
Title FTMS: an efficient multicast scheduling algorithm for feedback-
based two-stage switch

Author(s) He, C; Hu, B; Yeung, LK

Citation
The 2012 IEEE Global Communications Conference (GLOBECOM
2012), Anaheim, CA., 3-7 December 2012. In Globecom. IEEE
Conference and Exhibition, 2012, p. 2541-2546

Issued Date 2012

URL http://hdl.handle.net/10722/165315

Rights Globecom. IEEE Conference and Exhibition. Copyright © IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37987058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FTMS: An Efficient Multicast Scheduling
Algorithm for Feedback-based Two-stage Switch

Chunzhi He∗, Bing Hu† and Kwan L. Yeung∗
∗Department of Electrical and Electronic Engineering

The University of Hong Kong, Hong Kong, PRC
Email: {czhe, kyeung}@eee.hku.hk

†Department of Information Science and Electronic Engineering
Zhejiang University, Hangzhou, PRC

E-mail: binghu@zju.edu.cn

Abstract—Two major challenges in designing high-speed mul-
ticast switches are the expensive multicast switch fabric and
the highly complicated central scheduler. While the recent load-
balanced switch architecture uses simple unicast switch fabric
and does not require a central scheduler, it is only good at
handling unicast traffic. In this paper, we extend an existing
load-balanced switch called feedback-based two-stage switch to
support multicast traffic. In particular, an efficient multicast
scheduling algorithm (FTMS) is designed. With FTMS, head-of-
line (HOL) packet blocking at each input port is eliminated by
adopting “pointer” queues. To cut down queuing delay, packet
replication is carried out at middle-stage ports. As compared
with other multicast scheduling algorithms, simulation results
show that our FTMS always provides the highest throughput.

I. INTRODUCTION

Due to an ever increasing amount of multicast and broadcast
services on the Internet, the need for building high-speed
switches/routers for efficient support of multicast traffic be-
comes urgent. Multicast switches are usually designed based
on their unicast counterparts [1], [2]. To this end, a unicast
switch can be designed based on either an input-queued or
an output-queued switch architecture. Although output-queued
switch provides the best delay-throughput performance, it is
not scalable due to the high speedup requirement. Input-
queued switch [2] does not require speedup and is thus the
preferred choice for high-speed switch design.

In an input-queued unicast switch, a central scheduler is
adopted for resolving packet contention. Virtual output queue-
ing (VOQ), where at each input port a dedicated queue is main-
tained for packets destined for each output, is also adopted to
eliminate the head-of-line (HOL) blocking phenomenon. The
associated scheduling problem is equivalent to the matching
problem in a bipartite graph. While optimal scheduling al-
gorithm that yields 100% throughput exists (e.g. Maximum
Weight Matching (MWM) [3]), fast iterative scheduling algo-
rithms (e.g. iSLIP [1]) with sub-optimal performance are more
desirable in practice.

This project is supported by the small project funding 201007176210, The
University of Hong Kong.

Supporting multicast traffic is inherently more challenging
[4]. Many input-queued multicast switches have been designed
based on their unicast counterparts and they usually require in-
switch packet replication, or multicast switch fabric. Packet
replication is a process of cloning a multicast packet for
sending to different output ports according to its multicast
address, or fanout set. As compared with unicast switch
fabric, multicast switch fabric is more expensive to build.
Besides, multicast scheduling algorithms are also more com-
plicated than their unicast counterparts. Therefore, two major
challenges in designing high-speed multicast switch are the
expensive multicast switch fabric and the highly complicated
central scheduler.

Recently, unicast switches based on the concept of load-
balancing have been designed [5]–[8]. A load-balanced switch
consists of two stages of switch fabrics as shown in Fig. 1,
where the first stage is responsible for load balancing and
the second stage for packet delivery. It is shown that load-
balanced switch is scalable, requires no central scheduler,
and each of its (unicast) switch fabrics only needs to realize
N switch configurations instead of N ! switch configurations.
More recently, the notorious packet out-of-order problem [5]
associated with the load-balanced switch has also been solved
by the feedback-based two-stage switch in [8].

