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Abstract—A matching between two database schemas gener-
ated by machine learning techniques (e.g., COMA++) is often
uncertain. Handling the uncertainty of schema matching has
recently raised a lot of research interest, because the quality
of applications relies on the matching result. We study query
evaluation over an inexact schema matching which is represented
as a set of “possible mappings”, as well as the probabilities
that they are correct. Since the number of possible mappings
can be large, evaluating queries through these mappings can be
expensive. By observing that the possible mappings between two
schemas often exhibit a high degree of overlap, we develop two
efficient solutions. We also present a fast algorithm to compute
answers with the k highest probabilities. An extensive evaluation
on real schemas shows that our approaches improve query
performance by almost an order of magnitude.

I. INTRODUCTION

Schema matching [1] is the process of finding the possible

relationship between database schemas. It is the key for many

techniques in data integration [2], such as mapping generation

[3] and query reformulation [4]. To facilitate schema matching,

tools like COMA++ [5] and LSD [6] have been developed.

A matching result, which captures relationships, or corre-
spondences, between attributes across different schemas, is

often uncertain. This is because a matching algorithm cannot

guarantee that the correspondences returned are correct. Figure

1 illustrates a portion of the matching result between two

relational schemas, which are about customers and purchase

orders. It is not clear which attribute in the relation Customer
should correspond to the phone attribute in Person: should it
be ophone, hphone, or mobile? In this example, a similarity
score, generated by a matching algorithm, is attached to each

correspondence to indicate the confidence that the relationship

between the attributes involved is valid.

To handle the uncertainty of a matching, one can hire a

domain expert to select the correct set of correspondences.

This may not work if an expert is not available, or if the

scale of an application (e.g., web data integration) is large [7].

Another way is to choose the correspondences with the highest

scores (as shown in bold lines in Figure 1), and ignore the rest

of them. However, this may render some information missing

in the query answers. Consider two schemas, called source
and target schemas (or S and T respectively). A database D
is associated with S. A target query is issued on T , which
obtains information from D through the matching between
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Fig. 2. A relation for Customer.

T and S. In Figure 1, Person is part of the target schema,
while Customer is part of the source schema, with a database
attached (Figure 2). Now consider the following target query:

q0 : πaddrσphone=′123′Person

Let us use a mapping between Person and Customer, which
contains all the correspondences bolded in Figure 1. By using

a query reformulation method (e.g., [4]) on this mapping, we

translate q0 to a source query defined on Customer. Since
this mapping uses correspondence (ophone, phone), aaa is the
answer to q0. However, if we choose (hphone, phone), whose
similarity score (0.83) is slightly lower than that of (ophone,
phone) (0.85), then q0’s answer becomes bbb. This example
shows that we may not ignore correspondences with lower

similarity values, since they may yield a different query result.

Recently, researchers have considered an uncertain matching

as a set of possible mappings [8], [7], [9], [10], [11]. Figure 3
shows five mappings, and their probabilities of being a correct

one, for the matching in Figure 1. For example, to obtain the

probability of m1, the 5 mappings with the highest similarity

scores (i.e.,m1, . . . ,m5) are first found. The probability ofm1

is then equal to its score divided by the total score of these 5

mappings. Given these mappings, we examine a probabilistic
query on T . This query returns a set of pairs (ti, pi), where
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m1

ID correspondences
(cname, pname), (ophone, phone),
(oaddr, addr), (name, nation), ...

m2
(cname, pname), (ophone, phone),
(oaddr, addr), (name, nation), ...

m3
(cname, pname), (ophone, phone),
(haddr, addr), (name, nation), ...

0.3

prob.

0.2

0.2

m4
(cname, pname), (hphone, phone), 
(haddr, addr), (name, nation), ... 0.2

m5
(cname, sname), (ophone, phone),
(haddr, addr), (name, item), ... 0.1

Fig. 3. Illustrating possible mappings for Figure 1.

pi is the probability that tuple ti is correct. For instance, the
answer for q0 is {(aaa, 0.5), (hk, 0.5)}.
A simple way to evaluate this query is that for every

mapping, the target query is reformulated to a source query.

Then, we evaluate these source queries either sequentially, or

by using some multiple query optimization algorithm (e.g.,

[12]). The results of the source queries are then aggregated to

produce the target query answer. If the number of mappings

is large, many source queries can be generated, yielding a

poor query performance. A slightly better way is to produce a

set of distinct source queries before evaluating them. When

the number of mappings or the mapping size are large, it

can still take a long time to translate a query. We have

tested these methods on 500 mappings, each of which has

46 correspondences. In one case, it takes around 1.8 hours to

complete a query.

In this paper, we study the efficient evaluation of proba-

bilistic queries over possible mappings. We observe that the

possible mappings between schemas are often very similar

in terms of their correspondences. In an experiment, we

found that a set of 500 possible mappings between two e-

commerce schemas are highly similar. As another example, in

Figure 3, (cname, pname) and (ophone, phone) (bolded and
underlined respectively) are shared by four mappings. We thus

develop two novel solutions based on this intuition:

1. Query-Level Sharing. If two source queries, generated

by two different mappings, are identical, only one source

query needs to be executed. We exploit this observation by

developing the query-level sharing (or q-sharing) algorithm,
which partitions the mappings according to the source queries
they produce. Each group of mappings “share” a single source

query, which only needs to be evaluated once for each group.

