
Title On the scalability of feedback-based two-stage switch

Author(s) Hu, B; He, C; Yeung, LK

Citation

The 2012 IEEE International Conference on Communications
(ICC 2012), Ottawa, Canada, 10-15 June 2012. In IEEE
International Conference on Communications, 2012, p. 2956-
2960

Issued Date 2012

URL http://hdl.handle.net/10722/165313

Rights IEEE International Conference on Communications. Copyright ©
IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37987055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On the Scalability of Feedback-based Two-stage
Switch

Bing Hu1, Chunzhi He2 and Kwan L. Yeung2
1Department of Information Science & Electronic Engineering

Zhejiang University
Hangzhou, PRC

E-mail: binghu@zju.edu.cn

2Department of Electrical & Electronic Engineering
The University of Hong Kong

Hong Kong, PRC
E-mail: {czhe, kyeung}@eee.hku.hk

Abstract—The feedback-based two-stage switch does not require
a central scheduler and can provide close to 100% throughput [3].
But the number of crosspoints required for the two stages of
switch fabric is 2N2, and the average packet delay performance
(even under light traffic load) is on the order of O(N) slots, where
N is the switch size. To improve the performance of feedback-
based two-stage switch when N is large, we adopt the Clos
network for constructing a large switch from a set of smaller
feedback-based switch modules. We call it a Clos-feedback switch.
The potential problem of packet mis-sequencing is solved by
using application-flow based load balancing. With recursive
decomposition, a Clos network can degenerate into a Benes
network. We show that for a Clos-feedback switch, the number of
crosspoints required is reduced to 4N(2log2N 1) and the average
packet delay is cut down to O(log2N) slots.

Keywords- Feedback-based two-stage switch; Clos-feedback
switch; packet mis-sequencing

I. INTRODUCTION
With the continuous growth of bandwidth in fiber links, the

need for building high speed switches/routers is urgent in order
to keep pace with the increased transmission rate. Load-
balanced switches [1] have received a great deal of attention
recently because they are simple and can provide close to 100%
throughput. A load-balanced switch consists of two stages of
switch fabric, as shown in Fig. 1. The first switch fabric
converts the non-uniform traffic into uniform and the second
fabric delivers packets to their correct outputs. Each switch
fabric is configured by a predetermined, periodic sequence of N
configurations, where N is the switch size. The basic
requirement of the sequence is that each input is connected to
each output exactly once in the sequence. Accordingly, a
central scheduler for determining the best switch configuration
in each time slot in real time is not needed. This makes load-
balanced switch suitable for high-speed implementation.

From Fig. 1, we can see that the outputs of the first switch
fabric collocate with the inputs of the second switch fabric.
Unless otherwise specified, we call them middle-stage ports.
We call the outputs of the second switch fabric as outputs of
the load-balanced switch, or simply outputs. The basic
operation of a load-balanced switch is as follows. When a
packet arrives at an input (and assume there is no input buffer),
it will be immediately delivered to a middle-stage port based
on the current switch configuration used in the first switch

fabric. Due to the periodic sequence of configurations used, a
burst of packets arrived at an input will be evenly spread out to
different middle-stage ports. Ideally, the (non-uniform) input
traffic will be converted into uniform before entering the
second switch fabric. Packets arrived at middle-stage ports join
the corresponding VOQs (virtual output queues) based on their
outputs. When a middle-stage port is connected to an output
(according to the periodic switch sequence used), a packet (if
any) from the corresponding middle-stage port VOQ will be
sent.

 Figure 1. A feedback-based two-stage switch.

Figure 2. A joint sequence for a 4×4 feedback-based two-stage switch.

It can be easily shown that if the traffic entering the second
switch fabric is uniform, 100% throughput can be guaranteed.
The issue is if the load balancing performance rendered by the
first switch is good enough. In [1], it is proved that if the input
traffic is stationary and weakly mixing [2], the first switch
fabric can convert any non-uniform traffic into uniform. From
the basic operation of a load-balanced switch above, we can
see that packets of the same flow (i.e. arriving at the same input
and destined for the same output) will arrive at their output via
different middle-stage ports, due to the load-balancing
mechanism at the first switch fabric. Besides, packets may
experience different delays at different middle-stage ports. As a
result, when packets of the same flow arrive at the output, their
order cannot be guaranteed.