In this paper, we follow the load-balanced approach to
design an input-queued multicast switch. Motivated by the
fact that the feedback-based switch elegantly solves the out-

Fig. 1. A load-balanced two-stage switch.

978-1-4673-0921-9/12/$31.00 ©2012 IEEE

Globecom 2012 - Next Generation Networking and Internet Symposium

2541

of-order problem for unicast traffic, we extend it to support
multicast. In particular, we propose a simple distributed mul-
ticast scheduling algorithm, called Feedback-based Two-stage
Multicast Scheduling (FTMS). With FTMS, the HOL packet
blocking at input ports is solved by adopting the “pointer”
queues. Packet replication is carried out at middle-stage ports,
where the two stages of switch fabric remain unicast/simple.
As compared with other multicast scheduling algorithms, sim-
ulation results show that our FTMS effectively reduces average
packet delay and achieves the highest throughput under various
traffic conditions.

The rest of the paper is organized as follows. In Section II,
recent efforts on designing multicast scheduling algorithms are
reviewed. In Section III, the original feedback-based unicast
switch [8] is summarized. Our FTMS is detailed in Section
IV, and simulation results are presented in Section V. Finally,
we conclude the paper in Section VI.

II. RELATED WORK

Most existing multicast switches [9]–[12] require in-switch
packet replication (i.e. multicast switch fabric), and a sophis-
ticated central scheduler for maximizing switch performance.

TATRA [9] is a single FIFO queue based multicast algo-
rithm, where each input port has a single shared (physical)
queue for both unicast and multicast traffic. The central
scheduler maintains N virtual queues and each is destined
for one output. In each time slot, the head-of-line (HOL)
packet of each input queue is scheduled to join different
virtual queues according to its destination output ports. Fanout
splitting [13], which allows a multicast packet to be sent to a
subset of its outputs, is adopted to increase switch throughput.
Nevertheless, TATRA suffers from the severe HOL blocking
due to its single queue nature.

To reduce HOL blocking, multiple dedicated multicast
queues are used in [10] and [11]. In [10], each input port
maintains a set of multicast queues. When a multicast packet
arrives, it selects one of the multicast queues to join according
to its load-balancing policy. In each time slot, scheduling
priority is given to either a unicast packet or a multicast packet
according to a certain service ratio between the two types of
traffic. An iterative scheduling algorithm is also adopted to
maximize the switch throughput.

To further reduce the HOL blocking, a multicast packet
split scheme is proposed in [11]. In [11], the set of output
ports is divided into m non-overlapped subsets, and each
input port maintains m unicast/multicast shared queues and
each is dedicated to a subset of outputs. When a multicast
packet arrives, if its fanout set completely fit into a queue,
it joins that queue; otherwise, the multicast packet is split
into “smaller” ones (each with a modified fanout set) to join
multiple queues. Again, an iterative scheduler is adopted to
maximize throughput.

In [12], an efficient multicast scheduling algorithm called
FIFOMS is proposed to avoid the HOL blocking. The basic
idea is to separately store unicast/multicast packets and their
memory addresses (i.e. pointers). FIFOMS uses the classic

unicast VOQs (virtual output queues) as pointer queues.
Specifically, when a multicast packet with a fanout size of
f (f = 1 for unicast packet) arrives, it is time-stamped and
stored in a shared memory, and its memory address/pointer
joins f different VOQs according to the fanout set. In each
time slot, scheduling priority is given to the pointers (which
respesent the unicast copies of a multicast packet) with
the smallest timestamp. In effect, every multicast packet is
“converted” into unicast in scheduling. To this end, HOL
blocking is completely eliminated. But in order to maximize
switch throughput, in-switch packet replication is still used for
sending multiple copies of a multicast packet in the same slot.
This is achieved by an iterative scheduling algorithm, which
incurs considerable amount of communication overheads.

