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11.5

Expected Stock Returns and the Conditional

Skewness

Abstract

Motivated by the parsimonious jump-diffusion model of Zhang, Zhao and Chang

(2010), we show that the aggregate market returns can be predicted by the conditional

skewness of returns and the variance risk premium, a difference between the physical

and risk-neutral variance of market returns, even though the variance is supposed to

be constant only if jump exists. The magnitude of the predictability is particularly

striking at the intermediate quarterly return horizon, even combing other predictor

variables, like P/D ratio, the default spread and the consumption-wealth ratio (CAY).

We also find that the third central moments are significant in explaining the variance

risk premium, which further implies that the potential link between the variance risk

premium and the excess market return is the third central moments, not the skewness.
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1 Introduction

The predictability of stock returns is still one of the most studied and widely attented

issues in economics. Large literature documents the predictability of stock returns at

the firm-level cross-sectional analysis. However, time-series predictability of the ag-

gregate market returns is rarely studied. The Capital Asset Pricing Model (CAPM)

implies that market risk premium should be rewarded by single factor, but literature,

such as Fama and French (1992) and Boudoukh, Richardson and Smith (1993), find

that the estimated market risk premium is not different from zero or at times, sig-

nificantly less than zero. This implies that a single factor asset pricing model is not

enough to explain or predict the market returns. Harvey and Siddiue (2000b) present

an asset pricing model where skewness is priced which helps explain the negative ex

ante market risk premiums.

Actually skewness is being attached more and more importance by researchers

in recent years. Brunnermeier and Parker (2005) and Brunnermeier, Gollier and

Parker (2007) think that investors overestimate their return and exhibit a preference

for skewness in a portfolio choice, so positively skewed assets tend to have lower

returns. Mitton and Vorkink (2007) develop an equilibrium model incorporating the

skewness in utility function. Boyer, Mitton and Vorkink (2008) empirically investigate

the relation between idiosyncratic skewness and expected returns. But these papers

focus on the individual stocks and their cross-sectional behavior no caring about the

fully diversified portfolio, such as market index return.

Many continuous-time models proposed in financial literature, stochastic volatility

and jump diffusion model are the two popular ones to model the skewness. To be the

relation intuitive, we hope to have a straightforward and clear model. The existence of

jump in market has been largely documented. Todorov (2009) argue that jump is also

a source of variance risk and play a very important role in explaining the variance
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risk premium. Zhang, Zhao and Chang (2010) also develop a general equilibrium

model and implies that the expected market returns can be explained by the two

factors, variance and skewness of the market returns. Furthermore, we find that the

results also suggests expected market returns can also be predicted by the variance

risk premium, a difference between the physical and risk-neutral variance of market

returns, even though the variance is supposed to be constant only if jump exists. This

parsimonious model motivate us to investigate the link between expected returns and

variance risk premium, especially the role of the skewness or the third central moments

of returns. Bollerslev, Tauchen and Zhou (2009) show that variance risk premium is

able to explain a non-trivial fraction of the time-series variation in aggregate stock

market which is motivated by a general equilibrium model. Bakshi and Madan (2006)

derive a model to connect the volatility spread, the departure between risk-neutral

and physical index volatility, to the higher order physical return moments and the

parameters of the pricing kernel process. Our parsimonious model also gives the

similar relation between the variance risk premium and the third central moments of

returns.

Our empirical study focuses on the time-series behavior of the market excess

return. Using the S&P 500 index as the proxy of market portfolio, and European out-

of-money call and put index options to replicate the risk-neutral moments developed

by Bakshi, Kapadia and Madan (2003), we run the regressions of the market returns

for predictor variables.

We find that ex-post return variance has no predict power for the future excess

return which is also found in Bollerslev, Tauchen and Zhou (2009). But the skew-

ness and the third central moments are significant for shorter time horizons, such as

one month and three months for individual regressions and the regressions combing

other predict variables such as price-earning ratio, price-dividend ratio, the default

3



spread, the term spread, the stochastically daily de-trended risk-free rate and the

consumption-wealth ratio (CAY).