This is faster than executing a source query for every mapping.

A salient feature of this approach is that the source query

groups are discovered during the mapping translation process,

through the use of an efficient partitioning algorithm. Com-

pared with the approaches mentioned earlier, which generates

a source query through every mapping individually, q-sharing
requires a lower translation effort. This solution is also flexible;

it can be applied to any kind of queries.

2. Operator-Level Sharing. Query cost can also be reduced
when the source queries produced by two mappings possess

common operators. Suppose that q0 is translated through m2

and m3 (Figure 3). Since m2 and m3 share (ophone, phone),
their respective source queries contain σophone=′123′Customer.

The result of running this operator can then be shared by

both queries. We thus develop the operator-level sharing (or
o-sharing) solution. Particularly, we study two metrics for

quantifying the amount of benefit that can be brought by

executing a target query operator, in terms of the likelihood its

query result can be used by other mappings. We also study how

to use these metrics to arrange the evaluation order of unary

(e.g., selection, projection), binary (e.g., join), and aggregate

(e.g., SUM and COUNT) operators.

Top-k Queries. We examine a variant of the probabilistic
queries, called the top-k query, which returns tuples whose

probabilities are the k-highest among all the answer tuples.

By specifying the value of k, a user can require a query to

only return answers with a high confidence. Based on the o-
sharing solution, we develop a query algorithm, which does
not compute the exact probability of every answer tuple. Our

experiments show that the performance of a top-k query can
be significantly improved.

The rest of the paper is as follows. We discuss the related

work in Section II. We present the problem definition and

discuss some simple solutions in Section III. Section IV

presents the q-sharing solution. In Sections V and VI, we

describe the o-sharing solution. We present our top-k query
algorithm in Section VII. Section VIII presents our experiment

results. We conclude in Section IX.

II. RELATED WORK

Schema matching is an important topic in data integra-

tion [2], [1], [13], [4]. However, most research does not

consider uncertainty in a matching. The idea of modeling

uncertainty of a schema matching as a set of possible mappings
has been recently proposed [9], [8], [10]. They discuss how

to obtain a set of h possible mappings, where h is user-

specified. Particularly, a bipartite matching algorithm is eval-

uated on the matching, which returns h mappings with the

highest similarity scores. The probability of each mapping

is derived by normalizing the mapping’s similarity score

over the total scores of the h mappings. We study query

evaluation on this model. Other uncertainty models include

[7], which addresses uncertainty in the mediated schema; and

[14], which handles uncertainty in the source database. In

[15], the authors proposed methods to reduce human effort

for analyzing the matching result, but they do not consider

probabilistic mappings.

In [10], we found that the possible mappings derived from

a XML schema matching share many correspondences. Inter-

estingly, we also observe a similar phenomenon in relational

matching. However, the methods in [10] are designed to

evaluate a single twig query operator, which cannot be used

to address a relational query that involves multiple operators.

Moreover, our solution can remove query answer duplicates,

which was not done in [10]. The work closest to ours is [8].

It mentioned that the cost of storing possible mappings can

be reduced by grouping the mappings, but does not further

explain how to group them. It also shows how to use these

groups to answer a simple target query that involves a single
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attribute. We develop a more systematic and comprehensive

solution than [8]. Particularly, we devise efficient algorithms

to cluster mappings. Our solutions can be applied to a complex

query that contain multiple attributes and operators.

In uncertain and probabilistic databases, a few algorithms

(e.g., [16], [17], [18], [19]) have been proposed to evaluate

top-k queries efficiently. However, these solutions are not

designed to handle schema matching uncertainty; instead, they

address the uncertainty of tuples and attribute values in a

relational database. It is not clear how these algorithms can

handle matching uncertainty. We develop a query algorithm to

evaluate top-k queries on possible mappings. By avoiding the
computation of the exact probability of an answer tuple, our

method significantly improves the query performance.

III. PROBLEM DEFINITION

We now describe the data and query models assumed in this

paper, in Section III-A. Then we discuss three simple solutions

for evaluating a probabilistic query, in Section III-B.

A. Data and Query Models

Data Model. Let S and T be the source and target schemas

respectively. Let aS (aT ) be an attribute of S (T ), called source
(target) attribute. A database D, called source instance, is
associated with S. A matching between S and T is represented

by a set M of h possible mappings [9], [8]. Each mapping

mi consists of a set of correspondences between source and
target attributes. We assume that the correspondences between

these attributes exhibit a one-to-one and partial relationship.

Each mi has a probability Pr(mi) to be correct. If ei is the
event that mi is correct, then all eis’ are mutually exclusive.
Thus,

∑h
i=1 Pr(mi) = 1.