Notably, the feedback-based two-stage switch has been
extended in [14] to support multicast traffic. In the feedback-
based unicast switch (see Section III), each input port main-
tains N unicast VOQs . To support multicast, m shared queues
for multicast traffic are added at each input port and the
same packet split scheme used in [11] is adopted. Priority
is given to schedule multicast traffic. When a multicast packet
is selected, only one copy of this multicast packet together
with an N -bit replication vector is sent to the middle-stage
port, where packet replication occurs based on the replication
vector. Unlike other existing multicast switches, this algorithm
is simple because it requires neither a central scheduler nor
multicast switch fabric. However, it still suffers from the HOL
blocking.

III. FEEDBACK-BASED TWO-STAGE SWITCH FOR UNICAST
TRAFFIC

Our multicast scheduling algorithm is based on the
feedback-based two-stage switch [8]. In this section, we review
its basic unicast operation. Consider the feedback-based switch
in Fig. 2, where VOQs are located at both input and middle-
stage ports. We use VOQ1(i, k) to represent the VOQ at input
port i with packets destined for output k (not middle-stage
port k). Similarly, VOQ2(j, k) is used to denote the VOQ at
middle-stage port j with packets destined for output k.

Fig. 2. A feedback-based two-stage switch.

Each stage of fabric is configured following a deterministic
and periodic sequence of N configurations. An example of
constructing such a sequence is that at time slot t, input i (for
i = 0, 1, 2, . . . , N − 1) is connected to output j, where j is

2542

given by
j = (i+ t) mod N. (1)

Assume the sequence of N configurations used in the first-
stage switch is obtained from Eqn. (1). Let ct denote the
configuration in slot t. Then [c0, c1, . . . , cN−1] denotes the
resulting sequence of N configurations. The same set of N
configurations is used in the second-stage switch, but in a
different order/sequence for providing the necessary feedback
path. Specifically, a sequence in the reverse order of that in
the first stage, or [cN−1, cN−2, . . . , c0], is used, such that at
time t (for 0 ≤ t < N), middle-stage port j is connected to
output k, where k is given by

k = (j +N − 1− t) mod N (2)

If t is within [xN, (x+1)N), set t = t−xN before applying
(2).

Combining the two sequences of configurations, the two-
stage switch is configured according to the joint sequence of
[c0 cN−1, c1 cN−2, . . . , cN−1 c0]. A joint sequence example
is shown in Fig. 3, where the solid lines show the configu-
rations used by the first fabric and the dashed lines show the
configurations used by the second fabric.

Fig. 3. Two sequences of configurations for a 4× 4 feedback-based switch.

Each VOQ at the middle-stage port in Fig. 2 can store at
most one packet. At time slot t, the occupancy of the N
VOQs at a middle-stage port j is reported to its connected
output k by piggybacking the N -bit occupancy vector onto
the data packet. Since output k and input k are located on
the same switch linecard, the occupancy vector is then made
available to input k at negligible cost. At slot t + 1, based
on the occupancy vector received, input k selects a packet
for sending to its connected middle-stage port j. Without loss
of generality, we assume input k selects the packet from its
longest VOQ, yet ensuring the corresponding VOQ at middle-
stage port j is empty (as learned from the occupancy vector).

Unlike other load-balanced switches [5]–[7]. the feedback-
based switch guarantees in-order packet delivery because
packets belonging to the same flow, though traversing through
different middle-stage ports, always experience the same
middle-stage port delay. For more details, please refer to [8].

IV. FTMS: FEEDBACK-BASED TWO-STAGE MULTICAST
SCHEDULING ALGORITHM

A simple distributed multicast scheduling algorithm based
on the feedback-based switch is proposed in this section.
We call it Feedback-based Two-stage Multicast Scheduling

algorithm (FTMS). In order to eliminate the HOL blocking at
input ports, the pointer-based multicast VOQ [12] is adopted
(see the review in Section II). Besides, packet replication
occurs at middle-stage ports and in-switch multicast capability
is thus not required.

A. Pointer-based multicast VOQ

For an N × N input-queued unicast switch, each input
port maintains N VOQs, one for each output/flow. The HOL
blocking can then be eliminated. But for multicast traffic, each
input needs to handle up to 2N−1 possible multicast flows. In
practice, this is not feasible. In [12], a pointer-based multicast
VOQ is introduced to solve this problem.