At the same time, unsurprisingly, variance risk premium are always significant

for all time horizons as documented in Bollerslev, Tauchen and Zhou (2009). To

investigate the link between the variance risk premium and skewness, we regress the

third central moments and skewness of returns on variance risk premium. We find

that the third central moments are significant in explaining the variance risk premium,

but the skewness is not. With the significance in the regression of excess return on

the third central moments of return, it is reasonable to think that probably potential

link between the variance risk premium and the excess return is the third central

moments, not the skewness.

The rest of this paper is organized as follows. Section 2 derive the relation between

the excess return and the return moments and the variance risk premium. Section 3

describes the measurement of variables. Data resource and description are given in

Section 4. Section 5 analyzes our empirical results. Section 6 concludes.

2 Jump Diffusion Model

It has been well documented presence of skewness in the conditional returns distribu-

tion. Many continuous-time models except Black-Scholes model have been proposed

in the finance literature. The stochastic volatility and jump-diffusion model and

model are the most popular ones. In particular, the sources of market variance risk

are also from presence of stochastic volatility and occurrence of unanticipated market

jumps. So jumps contribute market variance risk and the return skewness at the same

time. To clarify the effect of skewness and variance risk premium on the expected

market return, we choose the parsimonious jump diffusion model, supposing constant

return variance, to identify their relations by closed-form expressions.
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Following the jump-diffusion model in a production economy of Zhang, Zhao and

Chang (2010), that is, suppose the a single aggregate stock that is understood as a

stock index or a market portfolio follows

dSt

St
= µdt + σdBt + (ex − 1)dNt− λE(ex − 1)dt; (1)

where dBt denotes the increment of a standard Brownian motion, σ is the volatility

of the diffusion and dNt is the increment of a Poisson process with a constant jump

intensity λ and normal-distributed jump size x, that is, x ∼ (µx, σ
2
x) and E(dNt) =

λdt.

A representative investor with the constant relative risk aversion (CRRA) utility

function seeks to maximize his expected his utility function of his life time consump-

tion

maxctEt

∫ T

t

p(t)U(ct)dt,

where ct is the rate of consumption at time t, U(c) is a utility function with U ′ > 0,

U ′′ < 0, and p(t) ≥ 0, 0 ≤ t ≤ T is a time preference function. We consider the class

of constant relative risk aversion (CRRA) utility function

U(c) =

{
c1−γ

1−γ
, γ > 0, γ 6= 1,

ln c, γ = 1,
(2)

where the constant γ is the relative risk aversion coefficient, γ = −cU ′′/U ′.

Based on the result of Zhang, Zhao and Chang (2010), in general equilibrium

when market is clear, we have the following proposition.

Proposition 1 In the production economy with jump diffusion and one represen-

tative investor with CRRA utility function, the equilibrium equity premium is given
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by

φ = µ− r

= γσ2 + λE[(1− e−γx)(ex − 1)]

=
γ

τ
V art(Yτ ) +

1

2τ
γ(1− γ)Et[Yτ − Et(Yτ )]

3 − 1

2
λγ2E(x4) + λE[o(x5)] (3)

=
γ

τ
V art(Yτ ) +

1− γ

2τ
[V art(Yτ )− V arQ(Yτ )]− 1

4
λγ2(γ + 1)E(x4) + λE[o(x5)]

(4)

Furthermore, the variance risk premium V RP (t, τ) and the third central moments of

return have the following relation:

V RP (t, τ) = γEt[Yτ − Et(Yτ )]
3 + λτE[O(x4)] (5)

where Yτ = ln(St+τ/St) is the continuously compounded return within (t, t + τ), Q

denotes the risk-neutral measure and the variance risk premium V RP (t, τ) is defined

as defined as the difference between the physical and risk-neutral variance of stock

returns:

V RP (t, τ) = V art(Yτ )− V arQ(Yτ ) (6)

Proof: see Appendix A.