Query Model.We consider the evaluation of a probabilistic
query, qT , which is executed on the target schema T . Unless
stated otherwise, qT can be any kind of query. (In o-sharing,
we study select, projection, join, and aggregate operators (e.g.,

SUM, COUNT). ) Our solutions, which aggregate duplicate

answers, can be easily changed if duplicate removal is not

required. The answer of qT is obtained through reformulating

qT to a query on S, as we will discuss later. Table I shows
the symbols used in this paper.

TABLE I
NOTATIONS AND MEANINGS.

Notation Meaning
S Source schema
T Target schema
D Source instance of S
aS A source attribute
aT A target attribute
M A set of h possible mappings between S and T
mi The i-th mapping of M , with i ∈ [1, h]

Pr(mi) Probability that mi is correct
qT Target query, with l operators
qSi Source query for mapping mi

(t, Pr(t)) A tuple in the answer of qT , with prob. t is correct

B. Simple Solutions

We now discuss three simple solutions for answering prob-

abilistic queries, namely, basic, e-basic, and e-MQO.
1. basic. This algorithm requires three parameters: target

query qT , mapping set M , and source instance D. For every
mapping mi, basic reformulates qT to a source query qSi

.

It then evaluates qSi on D. For each tuple obtained through
mi, its probability is equal to Pr(mi). Finally, the tuples

returned from the M mappings are aggregated, by summing

up probabilities of answers that are duplicates.

Example. Consider the following target query for Figure 1:

πphoneσaddr=′aaa′Person

using the possible mappings in Figure 3. For m1, the target

query qT can be reformulated to:

qS1 : πophoneσoaddr=′aaa′Customer

By evaluating qS1 on the source instance in Figure 2, 123 and
456 are returned, each with probability Pr(m1) = 0.3. For
m2, the same set of tuples are produced, each with probability

0.2; For m3, only 456 is returned with probability 0.2; For m4

andm5, 789 and 456 are returned, with probability 0.2 and 0.1
respectively. After result aggregation, the final query answers

are: (123, 0.5), (456, 0.8), and (789, 0.2).
In basic, a target query is executed on D for h times. If h

and D are large, qT can be costly to evaluate. We next discuss

two better solutions.

2. e-basic. This is an enhanced version of basic. Different
from basic that evaluates each of the h source queries once,
e-basic clusters the identical source queries. Then, e-basic
evaluates this set of distinct source queries. If there is only

a small set of distinct source queries, e-basic can run much
faster than basic.
3. e-MQO. This solution attempts to improve the perfor-

mance of e-basic. Instead of evaluating each distinct source

query independently, e-MQO first generates an optimal global

query plan, by using some multiple-query optimization (MQO)
method (e.g., [20], [12]). This guarantees that the number of

operators used to evaluate the set of distinct source queries is

minimal. This solution is also useful for us to compare with

other methods experimentally, since they may not be optimal

in terms of the number of source query operators executed.

A common problem of e-basic and e-MQO is that they do

not save query rewriting effort – a set of h source queries

need to obtained first. This cost can be high when qT contains

many attributes, or when h is large. Experimentally, e-MQO
is slower than e-basic, as it often takes a long time to generate
an optimal query plan. The next method, q-sharing, reduces
rewriting effort by avoiding the generation of h source queries.

IV. QUERY-LEVEL SHARING

The main idea of q-sharing is to identify the groups of

mappings that lead to the same source queries. For each group

of mappings, evaluating the source query once is sufficient.

Algorithm 1 illustrates this method. Step 1 first partitions the
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Fig. 4. Illustrating a partition tree.

mapping set M based on the target query qT . This produces
f groups of mappings, each of which leads to the same

source query. Step 2 retrieves the set M ′ of f representative
mappings from the f partitions, using the represent routine.
This is the set of mappings that need to be used for query

rewriting. Essentially, each mapping of M ′, which leads to

different source queries, is obtained by selecting a mapping

from each partition. The represent function also computes

the “probability” of the representative mapping from the j-
th partition, which is the sum of probabilities of all mappings

in the j-th partition. This is also the probability of the answer
tuples produced under all mappings of the j-th partition, since
all mappings in the j-th partition yield the same query result.
Step 3 invokes basic to compute the target query answer, based
on M ′.1

Algorithm 1 q-sharing
Input: mapping set M , target query qT , source instance D
Output: answer of qT
1: P1, . . . , Pf = partition(qT ,M)
2: M ′ ← represent(P1, . . . , Pf )
3: return basic(qT ,M

′, D)

Example. Consider the evaluation of the following query:
q1 : πpnameσaddr=′abc′Person

over the mappings in Figure 3. In Algorithm 1, the mappings

are classified into: P1 = {m1,m2}, P2 = {m3,m4}, and
P3 = {m5}. The mapping(s) in each partition produce(s)

the same source query. We can thus choose the representative

mappings for m1, m3, and m5, with respective probabilities

0.3+0.2=0.5, 0.2+0.2=0.4, and 0.1. Then we use basic to

evaluate q1 over these mappings.
Compared with e-basic and e-MQO, q-sharing does not

obtain h source queries first before clustering them. Instead, it
partitions the mappings and derives the distinct source queries

from these mappings. As shown in our experiments, q-sharing
performs better than e-basic and e-MQO. To further reduce the
query rewriting time, we implement a fast partition routine,
as described next.

