
Title Short adjacent repeat identification based on chemical reaction
optimization

Author(s) Xu, J; Lam, AYS; Li, VOK; Li, Q; Fan, X

Citation
The 2012 IEEE Congress on Evolutionary Computation (CEC
2012), Brisbane, Australia, 10-15 June 2012. In IEEE CEC
Proceedings, 2012, p. 1-8

Issued Date 2012

URL http://hdl.handle.net/10722/165308

Rights Congress on Evolutionary Computation Proceedings. Copyright
© IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37987049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Short Adjacent Repeat Identification Based on
Chemical Reaction Optimization

Jin Xu1, Albert Y.S. Lam2, Victor O.K. Li1, Qiwei Li3, and Xiaodan Fan3

1Department of Electrical and Electronic Engineering
The University of Hong Kong, Pokfulam Road, Hong Kong

2Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720, USA

3Department of Statistics, The Chinese University of Hong Kong, Sha Tin, Hong Kong
xujin@eee.hku.hk, ayslam@eecs.berkeley.edu, vli@eee.hku.hk, qwli@sta.cuhk.edu.hk, xfan@sta.cuhk.edu.hk

Abstract—The analysis of short tandem repeats (STRs) in DNA
sequences has become an attractive method for determining the
genetic profile of an individual. Here we focus on a more general
and practical issue named short adjacent repeats identification
problem (SARIP), which is extended from STR by allowing short
gaps between neighboring units. Presently, the best available
solution to SARIP is BASARD, which uses Markov chain Monte
Carlo algorithms to determine the posterior estimate. However,
the computational complexity and the tendency to get stuck in a
local mode lower the efficiency of BASARD and impede its wide
application. In this paper, we prove that SARIP is NP-hard, and
we also solve it with Chemical Reaction Optimization (CRO),
a recently developed metaheuristic approach. CRO mimics the
interactions of molecules in a chemical reaction and it can explore
the solution space efficiently to find the optimal or near optimal
solution(s). We test the CRO algorithm with both synthetic
and real data, and compare its performance in mode searching
with BASARD. Simulation results show that CRO enjoys dozens
of times, or even a hundred times shorter computational time
compared with BASARD. It is also demonstrated that CRO can
obtain the global optima most of the time. Moreover, CRO is
more stable in different runs, which is of great importance in
practical use. Thus, CRO is by far the best method on SARIP.

Index Terms—Short adjacent repeats, Chemical Reaction Op-
timization, maximum a posteriori

I. INTRODUCTION

Tandemly repeated DNA sequences are effective genetic
markers for mapping studies in many fields, such as disease
diagnosis, human identity testing, etc. Specifically, in the last
decade biological scientists have been attracted to STRs, which
normally have short pattern widths. STRs are enriched around
chromosomal centromeres. They are highly polymorphic and
especially suitable for personal identification [1]. In STR,
an approximate pattern of nucleotides repeated two or more
times in a head-tail manner [2], e.g., the 15-base pairs (bp)
sequence of “AGGCTAGGCTAGGCT” represents 3 head-tail
copies of the pentamer “AGGCT”. However, due to sporadic
mutation errors in DNA replication, short gaps are often
found between neighboring units. This extended form of STR
is called short adjacent repeats (SAR), proposed by Li et
al. [3]. In the above example, the sequence may turn into
“AGGCTgAGGCTAGGCT”, where “g” caused by an insertion
mutation is the gap between the first and second copies. Since
STR is only a special case of SAR where the length of any

gap is zero, in our paper, we directly target at the SAR
identification problem (SARIP). Note that SARIP does not
consider insertions and deletions within a repeat unit.

BASARD (Bayesian Approach for Short Adjacent Repeat
Detection) [4] is the best method for SARIP so far. It is based
on a probabilistic generative model driven by the motif matrix.
To reduce the computational time and improve the efficiency,
BASARD employs a collapsing technique [5] in their Markov
chain Monte Carlo (MCMC) moves. Yet there are still two
weaknesses in BASARD: (1) The computational time remains
very long, and this often becomes unacceptable when the
size of the input data is large; (2) Since it evolves via a
single Markov chain, BASARD is easily stuck at local optima.
To tackle these two drawbacks, based on BASARD, three
evolutionary Monte Carlo (EMC) schemes were proposed in
[6]. Although EMC schemes are relatively good at solving
the local optima problem, the reduction in computational time
is not significant. In fact, they can only reduce the time by
roughly one half, but require much more computer resources.