Even though it is a parsimonious model, literature has documented that jump risk

premium is significant in the S&P 500 index options, such as Pan (2002) and Bates

(2000). The expression in equation 3 and 4 give a closed-form expressions for excess

return and the third central moments of return, the variance risk premium and risk

aversion parameters. If the risk aversion parameter γ > 1, it implies that the excess

return has a negative relation with the third central moments of returns and variance

risk premium and a positive relation with return variance. Mitton and Vorkink (2007)

document the portfolio returns of underdiversified investors are substantially more

positively skewed than those of diversified investors. The preference for skewness
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pushes up the price of the assets with high skewness, so that the market portfolio

has a lower return and negative skewness due to its well-diversification. But the

constraint of this model is that the excess returns are always positive because the

jump risk premium is always positive whatever the sign of the jump size. In fact, it

is not worrying. Based on the definition of skewness, we know that negative skewness

means there is a substantial probability of a big negative return, so in case of downside

market, we can expect a big negative skewness.

So we expect that the third central moments of returns and variance risk premium

have the predict power for the future returns. Furthermore, from equation 5 we

conjecture that part of reason for the significance of variance risk premium for the

prediction of the excess return is the positive linear correlation with the third central

moments, not the physical skewness.

3 Empirical Measurements

The theoretical model outlined in the previous section suggests that the difference

between physical and risk-neutral second central moments may serve as two useful

predictor of the excess expected stock returns at the same time by effectively isolating

the systematic risk. Let τ period return is given by the log price relative: R(t, τ) ≡
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ln(St+τ/St]), then we have the results from Bakshi, Kapadia and Madan (2003).

V (t, τ) ≡ EQ[e−rτR(t, τ)2]

=

∫ ∞

S

2[1− ln(K/S)]

K2
C(t, τ ; K)dK +

∫ S

0

2[1 + ln(S/K)]

K2
P (t, τ ; K)dK (7)

W (t, τ) ≡ EQ[e−rτR(t, τ)3]

=

∫ ∞

S

6 ln(K/S)− 3(ln(K/S)2

K2
C(t, τ ; K)dK

−
∫ S

0

6 ln(S/K) + 3(ln(S/K))2

K2
P (t, τ ; K)dK (8)

X(t, τ) ≡ EQ[e−rτR(t, τ)4]

=

∫ ∞

S

12(ln(K/S))2 − 4(ln(K/S)3

K2
C(t, τ ; K)dK

−
∫ S

0

12(ln(S/K))2 + 4(ln(S/K))3

K2
P (t, τ ; K)dK (9)

µ(t, τ) ≡ EQ[R(t, τ)] = erτ − 1− erτ

2
V (t, τ)− erτ

6
W (t, τ)− erτ

24
X(t, τ) (10)

Where C(t, τ, K) denote the price of a European call option maturing at time T with

strike price K, P (t, τ, K) denote the price of a European put option maturing at time

T with strike price K, S is the spot price at time t and Q is the risk-neutral measure.

Then this means that the risk-neutral second moments or risk-neutral variance

of return can be replicated from the out-of-money European options data from the

following relation:

EQ[R(t, τ)− E(R(t, τ))]2 = EQ[R(t, τ)2]− [EQ(R(t, τ))]2

= erτV (t, τ)− µ(t, τ)2 (11)

The variance risk premium is defined the difference between the ex-ante risk neu-

tral expectation of future return variation over the [t, t + 1] time interval and the

ex-post realized variation over the [t− 1, t] time interval. Then the physical variance

PhVt is measured by the summation of the square of daily log return , that is,

PhVt ≡ Et[R− Et[R]]2 =
n∑

j=1

[ln
St−1+ j

n

St−1+ j−1
n

]2 (12)
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The physical or realized skewness PhSkt is from a standard measure, as Mitton and

Vorkink (2007),

PhSkt =

1
n

∑n
j=1(ln

S
t−1+

j
n

S
t−1+

j−1
n

− µ̂)3

σ̂3/2
, (13)

where µ̂ is the mean of the daily change of the price.

Then the physical third central moments is calculated by

PhTt = PhSkt × (PhVt)
3
2 (14)

where n is the number of the observation of the corresponding time interval. So

the variance risk premium V RPt and physical skewness/third central moments are

directly observable at time t. This is very important for them as the predictors for

future excess return. We also note from the expression of the third central moments

in the previous section, if the jump size is negative, the third central moments or

skewness of the return are also negative.

4 Data Description

Our empirical analysis is based on the aggregate S&P 500 composite index as a proxy

for the aggregate market portfolio. Our data is daily and sample spans the period

from January 1996 through December 2005.