A pointer-based multicast VOQ consists of two buffers,
packet buffer and pointer buffer. When a multicast packet with
a fanout size of f arrives, it is stored (once) in the packet
buffer, and its memory address (i.e. a pointer) is copied to
f different pointer VOQs according to its fanout set. Since
the destinations of a (multicast) packet are independent and a
pointer only consists of a few bytes, the copy operation can
be done in parallel by hardware with no/slight speedup. Fig. 4
shows a multicast VOQ for a 4×4 switch. Specifically, Packet1
with fanout set {1, 2, 3} and Packet2 with fanout set {0, 2,
3} arrive at the input port in time slots 1 and 2 respectively.
While packets are stored in the packet buffer, their pointers,
P1 and P2, join the corresponding pointer VOQs.

B. Multicast scheduling

Without loss of generality, we assume the two stages of
switch fabrics in Fig. 2 are configured following the joint
sequence of switch configurations given by Eqns. (1) and (2).
Besides, the unicast VOQ at each input port is replaced by the
multicast VOQ structure in Fig. 4.

Our Feedback-based Two-stage Mulitcast Scheduling
(FTMS) algorithm consists of the following three steps:

Pointer selection: In each time slot, based on the received
occupancy vector of middle-stage port j, input port i selects a
HOL pointer from the N pointer VOQs. Priority is given to the
longest VOQ. If a pointer P is selected, then check the other
N − 1 HOL pointers. Any pointers that satisfy the following
requirements are also selected: (1) the corresponding VOQ at
middle-stage port j is empty (as learned from the occupancy

Fig. 4. Pointer-based multicast VOQ for a 4× 4 switch.

2543

vector); and (2) the pointer must point to the same (multicast)
packet as pointer P does. Therefore, multiple HOL pointers
can be selected in this step.

Generating replication vector: Based on the selected point-
ers, an N -bit replication vector is generated, which identifies
the (middle-stage port) VOQs these pointers belong to.

Packet transmission: Since all selected pointers point to the
same (multicast) packet, only one 1 copy of this packet is
sent to middle-stage port j, together with its N -bit replication
vector. Then these selected pointers are removed from their
pointer VOQs. Note that a packet will be deleted from the
packet buffer, if all of its pointers are removed from the VOQs.
When a packet arrives at the middle-stage port, based on the
piggybacked replication vector, it will be copied to join the
corresponding empty (unicast) VOQs.

Note that the (unicast) packet transmission in the second
stage switch is the same as the original feedback-based two-
stage switch. When a middle-stage port is connected to an out-
put (according to Eqn. (2)), a packet from the corresponding
middle-stage VOQ is sent. Since packet replication is carried
out at middle-stage port, an interesting question is if a speedup
is required at a middle-stage port for packet replication? The
answer is no because the replication process can span over
multiple time slots because each time slot a middle-stage port
can send at most one packet to an output.

Finally, let us wrap up our FTMS algorithm by an example
in Fig. 4. Assume in the current time slot, the input port
shown in Fig. 4, say input port i, receives an occupancy
vector (1,0,1,1) of middle-stage port j, where “1” indicates
the corresponding VOQs at middle-stage port j are empty.
Based on the occupancy vector, assume the HOL pointer P1 of
VOQ1(i, 3) (the VOQ destined for output 3) is selected using
the LQF scheme. According to the selection rules, pointer P1
of VOQ1(i, 2) should also be selected. Then a copy of Packet1
is sent to middle-stage port j together with a replication
vector (0,0,1,1) (“1” identifies the middle-stage VOQ which
the packet should be replicated to), and the two HOL pointers
of VOQ1(i, 2) and VOQ1(i, 3) are removed. When the copy
of Packet1 arrives at middle-stage port j, it is cloned to both
VOQ2(j, 2) and VOQ2(j, 3), and the cloning process can span
over multiple time slots.