Chemical Reaction Optimization (CRO) is recently intro-
duced by Lam and Li [7]. It is a multi-purpose evolution-
ary metaheuristic approach mimicking the interactions of
molecules in a chemical reaction. It has found applications in
many problems, including the Quadratic Assignment Problem
[7], continuous benchmark functions [8], Grid Scheduling
Problem [9], the population transition problem in peer-to-peer
live streaming [10], and artificial neural network training [11],
etc. The state-of-the-art developments of CRO can be found in
[12]. In this paper, we propose a CRO-based algorithm to solve
SARIP. Different from BASARD that only manipulates one
single Markov chain, CRO is a population-based algorithm,
manipulating multiple molecules (solutions) simultaneously,
thus enhancing its ability to escape from local optima. Besides,
although we also employ the same collapsing technique as
in BASARD, here we only target the maximum a posteriori
(MAP) instead of the whole posterior distribution. In other
words, we substitute CRO for Gibbs sampling and Metropolis-
Hasting in BASARD, and this can save a lot of computational
time as shown in our simulation results.

The rest of the paper is organized as follows. In Section II,
we describe the problem of SARIP and present its objective

978-1-4673-1509-8/12/$31.00 ©2012 IEEE

WCCI 2012 IEEE World Congress on Computational Intelligence
June, 10-15, 2012 - Brisbane, Australia IEEE CEC

Fig. 1. Schematic diagram of the model under the setting N = 5 and Ω = 9

function. In Section III, we prove that SARIP is an NP-
hard problem. Then in Section IV, we propose a CRO-based
algorithm for solving SARIP. In Section V, we discuss the
experimental results on both synthetic and real data. Finally,
conclusions and potential future work are given in Section VI.

II. PROBLEM DESCRIPTIONS

SARIP is among the most difficult combinatorial opti-
mization problems in bioinformatics. It is easy to state but
hard to solve because of the extremely large size of DNA
sequences. Moreover, SARIP has important applications in
other fields, such as data mining and analysis in detecting
repetitive patterns in speeches, texts, or images.

Consider a set of N DNA sequences, the lengths
of which are denoted by {L1, L2, · · · , Li, · · · , LN}.
Thus, the whole input data can be expressed
as: R = {R1;R2; · · · ;Ri; · · · ;RN ; }, where
Ri = {ri,1, ri,2, · · · , ri,Li

}, and each element ri,j in R
is a letter chosen from {A, T,C,G}, which represent the four
basic nucleotides in DNA. The region in the sequence where
the same repeat units cluster is called a repeat segment, and
we assume that each sequence contains at least one repeat
segment. In SARIP, we aim to find the most probable repeat
segment location and its corresponding structure for each
sequence. They are defined as the repeat segment starting
position A = {a1, a2, · · · , ai, · · · , aN} and the structure
S = {S1;S2; · · · ;Si; · · · ;SN}, respectively. For parameter
A, each ai is an integer selected from [1, Li], while for
parameter S, each Si is a vector and can be written as
[gi,1, gi,2, · · · , gi,Ωi−1,−1, · · · ,−1], where Ωi is the copy
number in sequence Ri, and the variable gi,ω is the gap
length between the ω-th and the (ω + 1)-th repeat units.
For calculation convenience, we expand each Si to the same
dimension by filling blanks with the trivial value -1 from the
Ωi-th to the (Ω − 1)-th element, where Ω is the maximum
allowed copy number in all sequences. Therefore, the tuple
{A,S} represents a solution of our problem.

For example, an instance of the problem with five sequences
is shown in Fig. 1 (adapted from [4]). The maximum allowed
copy number Ω equals 9. In each sequence, a repeat segment
consists of multiple repeat units (gray blocks), which are
inserted with gaps (white blocks with solid borderline), while
the background area is represented by the dotted borderline.

Moreover, the repeat segment starting position ai and its
structure Si is shown above each sequence.

In our algorithm, we aim to seek the unnormalized MAP,
which is a mode of the posteriori distribution. Usually, MAP
is employed as a point estimate of an unobserved quantity
based on empirical data. In short, the bigger the value of the
posteriori probability P (A,S|R), the more precisely we find
the repeat units. Thus, we search for a tuple [A,S] which can
maximize P (A,S|R). According to [4], the objective function
of SARIP can be mathematically written as follows:

maximize P (A,S|R) = ζ
∑N

i=1 Ωi

1 ζ
∑N

i=1
∑Ωi−1

ω=1 gi,ω

2 ×

Γ(|α|)Γ(h(RUc) + α)
Γ(α)Γ(|h(RUc)|+ |α|)

J∏
j=1

Γ(|βj |)Γ(h(RU(j)) + βj)
Γ(βj)Γ(|h(RU(j))|+ |βj |)

,

where both of the constants ζ1 and ζ2 are in the range of
(0, 1], and J is the pattern width. α and βj are the parameters
for prior distribution and their elements are all configured
as 1. Given an input data R and a trial tuple [A,S], we
use the set RU to denote the nucleotides in all repeat units.
In particular, RU(j) could be used to represent the set of
nucleotides exactly in the jth (j = 1, 2, · · · , J) position in all
repeat units, whilst RUc lists all the nucleotides in background
regions. h(•) is the counting function [5]. Note that in our
problem both h(RUc) and h(RU(j)) are 1 × 4 vectors, and
they record the number of each type of nucleotide in RUc

and RU(j), respectively. Additionally, the absolute value of a
vector is the sum of all the elements within the vector. If the
variable is a non-negative integer, the above gamma function
Γ can be transformed to a factorial function, and we also note
that P (A,B|R) will be an extremely small value. To facilitate
processing by the computer, we calculate the natural logarithm
of P (A,B|R) instead. Meanwhile, since the energy in CRO
should be positive, we reformulate the objective function as:

minimize F = −log P (A,S|R).

