well for hsqldb, because the retention of memory blocks and their allo-
cation are per mutator thread, and so reusing the retained memory blocks does
not have the synchronization overhead of allocating a new one from the virtual
memory resource pool. STEMA shows an improvement in both the mutator time
and the GC time in hsqldb. Its time performance however has certain fluctuation
when compared with other benchmarks. This is likely due to the thread scheduling
system of the Jikes RVM. As we will see later, STEMA can also improve the cache
locality of hsqldb, which gives rise to a good execution time for this benchmark.

From the results, we observe that a program’s mutator time is not affected much
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Fig. 12. STEMA vs. Other Collectors (Total L1 Mutator Misses)

by the chosen heap size. On the other hand, a program’s GC time always decreases
with the growth of the heap, because less GC is required when more memory is
available.

6.3 Cache Locality

We measure both L1 and L2 cache locality for STEMA, MarkSweep, CopyMS,
and SemiSpace. In particular, we measure the number of mutator misses and the
number of collector misses separately for each application so that we can have a
better understanding of how STEMA affects cache locality.
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Fig. 13. STEMA vs. Other Collectors (Total L1 Collector Misses)

6.3.1 L1 Cache Locality. Figures 12 and 13 show the mutator and the collector
L1 cache misses respectively for different collectors. Compared with MarkSweep,
STEMA reduces the L1 mutator cache misses for three of the six benchmark pro-
grams, gcbench, hsqldb, and jython by 10.71%, 13.43%, and 23.52% on average.
We attribute this result to the effectiveness of the memory block reuse feature of
STEMA. The reuse is effective for these benchmark programs because they create
a considerable amount of prolific objects with a high GC load. Both are necessary
conditions because STEMA relies on a tracing collector to determine the number
of memory blocks to be retained for reuse purposes. A high GC load means more
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GCs, which provides more opportunities for the system to adjust the amount of
memory retained. STEMA increases the L1 mutator cache misses of compress, as
compress allocates only a small amount of prolific objects. CopyMS and SemiSpace
have relatively fewer L1 mutator cache misses for most benchmark programs. It is
due to their use of a bump pointer allocator which provides good locality to Jikes
RVM-specific objects.

The amount of the L1 collector cache misses follows the trend of the GC times. If
more GCs are performed, more L1 misses would be induced. Therefore, SemiSpace
has poorest L1 collector cache locality, while STEMA and MarkSweep have very
good L1 collector cache locality.

6.3.2 L2 Cache Locality. Figures 14 and 15 show the mutator L2 cache misses
and the collector L2 cache misses respectively. Compared with L1 cache locality, L2
cache performance has a strong bearing on the runtime performance of the bench-
mark programs. On average, STEMA reduces the number of L2 mutator cache
misses by 3.47% over the six benchmarks when compared with MarkSweep. This
cache-level locality improvement is more significant in raytrace and hsqldb, where
their number of mutator misses are reduced by 8.05% and 10.22% respectively. It
is because co-locating prolific objects in raytrace and hsqldb creates locality that
improves the mutator time as well as the total execution time. It is interesting
to note that CopyMS has more L2 mutator cache misses than all other collectors
for db and jython, while SemiSpace achieves very good mutator L2 cache locality,
despite the fact that both of them use the same bump pointer allocator. CopyMS
copies lived objects from a copying space to a mark-and-sweep space at GC time.
It is possible that this action spoils the mutator L2 cache locality.

The L2 collector cache misses have a similar trend as the L1 collector cache misses
for the six benchmark programs. compress has very few L1 and L2 collector misses
and a small GC time in the small heap range. It is because STEMA does not require
as many GCs as the other collectors in a small heap situation for compress, as the
heap is less fragmented. Most of the benchmark programs have good L2 mutator
cache locality with SemiSpace and CopyMS, because objects are placed together in
allocation order. This echoes the point that co-locating objects at similar creation
times can improve locality, because it is likely that these objects are related and
accessed together later on. SemiSpace has the poorest L2 collector cache locality
in most cases, because it has a higher GC load than the other collectors.