C. Discussion

In our FTMS algorithm, packet replication only occurs at
the middle-stage port. When a multicast packet arrives at an
input port, it is stored as a unicast packet and its pointer joins
different VOQs. (Note that a stored packet can be read out
multiple times. But we do not consider such an implicit fanout
splitting as packet replication.) In the first stage switch fabric,
a (copy of) multicast packet is sent to a middle-stage port as
a unicast packet. In the second stage, “real” unicast packets
(which are cloned at middle-stage ports) are delivered to the
correct destination ports. Therefore, the two switch fabrics in

1Accordingly, no speedup is required because at most one packet is sent
from each input port in each time slot.

Fig. 2 are unicast. Besides, such a unicast switch fabric only
needs to realize N switch configurations, whereas a regular
unicast switch fabric needs to realize N ! configurations.

Our FTMS and the multicast scheduling algorithm proposed
in [14] (we call it load-balanced multicast scheduler (LBMS)
in this paper) are based on the same feedback-based two-
stage switch. In LBMS, packet replication takes place at both
input ports and middle-stage ports, and m (1 ≤ m ≤ N ,
N is the switch size) dedicated multicast VOQs are added
to each input port. As m increases, the HOL blocking is
reduced, and more packets are replicated at the input port.
Two major drawbacks of packet replication at input ports
are additional speedup requirement for packet replication, and
additional queuing delay due to the large number of replicated
packets. When m = N , LBMS completely eliminates the HOL
blocking problem, but all packet replication is done at the input
port and it suffers the highest input port queuing delay (as can
be seen from simulation results later). In other words, LBMS
improves its throughput performance at the cost of increased
delay.

Our FTMS avoids HOL blocking by adopting the pointer-
based multicast VOQ structure in Fig. 2, and only allows
packet replication to take place at the middle-stage port. Note
that feedback-based two-stage switch uses a single-packet
buffer at each middle-stage VOQ, so packet replication at the
middle-stage port will not increase queueing delay. Again, this
can be confirmed by the simulation results in the next section.

Further notice that pointers destined for a particular output
port are stored in a FIFO queue, so the multicast VOQ
structure does not cause packet out-of-order. The multicast
VOQ structure can also be applied to the middle-stage port. We
can just buffer a multicast packet once, and store the pointer
to its buffer memory location at the corresponding (pointer)
VOQs. To send a packet, it is retrieved based on the pointer
value in the VOQ. Since at most one (unicast) packet is sent
from each middle-stage port (to the second stage switch) in
each time slot, no speedup is required.

V. SIMULATION RESULTS

The delay-throughput performance of our proposed FTMS
is studied by simulations in this section. Two representative
centralized scheduling algorithms are implemented for com-
parison, TATRA [9] and FIFOMS [12]. We also compare
FTMS with the multicast scheduling algorithm proposed in
[14], or LBMS. Note that both TATRA and FIFMOS require
multicast switch fabric, whereas LBMS and our FTMS only
use two stages of simple unicast switch fabrics. In addition
to hardware complexity, FTMS and LBMS do not require a
central scheduler and thus are suitable for distributed imple-
mentation.

FIFOMS with single iteration and two iterations are denoted
by FIFOMS-1 and FIFOMS-2 respectively. LBMS with m
dedicated multicast queues at each input port is denoted by
LBMS-m (m = 2 and 32 in the simulations). For brevity, the
simulation results presented below are based on a 32 × 32
switch. Three major traffic patterns are considered: uniform

2544

0 0.2 0.4 0.6 0.8 1

50

100

150

200

250

300

350

400

450

500

Throughput / Effective Load

A
v
e

ra
g

e
 D

e
la

y
 (

s
lo

ts
)

TATRA

FIFOMS−1

FIFOMS−2

LBMS−2

LBMS−32

FTMS

Fig. 5. Uniform Bernoulli mixing traffic.

Bernoulli, uniform bursty and binomial. We assume that the
input port buffer size is large enough for avoiding buffer
overflow.

A. Uniform Bernoulli mixing traffic

Uniform traffic is generated as follows. At every time slot
for each input, a packet arrives with probability λ (input
load). We consider mixed unicast and multicast traffic in the
simulation and each packet has equal probability of being
unicast or multicast. If the packet is unicast, it destines to
each output with equal probability; if the packet is multicast,
its fanout set consists of f outputs randomly chosen from all
output ports, where f is the fanout size randomly selected
between [2, 32]. Then the effective load p is given by

p = λ[0.5 + 0.5(2 + 32)/2] (3)

When p ≤ 1 (or λ ≤ 1/9), no input or output will be
overloaded.