III. NP-HARDNESS OF SARIP

The problem of finding the MAP in SARIP appears to be
difficult to solve. The number of possible combinations of
[A,S] is approximated by [(G+1)ΩL]N , where G is the max-
imum allowed gaps and we assume that all the sequences have
the same length L. For example, when we assign 2, 10, 1000,
and 10 to the arguments G,Ω, L, and N , respectively, the size
of the solution space is roughly equal to 5.15×1077. In fact, in
the following we will show that SARIP belongs to a class of
problems called non-deterministic polynomial time hard (NP-
hard) problems.

Before we proceed to the proof, let us briefly review
some concepts from computational complexity theory [13].
This theory is only applied to the decision problems, which
take either true or false as an answer. In general, all the
optimization problems can be easily stated as a corresponding
decision problem [13]. A set of decision problems solvable in
polynomial time by deterministic algorithms belong to the P
class. On the other hand, all the problems that can be checked

in polynomial time but solved by non-deterministic algorithms
are called NP. Obviously, we have P ⊆ NP . Moreover,
the hardest problems in NP is named NP-complete problems,
which means we cannot obtain the optimal solution(s) in a
polynomial time unless P = NP . Informally, a problem is
called NP-hard if it is at least as hard as the NP-complete
problems. Hence, it can be easily found that NP-complete
problems ⊆ NP-hard problems. In this paper, we will show
that SARIP is an NP-hard problem via proving that it belongs
to the NP-complete class.

The proof of the NP-completeness for a given problem can
be accomplished by a polynomial reduction from a known
NP-complete problem [13]. Here we reduce SARIP from
the bounded knapsack problem, which is a well-known NP-
complete problem [13]. The bounded knapsack problem can
be stated as follows:

INSTANCE: A finite set of items, with nonnegative integer
values {v1, v2, · · · , vn} and weights {w1, w2, · · · , wn}, posi-
tive integers V and W , and a set of the maximum quantities
{c1, c2, · · · , cn}.

QUESTION: Is there an assignment of xi, i = 1, 2, · · · , n
and each xi ∈ {0, 1, · · · , ci} such that

∑n
i=1 wixi ≤ W and∑n

i=1 vixi ≥ V ?
Note that the above knapsack problem remains NP-complete

if vi = wi, i = 1, 2, · · · , n and V = W [13]. In other words,
given a set of nonnegative integer numbers {a1, a2, · · · , an}
and a positive integer B, the problem of finding a solution
set {x1, x2, · · · , xn}, each xi ∈ {0, 1, · · · , ci} such that∑n

i=1 aixi = B is NP-complete.
Lemma: The problem defined by the following pair, called

the bounded subset sum problem, is an NP-complete problem.
INSTANCE: Finite set {u1, u2, · · · , un}, each ui ∈ ∆i,

where ∆i is a set of possible integer values for ui, and an
integer K.

QUESTION: Is there a choice of ui, i = 1, 2, · · · , n, such
that

∑n
i=1 ui = K?

Proof: Consider a Turing machine M that on any given
K of the problem, nondeterministically assign values from ∆i

to each ui, i = 1, 2, · · · , n, and check whether
∑n

i=1 ui = K
holds. Clearly, the check process can be done in polynomial
time. Therefore, the bounded subset sum problem belongs to
NP class.

Without loss of generality, consider an instance Q of
bounded knapsack problem, and let the corresponding values
and weights be vi = wi = ai, i = 1, 2, · · · , n. Suppose
{x1, x2, · · · , xn} denote the variables and xi ∈ {0, 1, · · · , ci},
i = 1, 2, · · · , n. Thus, the equation for Q can be represented
as follows:

a1x1 + a2x2 + · · ·+ anxn = K

Similarly, the equation for the Q can also be written in the
following form:

u1 + u2 + · · ·+ un = K,

where ui = aixi and ∆i = {0, ai, 2ai, · · · , ciai}, i =
1, 2, · · · , n. As a result, the instance Q of the bounded knap-

sack problem is satisfiable if and only if the above instance
{u1, u2, · · · , un,K} has a positive solution. Obviously, this
transducer can be constructed in polynomial time. Hence, the
bounded subset sum problem is NP-complete.