We retrieve the highly liquid S&P index options from OptionsMatrics along with

the ”model-free” approach discussed in the previous section. we use the daily call

and put European options data to replicate the risk-neutral second central moments

of fixed maturities: 1 month, 3months, 6 months and 12 months from January 1996

through December 2005.

Figure 1 plots the daily time series of variance risk premium, physical variance

and skewness for 3-month maturity. Variance measure are somewhat higher about

the year 2002. Most of points of the variance risk premium are blow zero line. The
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physical skewness is more negative especially before 2003. This is consistent with

the theoretical model developed in the previous section and our earlier empirical

conjecture.

In addition to the variance and skewness risk premium, we also consider other more

traditional predictor variances (see, Bollerslev, Tauchen and Zhou (2009)). Specially,

we obtain daily P/E rations and dividend yields for the S%P 500 from Standard &

Poor’s. Daily Data on the 3-month T-bill, the default spread (between Moody’s BAA

and AAA corporate bond spreads), the daily term spread (between the 10-year T-

bond and the 3-month T-bill yields), and the stochastically daily de-trended risk-free

rate (the 1-month T-bill rate minus its backward 12-month moving average) are taken

from the public website of the Federal Reserve Bank of St. Louis. The consumption-

wealth ratio (CAY), as defined in Lettau and Ludvigson (2001), is downloaded from

Lettau and Ludvigson’s website.

Anticipating the empirical results, we find that the predictability afforded by the

physical variance, variance risk premium, the third central moments and skewness

respectively. Table 1 reports the corresponding summary statistics and predictor

variables based on the annualized daily return basis. The mean monthly excess re-

turn of S&P 500 index over the sample equals 3.49 percent annually. The sample

means for the variance risk premium, physical skewness, physical variance and third

central moments are -0.89%, -3.18%, 29.53 and -0.05 square percent respectively.

Average negative variance risk premium and skewness are primarily consistent with

large literature, for example, Zhang, Zhao and Chang (2010), Bollerslev, Tauchen

and Zhou (2009), Bali and Hovaimian (2009).
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5 Empirical Results

The main purpose of our empirical study is to investigate whether the past skew-

ness/third central moments can forecast the future return. So all of our simple linear

regressions of the S&P 500 excess returns are based on different sets of lagged predic-

tor variables. All of the reported t-statistics are Newey-West adjusted values taking

account of the overlap in the regressions. We focus on our discussion on the esti-

mated slope coefficients and their statistical significance as determined by the robust

t-statistics. At the same time, we also report the corresponding adjusted R2s.

5.1 Intertemporal Relation between the Conditional Skew-
ness/Third Central Moments and Market Returns

5.1.1 Ex-post Variance and Market Returns

Based on the model in section 2, we run the regressions of excess market excess

returns on physical variance, physical skewness/third central moments, variance risk

premium and the control variables mentioned in the previous section:

ExcessRet+1 = α + γPhVt + βPhSkt/PhTt + φV RPt + ηControlVt + εt+1 (15)

The results are reported in Table 2, 3, 4, 5 respectively for monthly, quarterly,

semi-annual and annual returns. The ”Simple” columns report the regression co-

efficients and Newey-West adjusted t-statistics on the excess returns for one single

factor only. The ”Multiple” columns give the regression results combing other con-

trol variables. We find that none of the coefficients on physical variance is significant

for the simple regression, even when combing other predictor variables, it is still not

significant. R2 is also very low, especially in quarterly return regressions, it only has

-0.04%. This means that the ex-post variance has no predict power for the future

returns.

This finding can not be explained by the CAPM model, which also implies that the
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expected risk premium is positive, but we all know from market that excess market

return may not be positive, especially during the period of downside market. This

contradiction is also noticed by other researches, for example Bollerslev, Tauchen and

Zhou (2009) and Diacogiannis and Feldman (2010) which give their explanations.

This violation of CAPM results in more more model incorporating higher order risks,

such as Harvey and Siddique (2000b) develop a single factor asset pricing model

incorporating conditional skewness. In their three-moment CAPM, the market return

is also a function of the conditional skewness and the price of skewness. This motives

us to investigate the relation between the skewness and the market return by market

data.