A. Efficient Mapping Partitioning

Observe that a partition of mappings, which produce the

same source query, must share the same correspondences

for the attributes specified in the target query. We use this

intuition to develop a partition tree, which supports efficient

1Step 3 does not use an MQO algorithm, because it is slower than basic.
More details can be found in Section VIII.

mapping partitioning. Given a target query qT with l attributes,
a partition tree has (l+1) levels. The nodes at the k-th level
(1 ≤ k ≤ l) correspond to the k-th target attribute ak, and
each leaf node is a bucket, which contains a set of mappings
that belong to the same partition. Each edge is labeled with

some source attribute a′k, which matches ak according to a

mapping’s correspondence. After the partition tree has been

completed, each leaf node contains a distinct partition of

mappings, which can then be used by q-sharing.
Figure 4(a) shows the initial state of a partition tree for q1,

which contains a single root node for pname, the first attribute
of q1. We update the partition tree by using all mappings in
M . When a mapping m ∈M is considered, the partition tree

determines ifm should be put into an existing bucket, or create

a new bucket for m. This is done by traversing the partition
tree in a top-down manner. At the k-th level, the target attribute
ak is examined: if there exists an out-going edge e from the

current node, such that e is labeled a′k and the correspondence
(a′k, ak) is in m, it traverses the partition tree according to e.
Otherwise, a new edge labeled a′k is created, and is linked to
a new child node for ak+1. After all the target attributes are

examined, m will be put into the leaf node, which is a bucket

of partitions.

We illustrate this process with the mappings shown in Figure

3. First, for m1, nodes addr and B1 are created, and m1 is put

into bucket B1, as shown in Figure 4(b). Next, m2 is also put

into B1, since both of them match pname with cname, and
addr with oaddr. Notice thatm3 is assigned to another bucket

B2, since it matches addr to a different attribute, haddr.
Figure 4(c) shows the final state of the partition tree. As we can

see, each bucket contains a distinct partition of the mappings.

Algorithm 3 (Appendix A) details the partition routine. It
uses the mappings in M to update the partition tree. For

every mapping, a recursive function is used to handle each

attribute of qT . The cost of q-sharing is dominated by the

source query execution time, which depends on the number f
of representative mappings. If f is large, q-sharing can still be
slow. To alleviate this problem, we next study the o-sharing.

V. O-SHARING: FRAMEWORK

A common problem of e-basic, e-MQO, and q-sharing is
that they only save query costs only when two mappings

have the same correspondences for the target query. This

may not be true for a query with many attributes. However,

operator-level sharing, or o-sharing, can save costs even if

the correspondences of two mappings are not exactly the

same. This is achieved by interleaving the processes of query
rewriting and query execution. o-sharing can support a wide
range of queries: SPJ operators (i.e., selection, projection, and

join) and aggregate operators (e.g., COUNT and SUM). We

present its framework below, and describe its algorithm details

in Sections V-A and VI.

Framework. Given a target query, o-sharing chooses an

operator based on the number of correspondences shared by

the mappings. This operator is then executed. The process

is repeated until all target operators are considered. We now

10991099



Orderaddr=’hk’

phone=’123'

Person

u1|{m1,m2,m3,m4,m5}

Order

R2:

Order

R3: {t1,t2}

u2|{m1,m2} u3|{m3,m4,m5}

phone=’123' phone=’123'

Fig. 5. Illustrating e-units.

introduce two data structures, namely, the e-unit and the u-
trace.
An e-unit (or execution unit) captures the current state of

the target query. The following constitutes an e-unit u:
• query plan, denoted by u.T , which organizes the target

query operators not yet executed, and the intermediate results

of the operators executed previously;

• mapping set, denoted by u.M , the mappings which share

the correspondences for the target attributes associated with

the operators evaluated before; and

• next-op, denoted by u.onext, which is a query operator
in u.T , and will be executed in the next step.
Essentially, u specifies a partially executed target query,

u.T , where the operator, u.onext, will be be handled next,

under the mapping set u.M . Figure 5 shows three e-units, u1,
u2, and u3, generated based on the following target query:

q2 : (σaddr=′hk′σphone=′123′Person) ×Order
and the mappings shown in Figure 3. First, u1 is produced by
using q2 as its query plan. The mapping set of u1 contains

mappings m1, . . . ,m5, while its next-op is chosen to be

σaddr=′hk′ (underlined). Suppose now σaddr=′hk′ is executed.

This is done by first rearranging it to be executed on Person,
and then reformulated according to u1.M (We will explain the

operator selection strategies in Section VI-B). Notice that the

target attribute, addr, corresponds to the same source attribute
oaddr for m1 and m2; and matches haddr for m3,m4, and

m5. Since oaddr and haddr are attributes of Customer, there
are two ways of executing u1.T :

• For m1 and m2, execute σoaddr=′hk′Customer, and
produce source relation R2, which is an empty relation.