Fig. 5 shows the switch delay performance against the effec-
tive load, or throughput. We can see that both FIFOMS and
TATRA yield good delay-throughput performance when the
traffic load is not high. This is because under uniform traffic
patten, the output contention is greatly reduced using fanout
splitting, and thus FIFOMS and TARTA can take full advan-
tage of in-switch packet replication. FIFOMS-2 (FIFOMS with
two iterations) outperforms FIFOMS-1 and TATRA. On the
other hand, LBMS-32 (LBMS with 32 dedicated multicast
queues) yields higher throughput than LBMS-2 because the
HOL blocking is eliminated. But the delay performance of
LBMS-32 is poorer than LBMS-2 when load is not high. This
supports our analysis in Section IV that packet replication at
the input port increases queueing delay at input ports. Finally,
our FTMS experiences a constant delay of about 20 slots for
low to medium load, which is generally smaller than LBMS-2
and LBMS-32. This is because packet replication only occurs
at the middle-stage port in FTMS. Although FTMS has higher

0 0.2 0.4 0.6 0.8 1

200

400

600

800

1000

1200

1400

1600

1800

2000

Throughput / Effective Load

A
v
e

ra
g

e
 D

e
la

y
 (

s
lo

ts
)

TATRA

FIFOMS−1

FIFOMS−2

LBMS−2

LBMS−32

FTMS

Fig. 6. Uniform bursty mixing traffic.

delay than TATRA and FIFOMS for low to medium load,
its implementation complexity is the lowest (as noted before)
among the three algorithms. Besides, when the traffic load is
high, FTMS provides the best and close-to-100% throughput.

B. Uniform bursty mixing traffic

We use the same traffic generator except the bursty arrivals
are based on the ON/OFF model. Specifically, in the ON state,
a packet arrival is generated in every time slot; in the OFF
state, no packet arrives. Packets of the same burst have the
same fanout set. Given the average input load λ and average
burst size q, the state transition probabilities from OFF to ON
is λ/[q(1− λ)] and from ON to OFF is 1/q. Without loss of
generality, we set burst size q = 32.

From Fig. 6 we can see that under bursty traffic, delay
increases quickly with throughput. Nevertheless, our FTMS
still achieves the highest throughput. The gap between FTMS
and other schedulers becomes wider as the traffic load in-
creases. This is because FTMS inherits the load balancing
mechanism from its unicast counterpart, and is able to load
balance the bursty multicast traffic. Notably, TATRA and
FIFOMS are overwhelmed by the bursty arrivals even with
in-switch packet replication capability. TATRA and FIFOMS-1
have the similar delay-throughput performance and FIFOMS-
2 outperforms FIFOMS-1 because it can allow more packets
to be sent in each time slot. Again, LBMS-32 yields higher
throughput than LBMS-2, but it suffers from longer delay.

C. Binomial mixing traffic

Binomial mixing traffic [15] is the same as the uniform
Bernoulli mixing traffic model except in generating the fanout
size of a multicast packet. Let Pf be the probability of
generating a fan-out set with size f . The f destinations are
uniformly distributed over all output ports. The value of f is
chosen according to a non-uniform binomial distribution:

Pf = Cf
N (

F

N
)f (1− F

N
)N−f

2545

where F is the mean fanout size. In our simulations, we set
F = 17, which is equivalent to the average fanout size in
the uniform Bernoulli mixing traffic. Then the effective load
is still given by Eqn. (3). Because of the similarity between
the binomial mixing traffic and the uniform Bernoulli mixing
traffic, Fig. 7 shows a similar trend as that in Fig. 5.

0 0.2 0.4 0.6 0.8 1

50

100

150

200

250

300

350

400

450

500

Throughput / Effective Load

A
v
e

ra
g

e
 D

e
la

y
 (

s
lo

ts
)

TATRA

FIFOMS−1

FIFOMS−2

LBMS−2

LBMS−32

FTMS

Fig. 7. Binomial mixing traffic.