5.1.2 Ex-post Conditional Skewness and Market Returns

Mitton and Vorkink (2007) document the portfolio returns of underdiversified in-

vestors are substantially more positively skewed than those of diversified investors.

The preference for skewness pushes up the price of the assets with high skewness, so

that the market portfolio has a lower return and negative skewness due to its well-

diversification. Harvey and Siddique (2000a) show that conditional skewness helps

explain the cross-sectional variation of expected returns across assets, but they do

not care about the aggregate market.

Using the S&P 500 index as the proxy of market portfolio, we find that the

coefficients on the third central moments are all negatively significant for quarterly

regressions in Table 3. The coefficients of physical third central moments and skewness

range from -0.12 to -0.13 and from -0.23 to -0.26 respectively ,which implies a good

economic significance. Moreover, the statistical significance parameters are high in

absolute value ranging from -1.78 to -3.34. Hence, we observe not only a robust

economic significance, but also highly statistically significant parameter estimates.

Atilgan, Bali and Demirtas (2010) also investigate the intemporal relation between
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the implied volatility spread and expected returns on the aggregate stock market.

They argue that this relation is not driven by information flow from option markets

to stick market rather than volatility spreads acting as a proxy for skewness. The

main reason for this argument is that the physical skewness as a control variable in

the regressions of excess return is not significant. But they put all of the control vari-

ables together in the regressions, which may decrease or increase the significance of

the some factors if the variables are linear correlated. For example, the past variance

is highly significant in all of the regressions in their Table 3. But it is inconsistent

with literature, such as Bollerslev, Tauchen and Zhou (2009) and Diacogiannis and

Feldman (2010) we have mentioned above. We run the regressions for physical skew-

ness not only as an individual factor but also combining with other predictors. All of

the adjusted t-statistics imply the higher the ex-post skewness, the lower the future

excess returns.

On the another hand, based on our theoretical results on section 2, variance risk

premium is also an important factor for forecasting the future return. In fact, R2

on variance risk premium, the third central moments and skewness individual regres-

sions are highest, 9.08%, 7.67% and 10.40% for quarterly return regression. Combing

the the third central moments with other predictors, variance risk premium, price-

dividend ratio, the default spread (DFSP ) and the relative risk free rate (RREL),

R2 increases and the the third central moments remains statistically significant. It

is unsurprisingly find that the variance risk premium are significant in the individ-

ual regression and the coefficients are also remain statistically significant in the joint

regressions combining other predictors. This is highly consistent with Bollerslev,

Tauchen and Zhou (2009) which document that high (low) variance risk premia pre-

dicting high (low) future returns (aggregate stock market returns). We also note that

the conditional physical skewness is more significant than the third central moments
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for monthly and quarterly regressions even combing other predictors.

We also note that for semi-annual return regressions, the coefficients of the third

central moments, the skewness and the variance risk premium are very different from

our conjecture. Model in section 2 implies that the excess returns are always positive.

But in fact, the average of semi-annual excess return for our sample is -10.44%.

This means that our model can not explain the situation when the market excess

return is negative. However, the positive coefficients of variance risk premium and

skewness/third central moments are also reasonable, because these two factors are

negative during this period at the same time. So during the period of downside

market, or the market excess return is negative, data analysis implies that there is

a positive relation between the conditional skewness and the future returns. Recall

the definition of skewness, a big negative skewness means a higher possibility to have

a negative return. For example, the market crash means the occurrence of a big

negative jump which implies a negative skewness from our model, and at the same

time, the investors averagely earn a negative return.

5.2 Intertemporal Relation between Variance Risk Premium
and the Third Central Moments of Market Return

From the previous analysis, we know that variance risk premium and the third cen-

tral moments or skewness of returns are the significant factors for forecasting market

returns. Especially, variance risk premium as a predict factor has been well docu-

mented by literature, such as Bakshi and Kapadia (2003), carr and Wu (2009) which

indicate that market variance risk is indeed priced. But what is the fundamental

explanations behind this relation has been paid much attention. Recently conditional

skewness as a higher order moments become popular to examine the link. Bakshi

and Madan (2006) suppose that the aggregate investor behavior is modeled through

a power utility class of pricing kernels m(R), then the difference between physical and
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risk-neutral variance is a combination of physical third, fourth central moments and

risk aversion parameters. Our jump diffusion model is built a product economy, but

the general equilibrium also implies a similar result variance risk premium and the

third central moments have a linear relation because of the existence of jump in the

market.