Theorem: SARIP is NP-complete.
Proof: The core part of the objective function for SARIP

is to count the number of {A, T,C,G} in background and
repeat units, respectively. More precisely, for each possible
solution {A,S}, we will use [bA, bT , bC , bG] to denote the
number of {A, T,C,G} in the background region. Meanwhile,
[mAi,mTi,mCi,mGi] is employed to indicate the number
of {A, T,C,G} at the ith position of repeat units and i =
1, 2, · · · , J , where J is the pattern width of the repeat unit.
Note that the calculation for the counting function can be of
polynomial time complexity. Hence, given by a tuple {A,S}
and a number K, we can check if the MAP equals K in a
polynomial time, which implies that SARIP is in NP class.

Assume that the input has N sequences. For each sequence
z, z = 1, 2, · · · , N , we have the following vector for each
corresponding {A,S}:

Vz = [mAz1,mTz1,mCz1,mGz1,mAz2,mTz2,mCz2,mGz2,
· · · ,mAzJ ,mTzJ ,mCzJ ,mGzJ , bAz, bTz, bCz, bGz, gz],

where gz is the total number of gaps in sequence z.
Meanwhile, we denote by ∆z the set of all possible values
for Vz , which are calculated in light of all possible {A,S} for
z. Then SARIP can be transformed to a problem of finding a
vector V (= V1 +V2 + · · ·+VN), which maximizes the MAP.
Consequently, the proof of NP-completeness for SARIP is
equivalent to verify the problem defined by the following two
pairs is NP-complete.

INSTANCE: Finite set {V1, V2, · · · , VN}, Vz ∈ ∆z , where
∆z is defined as mentioned above, and vector V.

QUESTION: Is there a choice of Vz such that
∑N

z=1 Vz =
V ?

By substituting the Vz and V with ui and K in lemma
respectively, the problem with the above two pairs is the same
as that in lemma. Thus, it suffices to show that SARIP is NP-
complete and thereby belongs to NP-hard class.

Corollary: The problem of identifying short tandem repeats
in multiple sequences is NP-hard. This is a special case of
SARIP. Now the solution only has the starting position A,
and we also remove the gz from the vector Vz .

By now, we have shown SARIP is NP-hard, which implies
that it is a complex combinatorial optimization problem. On
the other hand, in the literature, metaheuristic algorithms are
usually designed to tackle complex optimization problems
where other optimization methods have failed to be either
effective or efficient. In many cases, metaheuristic methods
can obtain satisfied solutions in a tolerable period of time.
There are various metaheuristics, e.g. Simulated Annealing
(SA) [14], Genetic Algorithm (GA) [15], Particle Swarm
Optimization (PSO) [16], and CRO [7] etc. In [9], authors
observed that CRO not only enjoys both the advantages of
GA and SA but it is also more flexible. Thus, in this paper,

we will only focus on CRO and apply it to solve SARIP.

IV. THE PROPOSED ALGORITHM

A. Chemical Reaction Optimization
In this subsection, we give a brief introduction to CRO. For

a more detailed description of this algorithm, the readers may
refer to [7].

CRO is a population-based metaheuristic used to generate
good approximate solutions in global optimization problems.
By analogy with the chemical reaction process in which
molecules’ energy changes step by step and finally reaches
the lowest free energy, CRO optimizes a function via iterative
trials to improve a set of candidate solutions. Predefined
elementary reactions are the crucial components in CRO, and
they guide the algorithm to reach the global optimum.

In CRO, each solution can be considered as a molecule,
which has certain attributes, including potential energy (PE),
kinetic energy (KE), the molecular structure, the number of
hits, etc. Specifically, PE is regarded as the fitness value of
the solution, while KE determines the tolerance of accepting
a worse solution. In addition, the minimum structure is the
best-so-far solution recorded and the number of hits is used in
the reaction of decomposition, which will be illustrated later.
We assume that all the reactions happen in a closed container,
and there is a central energy buffer to store or release energy
to molecules. By the conservation of energy, the total amount
of energy of the container always keeps constant. Moreover,
four types of elementary reactions are employed in the process
of CRO and their characteristics are described as follows:
• On-wall ineffective collision: it only involves one

molecule and the reaction is triggered when the molecule
hits on the wall of the container.

• Decomposition: it also happens when a molecule hits
against the wall, but the molecule is decomposed into
two molecules.

• Inter-molecular ineffective collision: two molecules inter-
act with each other and generate two new molecules.

• Synthesis: two molecules take part in the reaction and
they are combined into a new one.