• For m3, m4, and m5, execute σhaddr=′hk′Customer, and
produce source relation R3, which contains {t1, t2}.
The above execution produces two e-units, called u2,

and u3. Figure 5 shows the components of these two e-

units. Notice that u2.T (u3.T ) differs from u1.T , in which

σaddr=′hk′Person is replaced by R2 (R3). Also, u2.M =
{m1,m2}, while u3.M = {m3,m4,m5}. Moreover, the
number of times next-op (σaddr=′hk′ ) is evaluated is reduced

from 5 (for 5 possible mappings) to 2 only. The next-op of u2
and u3 will be decided later.
A u-trace is a tree of e-units that have not yet been

considered. We use Figure 5 to show how to use a u-trace

to obtain answers for the mappings in Figure 3. Initially, a u-

trace consists of u1, where u1.T is created from q2. We first
evaluate u1.onext, through either m1 and m2. The result, R2,

is used to create another e-unit, u2. Since R2 is empty, the

result of evaluating u2.T must be empty. Hence, u2.T yields

(b)

(c) (d)

(a)

u2 |{m1,m2} u3

R4

phone=’123'

R6

u4

R7

u6|{m3} u7|{m4}

u4|{m3,m4}

R5

phone=’123'

u5|{m5}

Order

R3: {t1,t2}

u3|{m3,m4,m5}

phone=’123'

u5 |{m5}

u1 u1

u3

u1

u3

u1

Fig. 6. Illustrating a u-trace.

an empty relation, for both m1 and m2. It is removed from

the u-trace, as illustrated in Figure 6(a).

Next, u3 is generated by using m3, m4, and m5 (Fig-

ure 6(a)). The Cartesian product operator is used as u3’s next-
op. The detail of selecting operators will be explained in Sec-

tion VI-A. An e-unit u4 is produced, with u4.M = {m3,m4}
(Figure 6(b)). By considering σphone=′123′ on u4.T , we get
two more e-units: u6 and u7, which correspond to executing
the operator according to m3 and m4 respectively (Figure

6(c)). Since u6 (u7) does not contain any operator, R6 (R7) is

the answer for m3 (m4). For u5, since R5 is empty, the query

answer for m5 is empty (Figure 6(d)).

Different from e-basic, e-MQO and q-sharing, which pre-
pares a complete set of source queries before evaluating

them, o-sharing interleaves the query rewriting and operator
execution tasks by using the u-trace. This allows o-sharing to
discover the opportunity of sharing operator evaluation effort

during query reformulation. Moreover, since some intermedi-

ate relations are empty, o-sharing may not have to consider

the whole target query for every mapping. We next study the

algorithm for handling the u-trace.

A. The o-sharing algorithm

The o-sharing method (Algorithm 2) first finds the repre-

sentative mappings M ′ (Steps 1-2). It initializes a u-trace by
creating an e-unit, u1, where u1.T is the query plan of qT ,
and u1.M = M ′ (Step 3). It calls a recursive function run qt
to compute the answers (R1, . . . , Rg) for the u-trace, in Step

4. These answers are aggregated and returned in Step 5.

We now explain run qt, which evaluates the target query

answer for a given e-unit u. Step 1 initializes two arrays, ansS
and ansT , for holding temporary results returned by source

and target queries respectively. Then, run qt considers whether
to return target query answers, or invoke another recursive call,

based on three scenarios:

Case 1 (Steps 2-7): u.T is a relation. Thus, all operators

in qT are used. All tuples in u.T can then be returned as

answers, each of which has a probability equal to the sum

of probabilities of all mappings in u.M . In the e-unit u6
(Figure 6(c)), all results of R6 can be returned, each of which
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Algorithm 2 o-sharing
Input: mapping set M , target query qT , source instance D
Output: all the query answers
1: P1, . . . , Pf ← partition(qT ,M)
2: M ′ ← represent(P1, . . . , Pf )
3: u1 ← init u trace(qT ,M ′)
4: R1, . . . , Rg ← run qt(u1, D)
5: return aggregate(R1, . . . , Rg)

function run qt(e-Unit u, source instance D)
Output: all the query answers for u from D
1: ansS ← ∅, ansT ← ∅
2: if u.T is a relation then
3: for all t ∈ u.T do
4: ansT ← ansT ∪ (t,

∑
m∈u.M Pr(m))

5: end for
6: delete u
7: return ansT
8: else if u.T contains an empty relation then
9: ansT ← (θ,

∑
m∈u.M Pr(m))

10: delete u
11: return ansT
12: else
13: (P1, . . . , Pg)← next(u)
14: reorder op(u, u.onext)
15: for all Pi ∈ P1, . . . , Pg do
16: m← an arbitrary mapping in Pi
17: o′ ← reformulate op(u.onext,m)
18: ansS ← run qs(o′, D)
19: ui.T ← create qtree(u.T, u.onext, ansS)
20: ui.M ← Pi
21: Ri ← run qt(ui, D)
22: end for
23: delete u
24: return R1, . . . , Rg
25: end if

has probability Pr(m3). After Step 5, all answers in u are

kept in ansT . Then, u is deleted, and ansT is returned.

