

The HKU Scholars Hub



| Title       | 1,25-Dihydroxyvitamin D3 acutely reduces acetylcholine-induced<br>endothelium-dependent contraction in hypertensive rat aorta<br>through activation of protein kinase C |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Author(s)   | Kwan, SYW; Leung, SWS; Man, RYK                                                                                                                                         |
| Citation    | The 10th Anniversary EDHF Meeting (EDHF 2012), Vaux-de-<br>Cernay, France, 27-30 June 2012. In Journal of Vascular<br>Research, 2012, v. 49 suppl. 2, abstract no. 30   |
| Issued Date | 2012                                                                                                                                                                    |
| URL         | http://hdl.handle.net/10722/165628                                                                                                                                      |
| Rights      | Journal of Vascular Research. Copyright © S Karger AG.                                                                                                                  |

## 1,25-DIHYDROXYVITAMIN D3 ACUTELY REDUCES ACETYLCHOLINE-INDUCED ENDOTHELIUM-DEPENDENT CONTRACTION IN HYPERTENSIVE RAT AORTA THROUGH ACTIVATION OF PROTEIN KINASE C

## Sophie YW Kwan, Susan WS Leung and Ricky YK Man

Pharmacology and Pharmacy, Faculty of Medicine, University of Hong Kong, China

Vitamin D derivatives affect the regulation of cardiovascular system. Recent study from our lab indicated that 1,25-dihydroxyvitamin D3, the major metabolite of vitamin D, acutely reduced endothelium-dependent contraction to acetylcholine in spontaneously hypertensive rats (SHR) aorta. This reduction was associated with reduced cytosolic-free calcium in endothelial cells. In the other cell types, vitamin D caused calcium depletion from intracellular calcium store and inhibited membrane calcium channel activity via protein kinase C (PKC) activation. The present experiment examined whether or not PKC was involved in the inhibition of endotheliumdependent contraction by 1,25-dihydroxyvitamin D3. Aortic rings from male SHR aged 36-40 weeks were mounted on organ chamber for isometric force measurements. All experiments were performed in the presence of N@-nitro-L-arginine methyl ester (L-NAME; 100 µM) for the study of endothelium-dependent contraction. Both 1,25-dihydroxyvitamin D3 (100 nM) and PKC inhibitor, GF 109203X (5 µM), remarkably inhibited acetylcholine-induced endotheliumdependent contraction. In the presence of GF 109203X, the inhibitory effect of 1,25dihydroxyvitamin D3 was not observed. Our finding suggests that 1,25-dihydroxyvitamin D3 activated PKC to suppress endothelium-dependent contraction. The acute inhibitory effect by 30 minutes incubation of 1,25-dihydroxyvitamin D3 unlikely modulate gene expression that is typical of a classic nuclear vitamin D receptor. Hence further experiments are planned to investigate whether or not 1,25-dihydroxyvitamin D3 induces the translocation of vitamin D receptor from nucleus to plasma membrane for its acute vascular effects