From the previous analysis of subsection, we know that both of them have predict

power for the excess market return. We hope to test whether the third central mo-

ments or skewness of returns have the explanation power for variance risk premium

for the aggregate market. Table 6 presents results from the time-series regressions of

the variance risk premium on the third central moments of market returns. To dif-

ferentiate the role of the third central moments and the skewness of market returns,

we also run the regressions on the skewness:

V RPt = α + βPhTt/PhSkt + εt (16)

We find that the third central moments are all significant for different time hori-

zons. The coefficients of it range from 0.0121 to 0.0299. Almost all of absolute value

of the Newey-West adjusted t-statistics are more than 2. The highest estimate and

t-value appear for annual regression, 0.0299 and 3.85 respectively. At the same time,

R2 for annal regression is also highest, 33.98%. But neither of the physical skewness

is significant. This means that variance risk premium include the information from

the third central moments, not from the skewness. This implies that the physical

variance has no direct effect on the difference between the physical and risk-neutral

variance. Therefore, we think that one of explanation behind a potential expected

returns and volatility spreads may be the third central moments, not skewness, see,

Atilgan, Bali and Demirtas (2010).
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6 Conclusion

Recent year, many empirical studies imply that Capital Asset Pricing Model (CAPM)

is violated and can not explain the expected stock return, so that researchers pay

more attention to the skewness. But one hand, most of work focus on the individual

stocks, not the aggregate market. On the other hand, the stochastic volatility and

jump-diffusion model and model are the most popular ones proposed. In particular,

the sources of market variance risk are also from presence of stochastic volatility and

occurrence of unanticipated market jumps. So jumps contribute market variance risk

and the return skewness at the same time. To clarify the effect of skewness and

variance risk premium on the expected market return, we choose the parsimonious

jump diffusion model, supposing constant return variance, to identify their relations

by closed-form expressions. In this paper, we derive a relation between the expected

aggregate market return and the return variance and skewness from a parsimonious

jump-diffusion model of Zhang, Zhao and Chang (2010).

From the model, the existence of jumps induce the relation between variance risk

premium, conditional skewness and the excess market returns. To test this relation,

we regress the excess S&P 500 index returns for ten years on the variance and skewness

firstly and found that ex-post variance has no any significant predict power for the

future market returns, but skewness and the third central moments are significant

especially for quarterly returns.

At the same time, we use the out-of-money call and put European options data

to replicate the risk-neutral moments based on Bakshi, Kapadia and Madan (2003).

We also find the consistent result with literature that variance risk premium has

significant explanation power for the future stock return. These empirical findings

motives us to investigate investigate whether the potential explanation on the link

between the market return and the variance risk premium is skewness or not. We find
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that it should be the third central moments, not the skewness, link the variance risk

premium and expected stock returns. This finding is also consistent with the result

of Bakshi and Madan (2006).
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Table 6: Variance Risk Premium Regressions

This Table reports the regression results for variance risk premium on physical skew-
ness and third central moments based on 1-month, 3-month, 6-month and 12-month
basis respectively. The regression is: PhVt − RnVt = a + bPhTt/PhSkt + et. The
sample period extends from January 1996 to December 2005. Newey-West adjusted
t-statistics are reported in parentheses. Variables definitions are identical to Table 1.

Constant PhTt PhSkt Adj.R2(%)
Panel A: Regression for 1-month

-0.0009 0.0155 0.08
(-6.91) (0.65)
-0.0009 0.0141 1.79
(-14.75) (2.22)

Panel B: Regression for 3-month

-0.0043 0.0107 0.69
(-15.05) (1.40)
-0.0044 0.0121 2.88
(-14.75) (2.17)

Panel C: Regression for 6-month

-0.0346 0.0149 0.05
(-12.67) (0.17)
-0.0348 0.0173 1.86
(-22.00) (1.97)

Panel D: Regression for 12-month

-0.0169 0.0418 1.25
(-4.59) (0.72)
-0.0163 0.0299 33.98
(-7.09) (3.85)
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A Proof of proposition 1

Based on the equilibrium model of Zhang, Zhao and Chang (2010), which give the

results about equity premium (φ) and first, second and third physical and risk-neutral

central moments.

