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Abstract—The Logistic Principal Component Regression 

(LPCR) has found many applications in classification of high-

dimensional data, such as tumor classification using microarray 

data.  However, when the measurements are contaminated 

and/or the observations are mislabeled, the performance of the 

LPCR will be significantly degraded. In this paper, we propose a 

new robust LPCR based on M-estimation, which constitutes a 

versatile framework to reduce the sensitivity of the estimators to 

outliers. In particular, robust detection rules are used to first 

remove the contaminated measurements and then a modified 

Huber function is used to further remove the contributions of 

the mislabeled observations. Experimental results show that the 

proposed method generally outperforms the conventional LPCR 

under the presence of outliers, while maintaining a performance 

comparable to that obtained under normal condition.   

I. INTRODUCTION  

Remarkable development of data collection and storage 
capabilities during the past decade has led to an unprecedented 
increase in data size and complexity for analysis. In many 
applications, such as microarray studies, the number of 
variables is much larger than the number of samples [1]. 
Moreover, variables are very often correlated making the 
analysis difficult.  Classification performance of these datasets 
may therefore be complicated by groups of possibly correlated 
variables that are irrelevant for class separation [2].  To handle 
such correlated variables in large dataset, principal component 
regression (PCR) is a promising approach to eliminate 
irrelevant features by reducing effective dimension of the 
dataset. To apply PCR for classification, one may first invoke 
the PCR to compute the PC scores, and then employ the 
Logistic Regression (LR) to regress against the observations 
and PC scores. An advantage of adopting the LR is that it does 
not require pairwise or one-against all training for multi-class 
classification [3]. The resultant algorithm is referred to as the 
Logistic PCR [4].  In practice, the accuracy of classification 
can be considerably affected by outliers, which are samples 
that deviate significantly from other remaining samples of the 
same group due to errors in data taking, special events, etc. 
There are mainly two types of outliers in classification: 1.) 
contaminated measurements, and 2.) mislabeled observations 
[5]. Due to these outliers, the performance of the LPCR, 
which is derived from the least squares (LS) criterion, may 
also degrade considerably.  

To overcome this problem, we propose a new robust LPCR 
method to reduce the effect of these outliers on the 
classification accuracy. In the proposed LPCR algorithm, 

robust detection rules derived from the 
2

T score, squared 

prediction error (SPE) are used to remove the contaminated 
measurements. Then, a modified Huber function is 
incorporated into the conventional LPCR to remove samples 
that are detected as mislabeled observations using the logistic 
error. Though the concept of robust M-estimation based on 
automatic threshold selection (ATS) and the modified Huber 
function has been reported in [6] for robust estimation in 

linear systems, the  incorporation of 
2

T score, squared 

prediction error (SPE) and logistic error, and its application to 
non-linear LR is to our best knowledge new.  Experimental 
results show that the proposed robust LPCR offers much 
better classification accuracy than the conventional LPCR in 
the presence of outliers, while the performance is also highly 
comparable under normal situation.  

This paper is organized as follows. In Section II, the the 
LPCR are revisited. Section III introduces the proposed robust 
LPCR for suppressing the effect of the outliers in 
classification/regression. Experimental results are presented in 
Section IV and conclusions are drawn in Section V.  

II.  THE LOGISTIC PRINCIPAL COMPONENT REGRESSION 

In LPCR, the measurement vectors are first projected into 

the major subspace spanned by a number of chosen major 

principal components (PCs). Then, the PC scores are 

computed, which are the contributions of the measurement 

vectors to each PC. Finally, the LR is invoked on the PC 

scores and the observations, which can be binary or multi-

class, to perform classification. In this paper, we mainly focus 

on the commonly encountered binary classification problem.  

More specifically, suppose that we have N  subjects or 

samples. The N binary observations of 1 ,0=y  and its 

corresponding J  measurement variables can be respectively 

grouped into an )1( ×N  vector T

Nyyy ],...,,[ 21=Y  and an 

)( JN ×  matrix T

N ],...,,[ 21 xxxX = , where each vector 

T

Jiii xx ],...,,[ ,1,=x , Ni ,,1K= , represents the measurements 

of the i-th  sample.  Usually, ix  is “centered”, i.e. with its 



mean removed, before the PCs are computed.  In PCA, we 

wish to express centered data matrix T

N ],...,,[ 21 xxxX =  in 

terms of B principal components: 