These four elementary reactions are responsible for gen-
erating new candidate solutions from the original ones. The
operating mechanisms adopted in these reactions can be varied
in different problems. However, there is a general rule for
the operator design: from the perspective of the solution
space, in the two ineffective collisions, new molecule(s) are
generated in the neighborhood of the original one(s), while
in decomposition and synthesis reactions, molecule(s) are
generated to explore regions far from the original ones. The
former corresponds to “intensification” in the search process
whereas the latter corresponds to “diversification”. Moreover,
one advantage of CRO is its flexible structure, which means
that in practical uses we can choose some or even only one
of the four elementary reactions to implement CRO.

Generally, the CRO algorithm can be divided into three
stages, i.e., initialization, iterations, and output. In initializa-
tion, a number of solutions are generated according to some

TABLE I
THE SCHEMATIC PROCEDURE OF THE CRO ALGORITHM

Step 1: Initialize a population of molecules, compute their fitness
values as the PEs, and set each molecule’s other attributes;

Step 2: Repeat:
2.1: Decide whether it is a unimolecular or an inter-molecular

collision, and accordingly select one or two molecules
from the population;

2.2: According to the decomposition criterion α or synthesis
criterion β, pick an elementary reaction;

2.3: Generate the new molecule(s) according to the relevant
operations;

2.4: Replace the original molecule(s) with the new one(s)
when the reaction is triggered, and compute the KE(s).
If the energy is not enough to support the change,
ignore the new molecule(s) and keep the original one(s);

Until the stopping criterion is met;
Step 3: Output the best solution;

rules, and usually randomly. Then the algorithm enters into the
second stage, and for each iteration, one of the four elementary
reactions is selected based on some criteria. Meanwhile the
randomly chosen molecule(s) would try to participate the
appointed reaction, and the new molecule(s) would take the
place of the original one(s) when the reaction happens. Finally,
we output the best solution and its fitness value. The schematic
procedure of CRO is presented in Table I.

B. Implementation of CRO on SARIP

In order to apply CRO to SARIP, the most important
consideration is the operator design for the four elementary
reactions. CRO can obtain good solutions by utilizing well-
designed operators, so as to achieve a good balance between
intensification and diversification. We list the operators in
solving SARIP as follows:
• On-wall ineffective collision: firstly we randomly choose

one sequence i ∈ [1, N] , and then renew its starting
position ai and structure Si consecutively. For updating
ai, a random integer in [1, Li−ΩiJ−

∑Ωi

ω=1 gi,ω+1] is se-
lected to be the new a′i, while for Si, in each iteration we
randomly adopt one of the five moves used in BASARD
[4], i.e., rear deletion, real insertion, partial shift, front
deletion and front insertion, as shown in Fig. 2 (adapted
from [4]). Finally, since in solving SARIP the algorithm
encounters the phase problem [17], the technique of phase
shift [4] is also employed and activated at a certain
frequency. Let ω and ω′ be the molecules before and
after the collision. Then, this elementary reaction can be
concisely represented as:
ω : [a1, a2, · · · , ai, · · · , aN , S1, S2, · · · , Si, · · · , SN]→
ω′ : [a1, a2, · · · , a′i, · · · , aN , S1, S2, · · · , S′i, · · · , SN]

• Decomposition: a chosen molecule together with a ran-
domly generated molecule constitute the new molecules.
This reaction can be shown as:
ω : [a1, a2, · · · , aN , S1, S2, · · · , SN]→
ω′ : [a1, a2, · · · , aN , S1, S2, · · · , SN]+
ω′′ : [a′1, a

′
2, · · · , a′N , S′1, S′2, · · · , S′N]

• Inter-molecular ineffective collision: a crossover tech-

Fig. 2. The full state transition diagram under the setting G = 1 and Ω = 4.

nique is employed, which means that the two new
molecules are generated by swapping half of the start-
ing positions and structures between the two original
molecules. Without loss of generality, when N is an even
number, this process can be illustrated as:
ω1 : [a11, a12, · · · , a1N , S11, S12, · · · , S1N]+
ω2 : [a21, a22, · · · , a2N , S21, S22, · · · , S2N]→
ω′1 : [a11, a22, · · · , a2N , S11, S22, · · · , S2N]+
ω′2 : [a21, a12, · · · , a1N , S21, S12, · · · , S1N]

• Synthesis: similar to the operation in inter-molecular
ineffective collision but only one new molecule is kept.
Concisely, this reaction is:
ω1 : [a11, a12, · · · , a1N , S11, S12, · · · , S1N]+
ω2 : [a21, a22, · · · , a2N , S21, S22, · · · , S2N]→
ω′ : [a11, a22, · · · , a2N , S11, S22, · · · , S2N]

The reactions only happen when the energy requirement
is met. For example, suppose ω and ω′ are the existing and
possible new molecules, respectively. The on-wall ineffective
collision can only be triggered when PEω + KEω ≥ PEω′ .
In other words, the new molecule (solution) ω′ will substi-
tute ω in the population if the above energy requirement is
satisfied. In the meantime, the kinetic energy for ω′ would
be calculated by KEω′ = (PEω + KEω − PEω′) × δ,
where δ ∈ [KELossRate, 1], and KELossRate is a parameter
predefined to control the KE loss. Readers can refer to [7] for
the energy requirement and KE calculation of other reactions.