We use an internal table to record the prolificacy of types. The table itself enjoys
good locality because it is accessed frequently to check for a type’s prolificacy at
allocation time. This can be observed from the figures where the numbers of L1
and L2 misses are not increased by much (if any) comparing with MarkSweep. This
additional data structure can also affect the timing of when GC is triggered, i.e.,
earlier than expected, because the table grows with the number of types created
by the application and thus affects the amount of available memory in the heap.
Therefore, STEMA sometimes has slightly more collector misses (thus a longer
GC time) than MarkSweep for db and jython, because one or two more GCs are
performed.
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Fig. 14. STEMA vs. Other Collectors (Total L2 Mutator Misses)

6.4 Effects of the Choice of Prolific Types

In Sections 3 and 4, we suggest not to treat character and byte arrays, the String
type, and types belonging to the Java Collections Framework as prolific types,
because these objects tend to be long-lived. Allocating them in the R-space means
mixing long-lived objects with short-lived objects, which will harm the performance
(in particular the mutator time) of Java programs. Figure 16 shows the performance
of compress and db when different sets of prolific types are used. In the figure,
“Selected Prolific Types” means that the aforementioned object types would skip
the prolificacy check and are allocated in the NR-space; “All Prolific Types” means
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Fig. 15. STEMA vs. Other Collectors (Total L2 Collector Misses)

objects of all the detected prolific types are placed and co-located in the R-space;
“Prolific Types w/o Arrays and String” means objects of the String type and all
array types are allocated to the NR-space; and “Shuf et al.” means using Shuf et
al.’s offline approach to identify prolific types.

Figure 16 reveals that using different sets of prolific types could affect both the
mutator time and the GC time of an application program. It shows that our on-
line approach for prolific type identification and selection (i.e., “Selected Prolific
Types”) is better than Shuf et al.’s offline approach, because our approach can de-
tect whether a prolific type will become non-prolific during the program execution.
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Fig. 16. Effects of Choice of Prolific Types on compress and db

In compress, when different prolific types are picked for performance optimization,
the GC time is affected. It is because co-locating different prolific types in the
R-space would affect the degree of memory fragmentation and hence the number
of GCs required. If STEMA blindly treats all array types as non-prolific, more
GCs would be required as we can see in compress, because too many objects are
allocated in the NR-space and the memory blocks in the R-space cannot be fully
utilized. For db, the mutator time is influenced when different sets of prolific types
are used. The total execution time of the “Selected Prolific Types” is better than
that of “All Prolific Types” by 8.79%, “Prolific Types w/o Arrays and String” by
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Table X. Fragmentation Results of STEMA and MarkSweep

Benchmark STEMA (%) S.D. MarkSweep (%) S.D.

jess 31.41 7.61 34.93 18.69
mtrt 10.66 4.82 15.47 11.18

raytrace 13.80 7.21 14.95 10.27
javac 22.77 14.47 42.07 27.42
jack 16.71 13.96 26.47 24.01
db 8.38 5.40 8.09 5.46

mpegaudio 19.92 11.62 16.36 11.31
compress 9.01 6.28 12.22 7.71

bloat 19.44 12.84 31.16 20.90
jython 22.29 8.14 30.66 14.26
hsqldb 14.00 8.43 21.30 14.73

ps 22.15 11.56 24.18 14.82
xalan 9.83 9.77 10.11 9.89
antlr 22.72 14.29 25.13 18.05
fop 21.96 15.93 28.39 8.86

gcbench 4.66 2.80 6.01 1.77

G.M. 15.20 8.82 19.09 11.70

1.64%, and “Shuf et al.” by 13.59%. The poorer performance of the latter three
cases is due to the worsened mutator time. From Figure 16(d), neither including all
prolific types nor using the offline prolific type identification method can identify a
good set of prolific types. The GC time is not affected by much as in the case of
compress, because the selected prolific types do not have an impact on the memory
fragmentation situation for db.

From the results, the “Selected Prolific Types” works well on both compress
and db. This proves that the properties of prolific types derived in Section 3 are
correct, and making use of the corresponding rules for prolific types selection is
advantageous.

6.5 Fragmentation

We evaluate the effect of co-locating prolific objects and reusing their memory
blocks on memory fragmentation. We define fragmentation ratio as the number of
unused bytes over the amount of memory (in bytes) requested by an application.
These unused bytes are those of the unused memory cells in memory blocks that
contain lived objects, not including the unused retained memory blocks in the R-
space of STEMA.