Many efforts [3-10] are then made to address this notorious
packet mis-sequencing problem. Among them, the feedback-
based (two-stage) switch [3] provides an elegant solution. The
key idea is to ensure that packets of the same flow, no matter
which middle-stage port they traversed, always experience the

This work was supported in part by Small Project Funding 201007176210
The University of Hong Kong, Zhejiang Provincial Natural Science
Foundation of China (No. Y1100388), Zhejiang Provincial Public Technology
Research of China (No. 2010C31071), Fundamental Research Funds for the
Central Universities (No. 2010QNA5032).

IEEE ICC 2012 - Next-Generation Networking Symposium

978-1-4577-2053-6/12/$31.00 ©2012 IEEE 2956

same amount of middle-stage delay. It is further shown that the
feedback-based switch provides the best delay-throughput
performance. (For a detailed review of the feedback-based
switch, please refer to Section II.) Nevertheless, the delay
performance under even very light traffic loading is on the
order of O(N) slots. If the switch size N is large, this delay can
be significant. Assume crossbar switch fabric is used. A load-
balanced switch consists of two crossbar switch fabrics and a
total of 2N2 crosspoints is required. Again, when N is large,
there is a need to cut down the switch complexity.

In this paper, we focus on improving the delay performance
of the feedback-based switch and its implementation
complexity. In particular, we propose to construct a large
feedback-based switch based on the three-stage Clos network
[11], where each switch module in the Clos network is a
feedback-based switch. We call it a Clos-feedback switch.
Although packet order within each switch module of the Clos-
feedback switch is ensured, out of order packet delivery can
occur if packets of the same flow traverse through different
switch modules. To address this problem, an application-flow
based load balancing mechanism is designed. With recursive
decomposition, a Clos network can degenerate into a Benes
network. Then the total number of crosspoints required for
constructing an N×N Clos-feedback switch can be cut down
from 2N2 (of the original feedback-based switch) to 4N(2log2N

1), and the average packet delay can be reduced from O(N)
to O(log2N) slots.

The rest of this paper is organized as follows. In Section II,
the original feedback-based two-stage switch is reviewed. In
Section III, we present our Clos-feedback switch. Its delay and
throughput performance is studied in Section IV. Simulation
results are presented in Section V and we conclude the paper in
Section VI.

II. FEEDBACK-BASED TWO-STAGE SWITCH
Fig. 1 shows the feedback-based two-stage switch

architecture [3], where VOQ1(i,k) represents the VOQ (Virtual
Output Queue) at input i with packets destined for output k, and
VOQ2(j,k) denotes the VOQ at middle-stage port j with packets
destined for output k. In Fig. 1, each middle-stage VOQ2(j,k)
only needs a single packet buffer, and the two stages of the
switch fabric are configured using a tailor-made sequence of
switch configurations. An example sequence is shown in Fig. 2.
Specifically, at time slot t, the connection patterns between
input i, middle-stage port j and output k are given by:

� j = (i + t) mod N, k = (j – 1 – t) mod N.� ����

There is an interesting property of the joint sequence in (1).
From Fig. 2, we can see that if middle-stage port j connects to
output k in current time slot, then in next slot, input k will
connect to middle port j. Since each VOQ2(j,k) only has a
single packet buffer, an N-bit vector is enough to denote the
occupancy of all N VOQ2(j,k)s (k=0, 1, …, N-1) at middle-
stage port j. This vector is piggybacked onto the data packet
sent to output k (from middle port j), and is then immediately
made available to input k (because both input k and output k
reside on the same switch linecard). Based on the received
occupancy vector, input k selects the best packet for sending to
its currently connected middle port j. Specifically, among the

set of queues with the corresponding middle-stage VOQ2(j,k)
empty, a packet from the longest VOQ1(i,k) (k=0, 1, …, N-1) is
selected for sending.