Case 2 (Steps 8-11): u.T contains an empty relation. Step 9

stores the result of executing u.T , which is a null tuple θ, and
its probability in ansT . Steps 10-11 delete u and return ansT .
In Figure 6(a), the probability of the empty result for u2 is

Pr(m1) + Pr(m2).
Case 3 (Steps 12-24): The answer of u.T is evaluated as

follows:

(i) Call function next (Step 13). This function finds u.onext
and returns the partition of mappings with respect to u.onext.
(ii) Rearrange u.onext in the query tree of u, so that it is

is ready to be computed (Step 14). In Figure 5, we push

σaddr=′hk down one level of u1.T , so that it can be evaluated
on Person.
(iii) Evaluate u.onext, and create new e-units in the u-trace

(Steps 15-22). In detail, for each mapping partition Pi, it
first runs reformulate op, which translates u.onext to a source
operator o′ (Steps 16-17). Using the run qs routine, o′ is
executed on D, and the results are stored in ansS (Step 18).

A new e-unit ui is created, whose query tree is generated by
modifying u.T with u.onext and ansS (Step 19). Then, run qt
is invoked on ui, using the mapping set Pi (Steps 20-21). In
Figure 5, the execution of σaddr=′hk′ in u1.T produces u2 and
u3. Note that the query plans of these e-units are created by
replacing σaddr=′hk′ with query results R2 and R3, in u1.T .
(iv) Delete u and return the results for u’s partitions.
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Fig. 7. Mapping distribution of operator o1 (a) and o2 (b).

We next study the details of next and reformulate op.

VI. O-SHARING: DETAILS

We now study how to select the next target operator for

evaluation, in Section VI-A. Section VI-B then explains how

to reformulate the chosen target operator.

A. Operator Selection Strategies

Recall that Algorithm 2 selects a target operator from qT ,
using the function next, in Step 13. We first describe two

criteria of choosing a target operator not yet executed: cor-
rectness and effectiveness. To understand correctness, notice
that not all operators are allowed to be chosen. For example,

if an operator o is not next to the leaf node of u.T , and it

is a projection operator whose attributes do not contain all

attributes contained in u.T , then o cannot be used. Hence, the
first task of next is to select valid operators, in order to ensure
correct query results.

Given a set of correct target operators, the next step is to

find an effective one as the next operator to be evaluated. This
is an important step; if we make a poor choice, an operator

may be translated to many source operators and incur a high

query cost. To accomplish this task, we consider three different

methods, namely, Random, SNF and SEF.
1. Random arbitrarily selects the next operator. Although

it is easy to implement, it does not consider any information

about the possible mappings. For example, if a chosen operator

happens to create a lot of mapping partitions, then many source

operators will be generated and executed, resulting in a high

computational cost. The next method, SNF, considers mapping
information in making a choice.

2. SNF (or Smallest Number of Partitions First) chooses a
target operator that leads to the fewest mapping partitions.

Figure 7 illustrates the partition information of two target

operators, o1 and o2, in some e-unit u’s query plan. They

are candidates for the next operator. Figure 7(a) shows that

o1 segments the mapping set of u into three partitions. That
is, for every set of mappings in a partition, o1 is translated

to the same source operator. In Figure 7(b), o2 provides four
mapping partitions. Here, SNF chooses o1, since it has fewer
partitions than that of o2. Intuitively, the smaller the number
of partitions, the fewer source queries need to be translated.

Hence, SNF prefers o1 to o2.
To implement SNF, we compute the number of mapping

partitions of each correct operator o in u.T , by (1) running

the partition routine on o, using mapping set u.M ; and (2)

counting the number of mapping partitions of o. We then
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assign the operator that possesses the fewest partitions, to

u.onext. Finally, next returns the partition for u.onext.
The main problem of SNF is that it does not use all the

partition information. In Figure 7 we mark each partition with

the fraction of the mappings that belong to that partition. If

o1 is chosen, it will be translated to 3 source operators. In

other words, the query result of each of these operators can be

shared by about 30% of the mapping set in u. For o2, observe
that partition 2 contains a large fraction (70%) of mappings.

Thus, the result of executing o2 on partition 2 can be shared
by 70% of mappings. If a new e-unit v is produced as a result
of executing o2, 70% of mappings in partition 2 can appear

in its mapping set. This can be beneficial to v; due to its

large mapping set, the chance that the next operator can be

shared among larger partitions is also high. Thus, it may better

to execute o2 than o1. However, SNF does not consider the

number of mappings in a partition, and it does not suggest o2
as the next operator. Next, let us see how SEF takes the size

of a partition into account.
3. SEF (or Smallest Entropy First), enhances SNF by

considering the size of every mapping partition. This is done

by using the entropy function [21]. To understand, given a

mapping partition, we consider its fraction value to be the

probability that the set of correspondences associated with that
partition is used for reformulation. In Figure 7(b), the proba-

bility of the event that the set of attribute correspondences in

partition 2 is used is then 70%. Since this mapping partitioning

is disjoint, the sum of probabilities of all the events associated

with the partitions must be one. Moreover, these events are

mutually exclusive. We can then use entropy, which measures
the spread of a probability distribution:
Definition 1: The entropy of a mapping set M for an

operator o, denoted as Eo
M , is defined as:

Eo
M = −

g∑

j=1

|Pj |
|M | log2

|Pj |
|M |

where P1, . . . , Pg are partitions of M with respect to o.