We measure the fragmentation ratios before and after every GC invocation for
a heap size equal to twice the minimum heap requirement of each application.
We then take the average of the fragmentation ratios at the end of the program
execution. Table X shows the average fragmentation ratios (the “%” columns) of
the benchmark programs using STEMA and MarkSweep. The “S.D.” column is the
standard deviation of each fragmentation ratio measured. We can see that STEMA
has a lower average fragmentation ratio than MarkSweep in nearly all the cases. It
is because prolific objects are more likely to have similar lifetimes, and so prolific
objects in the same memory blocks are likely to die together. This also proves
that the memory block reuse mechanism is effective. At the same time, the reuse
reduces fragmentation, and hence the number of GCs. The standard deviations of
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Table XI. Number of GCs of STEMA and MarkSweep

Number of GCs
1.25 × Min. Heap 1.5 × Min. Heap 2 × Min. Heap 3 × Min. Heap

Benchmark STEMA MS ∆ STEMA MS ∆ STEMA MS ∆ STEMA MS ∆

jess 151 200 +49 71 75 +4 36 33 -3 18 17 -1
mtrt 19 18 -1 12 12 0 7 7 0 4 4 0

raytrace 23 25 +2 15 15 0 9 9 0 5 5 0
javac 13 13 0 9 9 0 9 9 0 5 5 0
jack 35 35 0 24 22 -2 15 15 0 9 9 0
db 13 14 -1 8 8 0 5 5 0 3 3 0

mpegaudio 1 1 0 1 1 0 1 1 0 1 1 0
compress 3 15 +12 3 10 +7 3 5 +2 3 3 0

bloat 61 71 +10 42 47 +5 25 28 +3 15 15 0
jython 47 44 -3 36 35 -1 20 20 0 11 11 0
hsqldb 57 59 +2 32 51 +19 20 24 +4 13 13 0

ps 42 42 0 32 32 0 22 22 0 13 14 +1
xalan 4 4 0 3 3 0 2 2 0 1 1 0

antlr 76 84 +8 46 55 +9 26 27 +1 14 14 0
fop 9 8 -1 5 5 0 3 3 0 2 2 0

gcbench 31 32 +1 23 24 +1 15 16 +1 9 10 +1

the fragmentation ratios can be quite large, because the degree of fragmentation
before and after GC should be different. The heap is often more fragmented before
GC, and the situation would improve after GC.

Table XI shows the number of GCs being invoked in the benchmark programs,
with the heap size ranging from one and a quarter to three times the minimum
heap requirement of each application. The “STEMA” and “MS” columns refer to
the number of full-heap GCs required for STEMA and MarkSweep respectively.
The “∆” column is the difference in the number of GCs between the STEMA and
the MarkSweep with STEMA as the base. The result shows that STEMA requires
fewer GCs than MarkSweep for compress, jess, bloat, hsqldb, antlr, and gcbench,
because the heap of STEMA is less fragmented. This is especially true with a small
heap. STEMA requires one to three more GCs than MarkSweep for mtrt, db, jython,
and fop, although they all have a lower fragmentation ratio than MarkSweep. This
may be due to the additional data structure we used for keeping track of types’
prolificacy, which affected the amount of memory available for memory allocation
and thus induced more GCs. For jess, although STEMA requires several more
GCs than MarkSweep with a larger heap, STEMA has a shorter GC time than
MarkSweep. This shows that memory reuse can help reduce the GC overhead and
thus shorten the total GC time.

7. RELATED WORK

STEMA aims to improve the execution speeds of Java programs through im-
proved memory allocation, better cache locality, and reduced memory fragmen-
tation. STEMA’s main tools are memory block reuse and co-location of prolific
objects. Reduced fragmentation is particularly important for non-copying collec-
tors. Therefore, we consider others’ work on cache conscious memory allocators
and collectors, and techniques of memory reuse for optimization purposes.
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7.1 Cache Conscious Memory Allocators and Collectors

Wilson et al. [1992] studied the effect of cache associativity, cache size, and cache
miss rates for a copying generational GC for Scheme. They pointed out that the
problem of locality can be due to both memory allocation and GC, and not GC
alone. They improved the locality of generational copying collectors by copying
objects which are likely to be accessed contemporaneously together to a mature
space during nursery collection. In contrast, STEMA improves the cache locality of
a program by aggressively reusing memory blocks from deceased objects collected
during GC so that some cache content could be reused after GC and the number
of misses is thus reduced.