With the above mechanism, it is shown [3] that packets of
the same flow always experience the same middle-stage port
delay (bounded by [1, N] slots), no matter which middle-stage
port it passes through, and/or the actual traffic loading. Under
uniform traffic, the average packet delay at middle-stage ports
can be easily derived as (1+N)/2 slots. In general, the overall
packet delay is on the order of at least O(N) slots.

III. CLOS-FEEDBACK SWITCH DESIGN

A. Clos Network Construction
We propose to construct a large N×N switch based on the

Clos network [11] architecture, where each switch module is a
feedback-based switch. The resulting Clos-feedback switch is
shown in Fig. 3. Without loss of generality, we assume N = p·q.
Based on the Clos network construction, there are q p×p, p q×q
and q p×p switch modules in the first, second and third stages
respectively. Switch modules in the first and second stages are
connected by a perfect shuffle exchange, where for i=0, 1,. . .,
p-1, j=0, 1,. . ., q-1, the i-th output from the j-th switch module
in the first stage is connected to the j-th input of the i-th switch
module in the second stage. The same applies to the
connections between the second and third stages of switch
modules. Note that the feedback mechanism only executes
inside a switch module and there is no feedback between
different modules.

 Figure 3. Clos-feedback switch based on Clos network.

Our proposed Clos-feedback switch operates as follows:

1) In the first stage, there are p VOQs at each input port of
each switch module. When a packet arrives, it is randomly
placed to join a VOQ with probability 1/q. In doing so, the
same flow packets will be uniformly distributed to p VOQs,
and thus the p switch modules at the second/middle stage.

2) Each internal input port of a second stage switch
module maintains q VOQs. If internal input i of the second
stage receives a packet destined for output j, the packet joins
VOQ(i,m), where m·p � j < m·p+p.

3) There are p VOQs at an internal input port of the third
stage. When a packet with destination output j arrives at the
internal input i of the third stage, it joins VOQ(i,m), where m =
j mod p.

2957

From the above operation, we can see that the first stage
switch modules are responsible for converting non-uniform
traffic to uniform. Packets of the same flow are then “re-
assembled” in the second and third stages. Compared with a
single N×N feedback-based switch, the number of crosspoints
required by the Clos network construction is reduced from 2N2
to 4p2q+2pq2. Since N = p·q, the number of crosspoints
required can be minimized to 2(2N)1.5 by setting q = ���.

B. Benes Network Construction
Without loss of generality, assume that N is a power of 2.

Then we can recursively decompose the Clos network until
each switch module becomes a 2×2 feedback-based switch, as
shown in Fig. 4. In this case, the Clos network degenerates into
a Benes network [12]. For an N×N Benes switch, there are
2log2N-1 stages and each stage has N/2 2×2 switches. The
number of crosspoints required becomes 4N(2log2N 1).

Figure 4. Clos-feedback switch based on Benes network.

Assume a packet destined for output j arrives at the
(internal) input i located in switch(u,v) (see Fig. 4). If v < log2N,
it is placed to one of the 2 VOQs with equal probability.
Otherwise, it is stored at VOQ(i,m), where m is given by

�� � �	�

���

 �������

�

����
	 �

��

���

�

In the above Benes construction, the first log2N-1 stages
perform load balancing where the same flow packets are
uniformly spread over different switch modules. The same
flow packets are then “re-assembled” in the next log2N stages.

C. Application-flow Based Load Balancing
Since each switch module in the Clos-feedback switch is a

feedback-based switch, the packet sequence within a module
can be ensured. But packets of the same flow will go through
different switch modules, and thus experience different amount
of transit delays. When they finally reach output ports, packet
mis-sequencing problem will occur.

To address this problem, we first differentiate between a
switch-flow and an application-flow. We define that packets
arriving at the same input i and going to the same output j of a
switch belong to the same switch-flow. Similarly, packets
coming from the same source host and going to the same
destination host belong to the same application-flow. We know
that a switch-flow consists of many application-flows. If we
can ensure packets of the same switch-flow are delivered in-
order, application-flow order is also guaranteed. To ensure in-

order packet delivery, we can route each switch-flow to always
use the same set of switch modules in our Clos-feedback
switch. But this cannot balance the traffic load among different
switch modules. This defeats the original purpose of load
balancing, and 100% throughput is impossible.