Actually, for those problem instances with strong repeat
units signal or flat solution space, we only need the on-wall
ineffective collision, which is efficient enough to find a good
solution. However, when the SAR signal is not so strong or
the solution space is bumpy, molecules tend to be stuck at
local optima if only on-wall ineffective collision is adopted.
In this case, the other three reactions can be used to release
the trapped molecule(s). Actually, most of the time, we do not
know the signal strength of the input data in advance. Thus,
we generally apply CRO with all four reactions to SARIP.

V. EXPERIMENTAL RESULTS

In this section, we firstly describe the simulation environ-
ment, including the testing data and the CRO parameters. To
have a comprehensive comparison, CRO and BASARD are
tested on both synthetic and real data. Then we discuss the

TABLE II
ALL THREE DATA SETTINGS

Single segment N = 6, Li = 2000, i = 1, 2, · · · , N,
synthetic case G = 2, J = 6,Ω = 15

Multiple segment N = 5, Li = 2000, i = 1, 2, · · · , N,
synthetic case G = 2, J = 9,Ω = 9
Real data case N = 24, G = 6, J = 18,Ω = 20

TABLE III
PARAMETER SETTINGS FOR CRO

Parameter Assigned value

Initial population size 1
α 100×N × J
β 0.01×initial minimal fitness
KE loss rate 0.95
MoleColl 0.1
Initial KE initial minimal fitness
Initial central buffer initial minimal fitness

experimental results. Finally, we summarize by analyzing the
reason behind the different performance of BASRD and CRO.

A. Simulation environment

In nature, DNA sequences are composed of several thousand
to over a hundred thousand nucleotide bases, rendering the
input data quite large and diverse. Thus, considering that the
solution space can be diversified with different input data,
we choose two typical cases from the randomly generated
synthetic data. One is called the single segment case, where
there is only one repeat segment in each sequence, while the
other allows multiple repeat segments within a sequence. In
our problem, we only try to find the most probable repeat
segment in each sequence. So obviously the objective function
F has many local optima in the multiple segment case. In order
to further demonstrate the superiority of CRO over BASARD,
we also test it on a real data case from [4], which includes
24 publicly available DNA sequences of DRD4 exon III from
GenBank [18]. DRD4 is an important gene and it has some
relationship with human cognitive function [19]. Also note
that in [4] BASARD has already shown its good performance
in solving this real data case when compared with existing
methods. All these three data settings are shown in Table II.
As an iteration of BASARD contains the exhaustive Gibbs
sampling, in the simulation we use 3,000 iterations as the
stopping criterion for BASARD [4] and 150,000 iterations for
CRO.

The parameter values used in CRO are listed in Table III,
and they are set up empirically. According to the parameter
analysis in [9], in certain ranges these parameters are not
sensitive to the performance of CRO. The population size
can automatically change in the process due to the invoked
reactions of decomposition and synthesis. For the fair com-
parison with BASARD, we start CRO with only one single
molecule. When this molecule is trapped for a certain number
of iterations, decomposition occurs, which results in more than
one molecule. Moreover, both CRO and BASARD are coded

Fig. 3. The trace plot of log P (A, S|R) for BASARD in the single segment
case.

Fig. 4. The trace plot of log P (A, S|R) for CRO in the single segment case.

TABLE IV
AVERAGE AND STANDARD DEVIATION VALUES FOR EACH ALGORITHM ON

THE SINGLE SEGMENT CASE

BASARD CRO

Unnormalized MAP (Avg) -16271.7 -16267.2
Unnormalized MAP (SD) 6.19 1.98
CPU time(s) (Avg) 745.09 6.27
CPU time (SD) 2.50 0.81

in C++, and they are conducted on the same computer with
an Intel Core Duo 2.66 Hz and 2 GB RAM.

B. Results and discussion

CRO and BASARD are both stochastic algorithms, and
the results may be different in different runs with the same
parameters. Thus, for both CRO and BASARD, we repeat the
run 30 times for each of the cases below.

1) Single segment case: Figs. 3 and 4 display one of the 30
simulation runs on the single segment case and they illustrate
the trace plots of BASARD and CRO. Note that there may

Fig. 5. The trace plot of log P (A, S|R) for BASARD in the multiple segment
case.