VI. CONCLUSION

To address the two major challenges in designing high-
speed multicast switches, namely, the expensive multicast
switch fabric and the highly complicated central scheduler, we
proposed FTMS, an efficient multicast scheduling algorithm
based on the feedback-based two-stage switch architecture.
The feedback-based two-stage switch is selected because it
does not require a central scheduler, its switch fabric is unicast
and very simple, and it elegantly solves the packet mis-
sequencing problem faced by other load-balanced switches.
With FTMS, head-of-line (HOL) packet blocking at input
port is eliminated by adopting “pointer” queues. To cut down
queuing delay, packet replication is carried out at middle-
stage ports. As compared with other multicast scheduling
algorithms, simulation results showed that our FTMS always
provides the highest throughput.

REFERENCES

[1] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Transactions on Networking, vol. 7, no. 2, pp.
188–201, 1999.

[2] H. J. Chao and B. Liu, High Performance Switches and Routers. John
Wiley & Sons, Inc, 2007, ch. 7, pp. 225–231.

[3] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100%
throughput in an input-queued switch,” in Proc. IEEE Fifteenth Annual
Joint Conf. of the IEEE Computer Societies. Networking the Next
Generation INFOCOM ’96, vol. 1, 1996, pp. 296–302.

[4] M. Andrews, S. Khanna, and K. Kumaran, “Integrated scheduling of
unicast and multicast traffic in an input-queued switch,” in Proc. IEEE
Eighteenth Annual Joint Conf. of the IEEE Computer and Communica-
tions Societies INFOCOM ’99, vol. 3, 1999, pp. 1144–1151.

[5] C. S. Chang, D. S. Lee, and Y. S. Jou, “Load balanced Birkhoff-von
Neumann switches, part I: one-stage buffering,” Computer Communica-
tions, vol. 25, no. 6, pp. 611–622, 2002.

[6] Y. Shen, S. Jiang, S. S. Panwar, and H. J. Chao, “Byte-focal: a practical
load balanced switch,” in Proc. HPSR High Performance Switching and
Routing 2005 Workshop, 2005, pp. 6–12.

[7] J. J. Jaramillo, F. Milan, and R. Srikant, “Padded frames: A novel
algorithm for stable scheduling in load-balanced switches,” IEEE/ACM
Transactions on Networking, vol. 16, no. 5, pp. 1212–1225, 2008.

[8] B. Hu and K. L. Yeung, “Feedback-based scheduling for load-balanced
two-stage switches,” IEEE/ACM Transactions on Networking, vol. 18,
no. 4, pp. 1077–1090, 2010.

[9] B. Prabhakar, N. McKeown, and R. Ahuja, “Multicast scheduling for
input-queued switches,” IEEE Journal on Selected Areas in Communi-
cations, vol. 15, no. 5, pp. 855–866, 1997.

[10] W. Zhu and M. Song, “Integration of unicast and multicast scheduling
in input-queued packet switches,” Computer Networks, vol. 50, pp. 667–
687, April 2006.

[11] S. Gupta and A. Aziz, “Multicast scheduling for switches with multiple
input-queues,” in Proc. 10th Symp. High Performance Interconnects,
2002, pp. 28–33.

[12] D. Pan and Y. Yang, “FIFO-based multicast scheduling algorithm for
virtual output queued packet switches,” IEEE Transactions on Comput-
ers, vol. 54, no. 10, pp. 1283–1297, 2005.

[13] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri,
“Multicast traffic in input-queued switches: optimal scheduling and
maximum throughput,” IEEE/ACM Transactions on Networking, vol. 11,
no. 3, pp. 465–477, 2003.

[14] B. Hu and K. L. Yeung, “Multicast scheduling in feedback-based two-
stage switch,” in Proc. Int. Conf. High Performance Switching and
Routing HPSR 2009, 2009, pp. 1–6.

[15] A. Bianco, P. Giaccone, C. Piglione, and S. Sessa, “Practical algorithms
for multicast support in input queued switches,” in Proc. Workshop High
Performance Switching and Routing, 2006.

2546