We assume that
|Pj |
|M | is the probability that the correspondences

in the j-th partition are used for query evaluation.
The SEF strategy chooses u.onext by finding an operator o

in u.T , which has the lowest entropy (i.e., Eo
u.M ). Intuitively,

if the entropy is small, a large portion of the mappings in

M may fall into the same partition. Hence, SEF prefers an

operator whose mappings are concentrated in few partitions.

For example, in Figure 7, Eo1
u.M = 1.53, while Eo2

u.M = 1.36.
Different from SNF, o2 is chosen ahead of o1.
The implementation of SEF is similar to that of SNF, except

that instead of counting the number of partitions of a candidate

operator, we compute its entropy. The operator that has the

lowest entropy is selected.
In Section VIII, we will evaluate the effectiveness of the

above three operator selection strategies experimentally.

B. Operator Reformulation
The routine reformulate op, invoked in Algorithm 2, trans-

lates a target operator o to a source operator o′ through

C_OrderR2

C_OrderR2

Nation

R4

phone=’123'

R4

ophone=’123'

R4

hphone=’123'

(a) (c)

OrderR2

(b) (d)

m3 m4
m3, m4 m5

Fig. 8. Reformulation of operators.

a mapping m. Since this function handles the intermediate

results stored in the query plan of an e-unit, it has to handle

both target schemas and source relations. We consider two

classes of operators.

1. o is unary. This means o operates on a relation R. Selection,
projection, and aggregate operators belong to this class. Let

Ao be a set of source attributes, which match o’s attributes
according to m.
[Case 1] R is a source relation (i.e., the result of the previous

operators) that contains all the attributes in Ao. We obtain o
′

from o by replacing o’s attributes with Ao. The input relation

of o′ is R.
[Case 2] R is a source relation that does not contain all

the attributes in Ao. Then, o
′ is the same as Case 1. The

input relation becomes R × R1 × . . . × Rf (f ≥ 1), where
R,R1, . . . , Rf is the minimal set of source relations that

contain all attributes in Ao.

[Case 3] R is a target schema. Then o′ is the same as Case 1.
Its input relation is R1× . . .×Rf (f ≥ 1), where R1, . . . , Rf

form the minimal set of source relations that cover all attributes

in Ao.

Example. Consider the reformulation of u4.onext in Figure
6(a-b). The mappings in u4.M , i.e., m3 and m4, match

phone to ophone and hphone respectively, both of which are
contained in source relation R4. Thus, u4.onext is changed to
σophone=′123′R4 and σhphone=′123′R4, as shown in Figures

8(a) and (b).

2. o is binary. This means o operates on two relations, say,
R and R′. A Cartesian product operator belongs to this class.

[Case 1] Both R and R′ are source relations. Then, o′ is a
Cartesian product with input relations R and R′.
[Case 2] Only R (or R′) is a source relation. Then o′ is
R(R′) ×R1 × . . .×Rf (f ≥ 1), where R1, . . . , Rf form the

minimal set of source relations that contain all source attributes

for R′ (R).
[Case 3] Both R and R′ are target relations. All their attributes
are matched to source relation(s) R1, . . . , Rf (f ≥ 1) by m,
and o′ becomes R1 × . . .×Rf .

Example. Consider the reformulation of u3.onext in Figure
6(c-d). After rearranging u3.T , the input relations of u3.onext
are R2 and Order, where R2 is a source relation (Customer),
and Order is a target schema. For both m3 and m4, u3.onext
is reformulated to a Cartesian product, whose inputs are R2

and C Order (Figure 8(c)). For m5, the attributes of Order
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TABLE II
ILLUSTRATING THE TOP-k QUERY.

Node prob. heap LB UB

u2 0.5 - 0 0.5
u6 0.2 ta(0.2, 0.5) 0.2 0.3
u7 0.2 ta(0.4, 0.5), tb(0.2, 0.3), tc(0.2, 0.3) 0.4 0.1
u5 0.1 - - -

are contained in two source relations (C Order and Nation).
Therefore, u3.onext is reformulated to (R2×Order)×Nation
(Figure 8(d)).

Analysis. The cost of SNF or SEF is polynomial to that

of evaluating partition l times. Running reformulate op once
needs O(|S|) times. The time cost of Algorithm 2 is polyno-

mial to the size of the mappings. Its space complexity is linear

to the size of l e-units.

VII. PROBABILISTIC TOP-k QUERIES

A probabilistic top-k query returns k tuples whose probabil-
ities are the highest, among those with non-zero probabilities.