Fig. 6. The trace plot of log P (A, S|R) for CRO in the multiple segment
case.

be more than one molecule during the CRO evolution, and
we only plot the initial molecule’s trace in Fig. 4. When a
molecule can not find a better solution in its neighborhood
for a certain number of iterations, decomposition is triggered.
The newly generated molecules have more energy obtained
from the central buffer which helps them jump out of a local
optimum. In fact, each dramatic fluctuation in Fig. 4 indicates
that the molecule is experiencing decomposition or synthesis.
Since this is synthetic data, we can calculate the optimal
objective function value in advance. In this case, the optimal
value is -16266.5. From these two figures, we can observe
that BASARD fails to obtain the optimal value, while CRO
successfully finds the global optimum.

We also list the average and standard deviation values for
the 30 simulation runs in Table IV. On the average, CRO can
not only obtain better solutions than BASARD but also enjoys
more than 100 times savings in computational time. Moreover,
all the standard deviations of CRO are much smaller than those

TABLE V
AVERAGE AND STANDARD DEVIATION VALUES FOR EACH ALGORITHM ON

THE MULTIPLE SEGMENT CASE

BASARD CRO

Unnormalized MAP (Avg) -13682.5 -13669.9
Unnormalized MAP (SD) 9.81 3.68
CPU time(s) (Avg) 456.68 5.28
CPU time (SD) 17.99 0.13

of BASARD, which indicates CRO is more stable and reliable.
2) Multiple segment case: This is also a synthetic case

but with much more local optima. Fig. 5 and 6 show the
convergence traces of BASARD and CRO on this multiple
segment case. It can be observed in Fig. 5 that BASARD gets
trapped in a local optima for a long time before moving to
a region with better solutions. However, BASARD still does
not reach the global optimum in 3,000 iterations. The CRO
curve also become much more oscillated as shown in Fig.
6, and this is caused by the rugged solution space. Here the
optimal value is -13667.7. Similar to the results of the single
segment case, CRO is superior to BASARD in both the quality
of the solution and the computational time. As shown in Table
V, BASARD easily gets stuck in local optima and CRO can
achieve the global optimum. Moreover, CRO is 86 times faster
than BASARD in terms of computational time.

3) Real data case: In this case, 24 sequences are involved
and the repeat pattern width is 18. However, the lengths of
these sequences are relatively short ranging from 256 to 512
bps. This indicates that the repeat signal is much stronger than
the previous two synthetic cases. Intuitively, the solution space
here is large but very flat. Thus, it takes much more time
for BASARD and CRO to converge but their curves now are
smooth, as show in Fig. 7 and 8. Since it is a real data case
and there is no true value known in advance, we show the
best value (=-7689.1) found. By comparing the average and
standard deviation values of the two algorithms in Table VI,
the solutions obtained from CRO are much better than those of
BASARD, and CRO shortens the computational time as much
as 25 times. In particular, we note that the standard deviation
of BASARD are quite large in this case, which means we have
to run many times to get a good solution with BASARD in
real implementation.

C. Summary

These three tested cases are representative in terms of
solution space. Basically, CRO performs much better than
BASARD especially in terms of computational time. Note that
BASARD is also a heuristic method, and the Gibbs sampling
and Metropolis-Hasting schemes guarantee its ergodic search.
This means theoretically BASARD will finally reach the global
optimum if given sufficient time. Nevertheless, the probability
of jumping out a local optimum is quite small in BASARD,
which implies it needs a very long computational time to find
a good solution. Moreover, the Gibbs sampling in BASARD is
also time-consuming as it needs to calculate each probability

Fig. 7. The trace plot of log P (A, S|R) for BASARD in the real data case.

Fig. 8. The trace plot of log P (A, S|R) for CRO in the real data case.

TABLE VI
AVERAGE AND STANDARD DEVIATION VALUES FOR EACH ALGORITHM ON

THE REAL DATA CASE

BASARD CRO

Unnormalized MAP (Avg) -8024.4 -7701.1
Unnormalized MAP (SD) 693.72 26.22
CPU time(s) (Avg) 464.87 18.48
CPU time (SD) 141.97 0.33

with all starting positions every time. As for CRO, since we
adopt randomly generated molecules in decomposition, it is
also an ergodic search. Meanwhile, in CRO we use energy
conservation to guide the evolution of the molecules, while
BASARD is driven by probability. Besides the quality of the
solution, the computational time is also a major consideration
in real applications. Thus, CRO is a better tool in solving
SARIP in terms of mode searching. As BASARD was the
best algorithm for the problem before this work, CRO replaces
BASARD to be the current best.

VI. CONCLUSION

Disparity in the number of SAR can explain the poly-
morphism in a population or relationship between different
species, and SARIP has been a hot research topic. In this
paper, we apply the CRO algorithm to detect the short adjacent
repeats shared by multiple sequences. Our contributions are
mainly in three parts: (1) We prove that SARIP is an NP-hard
problem, which confirms that metaheuristic approaches may be
applicable. (2) We choose the MAP as the objective function
and design a suitable CRO-based algorithm which avoids
the calculation of the motif matrix and the computationally
demanding Gibbs sampling in BASARD; (3) We assess CRO
on three different kinds of cases (i.e. single segment case,
multiple segment case, and real data case). Compared with
the previous best algorithm BASARD, we demonstrate that
CRO performs much better in solution quality, computational
time, and stability. Hence, we conclude that CRO is so far the
best choice for solving SARIP.