Our approach is to route the packets of the same
application-flow to go through the same internal switch path,
whereas different application-flows, though belonging to the
same switch-flow, can go through different paths for load
balancing. This imposes two immediate questions: a) how can
we identify an application-flow, and b) is the load balancing
performance based on application-flows good enough?

To answer the first question, we use the pair of source and
destination IP addresses as an application-flow identifier.
Given the huge number of application-flows that a backbone
router/switch needs to handle, it is reasonable to make the
following assumption:

Assumption 1: In a backbone router/switch, the IP address
pair associated with each application-flow is uniformly
distributed over [0, 264-1].

Consider the Clos network in Fig. 3. When a packet arrives
at input port i of the first stage, it is assigned to join VOQ(i,j) if
its (64-bit address pair) mod p = j. Packets stored in VOQ(i,j)
will be delivered to the second stage switch module j. Since the
address pair is uniformly distributed over [0, 264-1], j will also
be uniformly distributed over [0, p-1]. Then all VOQs of the
input port will be balanced. The same argument applies to the
Benes construction. As such, we solve the packet mis-
sequencing problem by application-flow based load balancing.

IV. ANALYTICAL MODEL

A. Throughput
Statement 1: If the incoming traffic is admissible, then

under Assumption 1, traffic enters each feedback-based switch
module of the Clos-feedback switch is admissible.

Proof: To prove Statement 1, we only need to show that all
(internal) input and output ports are not overloaded. Without
loss of generality, we consider the Clos network construction
shown in Fig. 3. Since the incoming traffic is admissible, input
ports of the first stage and output ports of the third stage cannot
be overloaded. Note that the traffic entering an internal input of
the second and third stages is provided by an internal output of
the first and second stages respectively. Since links connecting
switch modules are of same line rate, it is impossible for the
traffic coming from one port to overload another. Therefore,
the internal inputs of the second and third stages will not be
overloaded.

With the proposed application-flow based load balancing
mechanism and Assumption 1, a first stage switch module will
equally divides one switch-flow into p groups of application-
flows, each with an arrival rate no larger than 1/p. In any first
stage switch module, each input sends one group of
application-flows to an internal output. On average, every
internal output will handle p groups of application-flows,
whose total traffic rate is still no larger than 1. We can
conclude that the internal outputs of the first stage modules are
not overloaded.

2958

Let us have a closer look at the second stage switch
modules in Fig. 3. All packets entering a switch module
possess the same value of (64-bit address pair) mod p = j. For
example, any packet going to the first switch module in the
second stage must have its j = 0. Because of Assumption 1,
these packets are uniformly distributed among the last stage
output ports. On the other hand, an internal input in the second
stage stores packets in q VOQs based on their final destination
outputs. Then each VOQ has an incoming traffic rate no larger
than 1/q. For an internal output in the second stage, the traffic
comes from q VOQs (one for each internal second stage input
and with traffic rate no larger than 1/q). Therefore, an internal
second stage output will not be overloaded.

In summary, all (internal) ports are not overloaded if the
incoming traffic to the switch is admissible, and thus the traffic
entering each feedback-based switch module in the Clos-
feedback switch is admissible. #

Theorem 1: (Sufficiency) Under Assumption 1, the Clos-
feedback switch can achieve 100% throughput with a speedup
of 2 for any admissible traffic pattern.

Proof: From [3], the feedback-based two-stage switch can
achieve 100% throughput with a speedup of 2. Due to
Statement 1, packets can pass through every feedback-based
switch module in Fig. 3 with a bounded delay. Thus the total
delay for traversing the whole Clos-feedback switch is also
bounded (under a speedup of 2). Then we finished the proof. #

Note that a switch with a speedup of M can remove up to M
packets from each input and deliver up to M packets to each
output in a time slot. In our Clos-feedback switch, the speedup
of two is only required in theory. In practice, simulation results
show that it can deliver close to 100% throughput without any
speedup. (Please see Section V.)