Grunwald et al. [1993] investigated the effect of dynamic storage allocator on ref-
erence locality. They showed that algorithms which coalesce adjacent free memory
blocks aggressively tend to have poorer program reference locality and longer total
execution time. They also demonstrated that most CPU efficient allocators, such
as segregated freelist allocators which do not coalesce free memory, have better
locality than allocators based on sequential fit. They suggested that rapid memory
reuse can enhance program locality, which however might bring forth fragmentation
problems. Although they gave highlights of the design principles for developing a
memory allocator so that good referential locality can be achieved, they did not
provide any proof nor implementation to support their claims.

Shuf et al. [2002] proposed to co-locate prolific objects that are connected via
object references, with an aim to improve the collector cache locality of Java pro-
grams. Unlike their approach, STEMA co-locates objects of the same prolific type
in the same memory block, leading to improved mutator cache locality. The ap-
proach we use for object co-location is simpler, because we do not require any object
connectivity information at memory allocation time.

Guyer and McKinley [2004] presented a dynamic object co-location technique
which allocates connected objects in the same GC memory space. Their work is
based on generational collector and requires static compile-time analysis to de-
termine in which memory space the source object resides, and then allocates the
target object to the same memory space. Unlike their work, STEMA does not re-
quire static compile-time analysis, but requires determination of types’ prolificacy
and homogeneity of type within a memory block.

Veldema et al. [2005] proposed the idea of object combining which combines
related objects together. In their method, two objects are considered combined
if one object becomes the field of another object. They rely heavily on a native
Java compiler to transform multiple objects into one object. They also make use
of static compile-time analysis to decide if two or more objects should be combined
into a single one. However, if objects of different lifetimes are combined into a
single object, the memory of the short-lived objects can be reclaimed only if all
combined objects are unreachable. STEMA does not suffer from this problem,
because STEMA places prolific type objects together at allocation time and does
not combine multiple objects into a single one. The memory of the short-lived
objects can still be reclaimed for future object allocation, if their memory blocks
cannot be retained and reused.
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7.2 Reusing Memory of Existing Objects

The work that is most similar to ours is the one by Grunwald and Zorn [1993]. They
presented CustoMalloc which can synthesize a custom memory allocator for specific
applications. Special linked-lists are used as a front-end allocator for allocating
objects of frequently occurring object sizes. The allocation procedure turns to a
back-end allocator when the linked-lists of the front-end allocator become empty.
Unlike CustoMalloc which distinguishes objects by size offline, STEMA identifies
prolific types and non-prolific types online for selecting the appropriate allocator.
Indeed, we have found type to be a better indicator than size of an object’s behavior
and lifetime. Moreover, the front-end and back-end allocators of CustoMalloc are
memory cell based, while STEMA uses memory block (each containing multiple
memory cells) as the unit. We pick a coarser reuse granularity in order that objects
of the same prolific type can be placed together, which can improve the cache
locality of a program. This is difficult to achieve if the reuse granularity is a cell.

Another closely related work is by Shuf et al. [2002]. Their approach identifies
prolific types using offline profiling, and thus a program has to be run at least once
to obtain the needed prolificacy information before the actual run of the program.
STEMA is an improvement over their work in the sense that it identifies prolific
types with an online approach, which gives STEMA the flexibility to react sponta-
neously if and when the prolificacy of a type changes during program execution. As
an option, STEMA provides an offline repository to log the prolific type informa-
tion. Thus, STEMA can avoid the overhead of online profiling by using the logged
profile starting from the second run of the program.

Although Shuf et al. have suggested the possibility to recycle objects of prolific
types by placing them in a special pool instead of the default free pool, they did
not provide any experimental results to confirm the viability of their proposal.
As opposed to reusing individual memory cells as they have suggested, STEMA
reuses memory blocks allocated to prolific type objects in their entirety. As our
experiments have verified, reusing memory blocks did lead to better performance
due to the clustering effect of objects of the same prolific types.