EΓPEptX +=+= ∑
=

T
B

m

T

mm
1

, (1) 

where T

B ],....,[ 1 ttΓ =  is the score matrix, T

B ],....,[ 1 ppP =  

is the collection of PCs or loading matrix, and B is an 

appropriately chosen number of PCs to achieve a sufficiently 

small approximation error E . Therefore, irrelevant 

information can be removed to improve the classification 

results.  A common way to determine the PCs is to compute 

the eigenvalue decomposition (EVD) of the empirical 

correlation matrix:   

XXxxC xx

T

n

TE
1

1][ −=⋅= TUUΛ= , (2) 

where the columns of U are the eigenvectors and they are 

also the PCs and },...,{ 1 Jdiag λλ=Λ  contains the 

eigenvalues in descending order of magnitude 

)( 21 Jλλλ ≥≥ K .  If the first B largest eigenvalues and their 

eigenvectors BU  are retained, then one gets BUP = . The PC 

scores Γ  can be determined as  

.BUXΓ =  (3) 

After that, the LR is invoked on the observations Y and the 
PC scores Γ  to perform classification. Due to the reduced 
dimension (B versus the original dimension J) after using 
PCA, the variance of the regression will be reduced.  For 

notation convenience, we use T
Biiii ttt ],,[ ,2,1, K=τ  to represent 

the PC scores of the chosen B PCs for measurement ix  of 

each sample, and ],,,[ 21
T
N

TT τττΓ K= . In the LR, the 

conditional class probability )|1( τ=yP  for τ  in class 1 is 

modeled as:  

   ),,()1/()|1( ),,(),,( τβτ τβτβ ααηαη peeyP =+== , (4) 

where βττβ T+= ααη ),,(   is chosen as a linear predictor in 

terms of τ  with intercept α  and  regression coefficients β . 

The regression coefficients are usually estimated by 

maximizing the log-likelihood function as follows: 

)](1log()1()(log[)log( 1 γγ iiii

N

i pypyL −−+=∑ = , (5) 

where for notation convenience, we have used  )log(L  for 

),|(log ii yL τγ , TT ][ βγ α=  and ),,()( τβγ αii pp = . The 

solution of (5) can be obtained by setting the partial 

derivative of the log likelihood to zero. This yields: 

0γ =∂∂ /)log(L  ⇒ 0γpYΓ =− ))((
~T , (6) 

where T

Npp )](),...,([)( '1 γγγp =  and ][
~

' Γ1Γ N= . As )(γp  

is non-linear in γ , a first order Taylor series can be used as 

an approximation to )(γp  as follows: 

)()()()()( )(')()( kk

i

k

i

kk
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where )(kγ  is the solution obtained in the thk −  iteration, 

)()1()( kkk γγδ −= + , i

k

i

k

i

k

i ppp τγ ~)1()(' )()()( −=  is the 

derivative of )(γip  evaluated at )(kγ , and TT

ii ]1[~ ττ = . 

With (7), the normal equation in (6) can be rewritten as  

0δΓWpYΓ =−− )
~

(
~ )()()( kkkT , (8) 

where ]~,,~,~[
~
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Conventionally, the regression parameters can be solved 

using iteratively using (8) which gives rise to the Iterated 

reweighted least squares (IRWLS) algorithm. 

III. ROBUST LOGISTIC PRINCIPAL COMPONENT 

REGRESSION 

The proposed LPCR algorithm is mainly divided into three 
steps: 1.) The robust L1 median is computed to center the 
measurement variables before performing the PCR.  This 
offers improved robustness over the conventional sample 
mean, which is sensitive to impulsive noise. 2.) PCR is 
invoked on the centered data and robust detection rules 

derived from the 
2

T score and SPE are used to remove the 

contaminated measurements in X . 3.) A modified Huber 
function is incorporated into the LR and the resultant robust 
LR is used to remove mislabeled observations detected using 
the logistic error. 

A.  The Robust L1 median 

In the proposed robust LPCR, we employ the robust L1 
median reported in [7] for centering: 

}{minarg
211 ∑ −= = µxµ

µ
i

N

iL , (9) 

where 2||.||  denotes the Euclidean distance. The robust L1 

median estimates the robust centre by minimizing the sum of 

Euclidean distances to all points in the data set. The centered 

measurement matrix can be computed as follows:  
T

LN 1µ1XX −= , (10) 

where 
N

1  is an )1( ×N  vector with all entries equal to ones.  