B. Delay
Recall that in a feedback-based switch, the delay

experienced by a packet consists of input port queuing delay
and middle-stage port queuing delay. Under uniform traffic, the
average packet delay experienced at middle-stage ports [3] is
(1+N)/2 slots (for an N×N switch). In our Clos construction in
Fig. 3, we cannot cut down the input queuing delay but we can
reduce the middle-stage port delay. Note that a packet passes
through three feedback-based switch modules, one at each
stage. The total middle-stage port delay of the three switch
modules is 0.5(3+q+2p). Since N = p·q, this delay can be
minimized to become 1.5+��� by setting q = ��� . It is
interesting to point out that the Clos construction
simultaneously minimizes the delay and the number of
crosspoints by setting q = ���.

Similarly in Benes network construction, the total middle-
stage port delay in the 2log2N-1 feedback-based switch
modules is 3log2N-1.5. We can see that the average packet
delay is cut down from O(N) to O(log2N) slots.

V. PERFORMANCE EVALUATION
In this section, we study the delay performance of our

proposed Clos-feedback switch by simulations. For comparison,
the original feedback-based two-stage switch [3] is

implemented. We also implement the recently proposed quasi-
output-buffered (QOB) switch [13]. Notably, the QOB switch
adopts the same Clos and Benes network constructions. To
address the problem of packet mis-sequencing, the notion of
“frame” is adopted. The QOB switch can cut down the number
of crosspoints [13]. But its delay performance is still on the
order of O(N) slots, while that for our design is O(log2N). Last
but not the least, iSLIP algorithm [14] (with a single iteration)
and output-queued switch are implemented, which serve as a
benchmark for single-stage input-queued switch and optimal
delay performance, respectively.

Although our work in this paper is targeted at large switch
size, the long simulation time is formidable. To this end, we
only simulate a 32×32 switch (without speedup). We believe
the simulation results below provide sufficient evidence/insight
to justify our proposed Clos-feedback switch architecture. To
be fair, we use the same set of parameters for our Clos-
feedback and QOB switches, i.e. p = 4 and q = 8.

A. Uniform Traffic

 Figure 5. Delay vs throughput, under uniform traffic.

Uniform traffic is generated as follows. At every time slot
for each input, a packet arrives with probability p (input load p)
and destines to each output with same probability. From Fig. 5,
we can see that Clos-feedback can obtain up to 100%
throughput and the best delay performance among all load-
balanced switches. Compared with QOB, Clos-feedback gives
significantly smaller delay. When p = 0.8, QOB requires 90.9
time slots, and Clos-feedback only 15.8, cutting down the delay
by more than 4 times. Note that when p < 0.9, although not
obviously in Fig. 5, Clos-feedback beats the original feedback-
based switch. For example, when p = 0.6, the delays using
Clos-feedback and the original feedback-based switch are 8.4
and 16.2 time slots respectively.

B. Uniform Bursty Traffic
Bursty arrivals are modeled by the ON/OFF traffic model,

which is a special instance of the two-state Markov-modulated
Bernoulli process [15]. In the ON state, a packet arrival is
generated in every time slot. In the OFF state, there are no
packet arrivals. Packets of the same burst have the same output
and the output for each burst is uniformly distributed. Given

2959

the average input load of p and average burst size s, the state
transition probabilities from OFF to ON is p/[s(1-p)] and from
ON to OFF is 1/s. Without loss of generality, we set burst size
s = 30 packets. From Fig. 6, we can see that delay builds up
quickly with input load. This is because for bursty traffic, the
input port queuing delay dominates the total delay performance.
In this case, the middle-stage ports queuing delay that Clos-
feedback cuts down is less than the increase in the input port
queuing delay due to Clos-feedback. As such, the original
feedback-based switch yields better delay performance. But it
should be noted that the feedback-based switch requires O(N2)
crosspoints, while that for Clos-feedback is O(N1.5). From Fig.
6, we can also see that Clos-feedback is better than QOB when
p < 0.7. For example at p = 0.6, with QOB packets experience
a delay of 189.4 time slots, whereas for Clos-feedback is just
153.4.

 Figure 6. Delay vs throughput, under uniform bursty traffic.

C. Hot-spot Traffic

 Figure 7. Delay vs input load, under hot-spot traffic.