Potential future study includes the following: (1) In this
paper, we only employ a generic CRO, and we may design
more CRO operations to be adaptive to various scenarios of
SARIP; (2) We can consider developing parallel CRO for
SARIP, which may further shorten the computation time. (3)
Locating the multiple repeat segments and accounting for
the intra-unit insertions or deletions are also very interesting
topics.

ACKNOWLEDGMENT

J. Xu and V. O. K. Li are supported in part by the University
of Hong Kong Strategic Research Theme of Information
Technology. A. Y. S. Lam is also supported in part by the
Croucher Foundation Research Fellowship. Q. Li and X. Fan
are partially supported by a grant from the Research Grants
Council of the Hong Kong Special Administrative Region,
China (Project no. CUHK400709).

REFERENCES

[1] A. Edwards, A. Civitello, H. A. Hammond, and C. T. Caskey, “DNA typ-
ing and genetic mapping with trimeric and tetrameric tandem repeats,”
The American Journal of Human Genetics, vol. 49, no. 4, pp. 746–756,
1991.

[2] G. Benson, “Tandem repeats finder: A program to analyze DNA se-
quences,” Nucleic Acids Research, vol. 27, no. 2, pp. 573–580, 1999.

[3] Q. Li, T. Liang, S. Y. R. Li, and X. Fan, “Bayesian approach for identify-
ing short adjacent repeats in multiple dna sequences,” in Proceedings of
the 2010 International Conference on Bioinformatics & Computational
Biology (BIOCOMP’10), Las Vegas, Nevada, USA, July 2010.

[4] Q. Li, X. Fan, T. Liang, and S. Y. R. Li, “An MCMC algorithm
for detecting short adjacent repeats shared by multiple sequences,”
Bioinformatics, vol. 24, no. 13, pp. 1772–1779, May 2011.

[5] J. S. Liu, A. F. Neuwald, and C. E. Lawrence, “Bayesian models
for multiple local sequence alignment and Gibbs sampling strategies,”
Journal of the American Statistical Association, 1995.

[6] J. Xu, Q. Li, V. O. K. Li, S. Y. R. Li, and X. Fan, “Improved short
adjacent repeat identification using three evolutionary Monte Carlo
schemes,” International Journal of Data Mining and Bioinformatics,
accepted for publication.

[7] A. Y. S. Lam and V. O. K. Li, “Chemical-reaction-inspired metaheuristic
for optimization,” IEEE Trans. Evol. Comput., vol. 14, no. 3, pp. 381–
399, Jun. 2010.

[8] A. Y. S. Lam, V. O. K. Li, and J. J. Q. Yu, “Real-coded chemical reaction
optimization,” IEEE Trans. Evol. Comput., accepted for publication.

[9] J. Xu, A. Y. S. Lam, and V. O. K. Li, “Chemical reaction optimization
for task scheduling in grid computing,” IEEE Trans. Parallel Distrib.
Syst., vol. 22, no. 10, pp. 1624–1631, Jul. 2010.

[10] A. Y. S. Lam, J. Xu, and V. O. K. Li, “Chemical reaction optimization
for population transition in peer-to-peer live streaming,” in Proceedings
of IEEE Congress on Evolutionary Computation (IEEE CEC 2010),
Barcelona, Spain, Jul. 2010.

[11] J. J. Q. Yu, A. Y. S. Lam, and V. O. K. Li, “Evolutionary artificial neural
network based on chemical reaction optimization,” in Proceedings of
IEEE Congress on Evolutionary Computation (IEEE CEC 2011), New
Orleans, LA, USA, Jun. 2011.

[12] A. Y. S. Lam and V. O. K. Li, “Chemical reaction optimization: A
tutorial,” Memetic Computing, vol. 4, no. 1, pp. 3–17, Mar. 2012.

[13] M. R. Garey and D. S. Johnsong, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY: Freeman & Co
Ltd, 1979.

[14] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchii, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, May
1983.

[15] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor:
MI: Univ. of Michigan Press, 1975.

[16] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
Proceedings of IEEE International Conference on Neural Networks,
Nov. 1995.

[17] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald,
and J. C. Wootton, “Detecting subtle sequence signals: A Gibbs sampling
strategy for multiple alignment,” Science, vol. 262, no. 5131, pp. 208–
214, 1993.

[18] [Online]. Available: http://www.ncbi.nlm.nih.gov/genbank/
[19] F. H. Previc, “Dopamine and the origins of human intelligence,” Brain

and Cognition, vol. 41, no. 3, pp. 299–350, 1999.