B.  Detection Rules and Automatic Threshold Selection 

After robust L1 median, PCR is invoked on the centered 
data to compute the PC scores as in (1) to (3). The error 

measures 2T score and SPE are computed as  
2

2

12

i

T

BBB

T

iiT xUΛUx −=  and 
2

2
SPE i

T

BBii xUUx −= ,  (11) 

where BU  and 1−
BΛ  are the major PCs and eigenvalues 

obtained similarly as in (2) . They are used to quantify how a 
subject deviates from the group of samples. To perform outlier 
detection, the following robust detection rules can be used 

22

2

TTiT Γ≥− µ  and ,SPE SPEi SPEΓ≥− µ  (12) 

where )(
2

2 iT
Tmed=µ  and )SPE(SPE imed=µ . Here, ξ  is a 

threshold quartile parameter corresponding to the upper 

}){1( ξ>− XP  percentile of the Gaussian distribution. 

2
T

Γ and SPEΓ  are robust thresholds for identifying the sample 

as outlier and they can be selected by the ATS reported in [6]: 

22
TT

ξσ=Γ  ,
 

,SPE SPEξσ=Γ  (13) 



where 2
T

σ  and SPEσ  are respectively robust scale estimators 

of 2
iT  and iSPE  in (11) and they can be determined using the 

following robust scale estimators [6] 

))((13.2
222

2 iT
Tmed ∆=σ , ),(13.2 22

iSPE SPEmed ∆=σ  (14) 

where 2

22

Tii TT µ−=∆ , SPESPE µ−=∆ iiSPE  and 2.13 is a 

correction factor for Gaussian input [6]. From the robust 

detection rules in (12), we calculate robust weights ixq ,  for 

the measurement ix  of each sample and it is given by 





 Γ≥−Γ≥−

=
otherwise

T
q SPETTi

ix
1

SPEor   0 SPEi

2

,

22 µµ
. (15) 

In other words, if 2
iT  or iSPE  of the thi −  sample exceeds 

the thresholds defined in (12), ix  is identified as an outlier 

and its robust weight is set to 0, =ixq , so that its contribution 

is removed, otherwise 1, =ixq .  Afterwards, the proposed 

robust LR is invoked on the observations Y  and the PC 

scores Γ  to perform classification.  Next, we will discuss 

how the conventional LR should be modified when 

mislabelled observations are encountered.   

C. Robust Least M-estimate based Logistic Regression 

In the conventional LR, the normal equation in (8) can be 

rewritten as ZWΓγΓWΓ )()1()( ~~
)

~
( kTkkT =+  where =)(kZ  

)(
~~ )(1)()( kkk pYWγΓ −+

−
. This is equivalent to  

2

2
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+
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where )(k
w  and iτ

~  are same as those in (8). 
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γτ . Here, we refer the term  

)~( )1(2/1)()( +−= kT

ii

kk

i zwe i γτ  to as the logistic error and it is the 

weighted error between the observation iy  and predicted 

probability )()()()()( ~)( kT

i

kk

i

kk

i wpp δτδγ +≈+  in (7) 
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−
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By solving the weighted LS in (16) and using the solution as 

the new estimate )(kγ  repeatedly, one obtains the IRWLS 

algorithm. Usually, the iteration stops when a maximum 

number of iterations is reached or when the change )(k
δ  is 

sufficiently small. However, a single outlier with large 

amplitude in ix  or mislabel in iy  can substantially increase 

the LS error in (17). This affects adversely the estimation of 
the regression coefficients [5].  To overcome this problem, we 
employ robust M-estimation [8], [13] where a robust M-

estimate function (.)ρ  for the objective function in (17) is 

used: 

     )~(.min
2/1)(2/1)(

,1 γτ T

i

k

i

k

ix

N

i ii wzwq −∑ = ρ , (18) 

where ixq ,  is the robust weight defined in (16).   For 

simplicity, 




Γ

Γ<≤
=

otherwise
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e

e 2/

||02/
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2

ρ  is chosen here as the 

modified Huber M-estimate function in [6] and eξσ=Γe  is a 

robust threshold defined similarly as in (13) and 

)(13.2
22

ie emed=σ . The solution to (18) can be found by 

differentiating the function in (18) with respect to γ   
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where ,
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, αα
k
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||0
)( eψ  is the derivative of )(eρ . The 

normal equations above can be rewritten to the matrix form  
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where Tk