To simplify and clarify the relation, here we assume that the jump size follows a

normal distribution, that is x ∼ (µx, σx). According to the setting of model and the

relation between the physical and risk-neutral jump sizes, we firstly need to obtain

the relation between the physical and risk-neutral central moments of jump size.

Suppose Q is the risk-neutral measure, and recall the results of Zhang, Zhao and

Chang (2010), we have the Q measure central moments about x:

E(x) = µx

EQ(x) = µQ
x =

E(e−γxx)

E(e−γx)
= µx − γσ2

x

E(x− µx)
2 = σ2

x

EQ(x− µQ
x )2 = (σQ

x )2 =
E(e−γx(x− µQ

x )2)

E(e−γx)

=
E(e−γxx2)

E(e−γx)
− (µQ

x )2

= σ2
x

E(x− µx)
3 = E(x3)− 3µxσ

2
x − µ3

x

EQ(x− µQ
x )3 = EQ(x3)− 3µQ

x σ2
x − (µQ

x )3

Furthermore, let log return be denoted as Yτ = ln(St+τ/St), equilibrium jump-

diffusion model also give the following cumulants:

V art(Yτ ) = σ2τ + λτ [µ2
x + σ2

x]

V arQ
t (Yτ ) = σ2τ + λQτ [(µQ

x )2 + (σQ
x )2]

Et[Yτ − Et(Yτ )]
3 = λτ [µ3

x + 3µxσ
2
x + E(x− µx)

3]
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Because of the normality of jump size x and the properties obtained above, no

loss of generality, we take Taylor expansion for jump size x in order to examine their

relationship between them, then we obtain the variance risk premium which is the

difference between the physical and risk-neutral variance of return:

V art(Yτ )− V arQ
t (Yτ ) = λτ [µ2

x + σ2
x]− λE(e−γx)τ [(µQ

x )2 + σ2
x]

= λτ [E(x2)− E(x2e−γx)]

= λτ [E(x2)− E(x2(1− γx +
1

2
γ2x2 + o(x3))]

= λγτE(x3)− 1

2
λτγ2E(x4) + λτE[O(x5)]

Similarly, the third central moments of returns can also be expressed by jump intensity

and jump size:

Et[Yτ − Et(Yτ )]
3 = λτ [µ3

x + 3µxσ
2
x + E(x− µx)

3]

= λτE(x3)

Then it is easy to have a relation between the variance risk premium and the third

central moments of return by the jump parameters:

V art(Yτ )− V arQ(Yτ ) = γEt[Yτ − Et(Yτ )]
3 − 1

2
λτγ2E(x4) + λτE[O(x5)]

Recall the result of equity premium φ:

φ ≡ φσ + φJ = γσ2 + λE[(1− e−γx)(ex − 1)]
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Taking Taylor expansion for jump size x, we have

φ = γσ2 + λE[(1− e−γx)(ex − 1)]

= γσ2 + λE[(γx− 1

2
γ2x2 + o(x3))(1 + x +

1

2
x2 + o(x3)− 1)]

= γσ2 + λγE(x2) +
1

2
γ(1− γ)E(x3)− 1

2
λγ2E(x4) + λE[o(x5)]

=
γ

τ
V art(Yτ ) +

1

2τ
γ(1− γ)Et[Yτ − Et(Yτ )]

3 − 1

2
λγ2E(x4) + λE[o(x5)]

=
γ

τ
V art(Yτ ) +

1− γ

2τ
[V art(Yτ )− V arQ(Yτ )]− 1

4
λγ2(γ + 1)E(x4) + λE[o(x5)]
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Figure 1: Variance risk premium and physical variance and skewness. This figure
plots the variance risk premium, physical variance and skewness of 3-month maturity
for the S&P 500 index from January 1996 to December 2005
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