Lee and Yi [2004] performed static analysis on ML programs and then trans-
formed them by adding explicit memory reuse commands into the source code.
They showed that automatic insertion of memory reuse commands in ML pro-
grams could result in smaller maximum memory requirement and shorter GC time.
However, their approach cannot handle polymorphism and mutable objects.

Our previous work [Yu et al. 2004] continued the work of Shuf et al. by carrying
out a feasibility study on reusing memory given up by deceased objects to improve
the space-time performance of Java programs. We obtained object traces of each
Java program being evaluated, and analyzed the amount of space saving if the
memory occupied by prolific objects is reused (called object caching). We showed
that a considerable amount of space can be saved this way. We also implemented
a simple prototype, using the Base configuration of the MarkSweep collector of
the Jikes RVM, to demonstrate that object caching can indeed improve the time
performance of GC. This present work on reusing memory blocks to improve the
total execution time of Java programs differs from our previous work in the following
aspects.
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—We detect prolific types using a low-overhead OTS mechanism so that the online
results can immediately be used to influence the performance of the executing
program. We used only offline profiling in our previous work.

—In this work, retained memory blocks in excess in the R-space can be transferred
to the NR-space to avoid premature invocation of GC and out-of-memory sit-
uations. Our previous work does not have the ability to predict whether the
memory blocks retained would be used in the future.

—We use the Fast configuration in the Jikes RVM for STEMA, which is much faster
than the Base configuration used in our previous work.

—In this work, we have carried out a detailed performance evaluation and analysis
for STEMA in order to fully understand the effects of co-location of prolific
objects and memory block reuse on program performance.

8. SUMMARY AND CONCLUSION

We introduce STEMA, a new memory management system which can improve the
execution time of Java programs by applying memory reuse and object co-location
to prolific objects. Our design is founded upon properties of prolific objects we
discovered through experiments. We show that memory block reuse can reduce the
L1 mutator locality of Java programs, and co-location of prolific objects can reduce
the L2 mutator locality. STEMA is able to reduce fragmentation, and thus the GC
time of Java programs.

Since STEMA relies heavily on type prolificacies, it is equipped with a low-
overhead OTS mechanism for detecting type prolificacies on-the-fly. With OTS,
prolificacy information can be used immediately to influence the ongoing execution
of the program. OTS uses a table for type ID mapping so that type checking can
be done efficiently.

To retain a suitable number of memory blocks for future reuse, STEMA monitors
the number of memory blocks allocated to prolific objects so that the number
retained for future allocation is more or less commensurate with that before the
occurrence of GC. STEMA also would transfer unused retained blocks from one
memory space to another to avoid GC being invoked too soon.

We evaluate STEMA with 16 benchmarks, and compare its performance with
MarkSweep, CopyMS, SemiSpace, and GenMS. Our results show that STEMA
performs on average 3.0%, 3.4%, and 28.8% better than MarkSweep, CopyMS and
SemiSpace respectively with a small heap; 2.6%, 6.7%, and 9.0% with a medium
heap; and 2.4%, 5.3%, and 2.1% with a large heap. For hsqldb, a prototype of the
popular relational DB engine, STEMA is 15.2% better than MarkSweep, 3.3% bet-
ter than CopyMS, and 6.5% better than SemiSpace. STEMA also reduces fragmen-
tation by 5% on average, leading to less GC in many applications. STEMA performs
better than GenMS with a tight heap as GenMS fails to run six of 16 benchmarks
with this heap. This suggests that STEMA is a better choice than GenMS for small
memory platforms. STEMA may also work adaptively with GenMS to achieve good
performance for all heap sizes.

In this work, we make use of prolific types to improve memory management.
Intuitively, prolific sizes may also be used to achieve the same goals. We have tried
experimentally using “prolific sizes” in STEMA to direct allocation decisions, but
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found that prolific sizes are not a good predictor of object lifetimes. For most of the
time, the use of size prolificacies led to performance degradation when we applied
memory reuse and object co-location to objects of prolific sizes. Details of prolific
sizes versus prolific types can be found in Yu et al. [2006].

STEMA uses online profiling to detect the prolificacy of types. It is possible to
transfer this mechanism to the compilation phase so that prolificacy information
can be made available before the program executes, and the overhead of online
profiling can be completely removed or much reduced.
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