N

kkk eee ],,,[ )()(

2
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1

)(
K=E , },{ ,1, Nxxx qqdiag K=Q ,   

and  },{
)(

,

)(

1,

)( k

Ny

k

y

k

y qqdiag K=Q   is the robust weighting matrix 

for removing the contribution of the mislabeled observations 

with 


 ≠

=
otherwise

eee
q
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ψ
. We can see that the 

modified Huber function simply ignores a sample when it is 

detected as a mislabeled observation and proceeds with 

normal updating otherwise. Note that other more complicated 

M-estimate function such as the Hampel’s function [8] can 

also be used to suppress the contribution of the mislabeled 

observations to different extents. As 
2/12/1

)()()( k

x

k

y

k WQQW   

x

k

y

k
QQW

)()(=  and )
~

( )1()(2/1)()( +−= kkkk γΓZWE , the solution 

of Eqn. (20) can be simplified to 
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x

k

y
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Hence, the solution to Eqn. (21) is  
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IV. EXPERIMENTAL RESULTS 

As an illustration, we consider the Leukemia dataset [9] 

obtained from the Kent Ridge Bio-medical Data Set 

Repository (http://datam.i2r.a-star.edu.sg/datasets /krbd/) and 

compare the classification performance of the proposed 

robust LPCR and the conventional counterpart. Data-

preprocessing such as logarithmic transformation, filtering 

and standardization of the raw dataset are performed 

according to the procedures reported in [10]. The pre-

processed dataset contains 47 (25) samples of class 0 (1), and 

3571 variables. Outliers injected into X  are generated using 

the contaminated Gaussian model :  ),()1(~
2

g I0n ση Nimi −  

), 2

im I(0 ση Nim+  , where in  is the impulsive outlier, imη  is 

contamination probability, and ),( RµN  denotes a 

multivariate Gaussian distribution with mean µ  and 



 
 

Fig. 1.  Mean classification accuracies of the proposed robust LPCR 

algorithm and the conventional LPCR algorithm under three types of 

outliers 1.) contaminated measurements, 2.) mislabeled observations, 3.) 

outliers with mislabeled observation and contaminated measurements 

covariance R . 
2

gσ  is the variance of the additive Gaussian 

component and 2
imσ  is the variance of the impulsive 

component and they are chosen as 1 and 410  respectively. 

Labels in Y  are randomly perturbed with the same 

contamination probability imη  to simulate mislabeled 

observations. A 10-fold double loop cross validation (CV) is 

adopted for parameter tuning and evaluation to avoid the 

optimistic and selection biases [11], [12]. The classification 

accuracies of the two algorithms are obtained using 50 Monte 

Carlo runs
1
 . Fig. 1 and Table I shows the classification 

accuracies of different algorithms under three types of 

outliers: 1) contaminated measurements,  2) mislabeled 

observations, and 3) outliers with both contaminated 

measurements and mislabeled observations of contamination 

levels ,0=imη  5/72 and 10/72. We can see that the proposed 

LPCR generally has higher mean classification accuracy and 

smaller fluctuation than the conventional LCPR algorithm 

under the presence of outliers, while the performance of the 

proposed LPCR is nearly the same as its conventional 

counterpart under normal condition.  

V. CONCLUSION 

A new robust Logistic PCR (R-PLCR) for classification in 
large dataset with possible outliers is proposed. It aims to 
reduce the effect of outliers on classification accuracy by 
detecting and removing the contaminated measurements and 
employing a modified Huber function to remove the adverse 
contributions of the mislabeled observations. Experimental 
results using the Leukemia dataset with injected contaminated 

                                                           
1
 In each Monte Carlo run, a complete run of the 10-fold double loop CV 

procedure is performed. 

measurements and mislabels show that the proposed robust 
LPCR offers much better classification accuracy than the 
conventional LPCR in the presence of these outliers, while the 
performance is also highly comparable to that obtained in 
normal condition.  
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TABLE I.  CLASSIFICATION RESULTS  )( stdmean ±  

Contaminated  Measurements 
Algorithms 

0=imη  72/5=imη  72/10=imη  

Robust 

LPCR 
23.155.93 ±  51.121.92 ±  10.278.90 ±  

LPCR 02.189.92 ±  68.223.84 ±  98.238.64 ±  

Mislabeled Observations 

Robust 

LPCR 
23.155.93 ±  74.110.93 ±  27.254.91 ±  

LPCR 02.189.92 ±  81.298.84 ±  84.299.78 ±  

Contaminated  Measurements and Mislabeled Observations 

Robust 

LPCR 
23.155.93 ±  06.306.91 ±  74.347.86 ±  

LPCR 02.189.92 ±  17.473.79 ±  67.447.63 ±  