We assume packets arriving at each input port in each time
slot follow the same independent Bernoulli process with
probability p. Hot-spots are generated as follows. For input port
i, packet goes to output i+N/2 mod N with probability 0.5, and
goes to other outputs with the same probability 1/[2(N-2)].

From Fig. 7, again we can see Clos-feedback consistently
outperforms QOB and the original feedback-based switches.

In summary, Clos-feedback yields the best delay
performance under uniform and hot-spot traffic. Under bursty
traffic, the original feedback-based switch performs the best.
But it should be noted that the Clos-feedback renders a much
less hardware complexity than feedback-based switch.

VI. CONCLUSIONS
Aiming at improving the performance of the original

feedback-based switch when switch size N is large, we
proposed a Clos-feedback switch. Clos-feedback switch is
constructed based on the Clos network and with (smaller)
feedback-based switches as switch modules. The packet mis-
sequencing problem was solved by using application-flow
based load balancing. With recursive decomposition, a Clos
network can degenerate into a Benes network. As compared
with the original feedback-based switch, we showed that the
Benes construction of our Clos-feedback switch can cut down
the number of crosspoints from 2N2 to 4N(2log2N 1), and the
average packet delay from O(N) to O(log2N) slots.

REFERENCES

[1] C. S. Chang, D. S. Lee and Y. S. Jou, “Load balanced Birkhoff-von
Neumann switches, part I: one-stage buffering,” Computer
Communications, Vol. 25, pp. 611 – 622, 2002.

[2] M.G. Nadkarni, “Basic ergodic theory,” Birkhäuser Basel, 1998.
[3] B. Hu and K. L. Yeung, “Feedback-based scheduling for load-balanced

two-stage switches,” IEEE/ACM Transactions on Networking, Vol. 18,
Issue. 4, pp. 1077-1090, Aug. 2010.

[4] C. S. Chang, D. S. Lee and C. M. Lein, “Load balanced Birkhoff-von
Neumann switches, part II: multi-stage buffering,” Computer
Communications, Vol. 25, pp. 623 – 634, 2002.

[5] C. S. Chang, D. S. Lee and Y. J. Shih, “Mailbox switch: a scalable two-
stage switch architecture for conflict resolution of ordered packets,”
INFOCOM 2004, March 2004, Hong Kong.

[6] Y. Shen, S. Jiang, S. S. Panwar and H. J. Chao, “Byte-Focal: a practical
load-balanced switch,” IEEE Workshop on High Performance Switching
and Routing, May 2005, Hong Kong.

[7] I. Keslassy, S. T. Chuang, K. Yu, D. Miller, M. Horowitz, O. Solgaard
and N. McKeown, “Scaling the Internet Routers using Optics,” ACM
SIGCOMM, Aug. 2003, Karlsruhe, Germany

[8] C. Y. Tu, C. S. Chang, D. S. Lee and C. T. Chiu, “Design a simple and
high performance switch using a two-stage architecture,” GLOBECOM,
Nov. 2005, St. Louis, USA,.

[9] I. Keslassy and N. McKeown, “Maintaining packet order in two-stage
switches,” INFOCOM 2002, June 2002, New York, USA.

[10] H. I. Lee, B. C. Lee and S. W. Seo, “A load balancing scheme for two-
stage switches maintaining packet sequence,” IEEE ICC 2006, June
2006, Istanbul, Turkey.

[11] C. Clos, “A study of nonblocking switching networks,” BSTJ, Vol. 32,
pp. 406-424, 1953.

[12] V. E. Benes, “Mathematical theory of connecting networks and
telephone traffic,” New York: Academic Press, 1965.

[13] C. S. Chang, J. Cheng, D. S. Lee and C. F. Wu, “Quasi-output-buffered
switches,” IEEE Transactions on Parallel and Distributed Systems, Vol.
22, Issue. 5, pp. 833-846, May 2011.

[14] N. McKeown, “Scheduling algorithms for input-queued cell switches,”
PhD. Thesis, University of California at Berkeley, 1995.

[15] B. Hu, K. L. Yeung, “Load-balanced optical switch for high-speed
router design,” IEEE/OSA Journal of Lightwave Technology, Vol. 28 ,
Issue. 13, pp. 1969-1977, July 2010.

2960

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