This query is useful to a user who is only interested in the

answers with sufficiently high confidence, but does not care

about the exact probability values of the answer tuples. A

simple way to evaluate this query is to find all potential answer

tuples (e.g., by using o-sharing), sort these tuples according to
their probabilities, and return the first k tuples. When there are

many potential answer tuples, however, this approach is not

efficient, since it has to compute and sort many probabilities.

Our new algorithm is able to prune non-answer tuples from

computation. It also avoids evaluating the actual probabilities

of the answer tuples. This is done by partially expanding the
u-trace. Let us illustrate with the u-trace in Figure 6. Here,

the total probabilities of the mappings in the leaf nodes, i.e.,

u2, u6, u7, and u5, are respectively 0.5, 0.2, 0.2, and 0.1

(Table II). To evaluate a top-1 query, we first traverse the u-

trace to u2, which returns no tuple. Then we go to u6, which
returns tuple ta. The lowest probability of ta is 0.2, which is
the total probability of the mappings in u6; the upper bound
of ta’s probability is 0.5, since u2.M , whose probability is

0.5, cannot contribute to ta’s probability. We continue to u7,
which returns ta, tb, and tc. The minimum probability of ta
becomes 0.4, and the maximum probabilities of tb and tc are
0.3. We can now return ta as the only top-1 answer, since:

1) tb and tc’s maximum probabilities are both lower than ta’s
minimum probability; and 2) any new tuple returned by the

remaining e-units cannot have a probability larger than 0.1.

We now briefly describe our algorithm. (The details and cost

analysis are in Algorithm 4 of Appendix B.) It first partitions

the mapping set and finds the representative mappings M ′. It
initializes a u-trace, rooted at the e-unit u, whose query tree is
qT and mapping set is M ′. It then calls the recursive function
run qt topk on u, by considering three cases:

[Case 1] u.T has no operator, i.e., u.T is a set of tuples.

It returns TRUE if all top-k tuples can be found, or FALSE
otherwise.

TABLE III
TARGET QUERIES AND SCHEMAS USED IN THE EXPERIMENTS

ID T query expression

Q1 Excel σtelephone=335−1736 σpriority=2

σinvoiceTo=Mary PO
Q2 Excel σquantity=10 σitemNum=00001 PO × Item
Q3 Excel σPO.orderNum=Item1.orderNum (σtelephone=

335−1736σitemNum1=00001 PO) ×
(σItem1.orderNum=Item2.orderNum

(Item1 × Item2))
*Q4 Excel σitemNum1=00001((σPO1.orderNum=PO2.

orderNumPO1 × PO2) × (σItem1.orderNum

=Item2.orderNum(Item1 × Item2)))
Q5 Excel COUNT(σtelephone=335−1736 σcompany=ABC

σinvoiceTo=Mary σdeliverToStreet=Central PO)
Q6 Noris σtelephone=335−1736 σinvoiceTo=Mary

σdeliverToStreet=Central PO
Q7 Noris πitemNum,unitPriceσorderNum=00001 σdeliverTo

=MaryσdeliverToStreet=Central PO × Item
Q8 Paragon σbillTo=Mary σshipToAddress=ABC

σshipToPhone=335−1736 PO
Q9 Paragon SUM (πpriceσtelephone=335−1736 σbillToAddress)

=ABCσitemNum=00001 PO × Item
Q10 Paragon COUNT (σinvoiceTo=Mary σbillToAddress

=ABC PO × Item)

[Case 2] u.T is an empty relation. It returns TRUE if all top-k
tuples can be found, or FALSE otherwise.

[Case 3] Similar to Algorithm 2, it finds u.onext; for each
partition Pi of onext, it executes onext to obtain e-unit ui, and
recursively calls run qt topk on ui. If the recursive call on
any Pi returns TRUE, the function returns TRUE.
To implement the algorithm, for each tuple we store the

lower (lb) and upper (ub) bounds of its probability. We use
a heap, ordered by lb, to maintain the tuples that can be the
answers. We also use two global variables: 1) LB, the lower
bound probability of the tuple with the k-th highest probability
in the heap; and 2) UB, the maximum probability of any tuple

not in the heap.

Table II shows the status of the heap, LB, and UB, after
computing each e-unit. For each tuple in the heap, its lb and ub
values are shown. After u7 is computed, UB < LB, and the
ub values of tb and tc are both 0.3, which is smaller than LB.
Thus, the top-1 answer (ta) can be returned without visiting
u5. In our experiments, this algorithm runs fast, especially for

small values of k.

VIII. RESULTS

In Section VIII-A, we describe the experiment setup. Then

we present the results in Section VIII-B.

A. Setup

We use TPC-H (www.tpc.org/tpch) to generate a 100MB

source instance, which contains 1M tuples about purchase

orders. Its (source) schema, which we called TPC-H, con-
tains 46 attributes and 8 relations. We consider three target

schemas: Excel, Noris, and Paragon, with 48, 66, and 69

attributes respectively. They are related to purchase orders, and

are provided by COMA++ (dbs.uni-leipzig.de/research/coma).

The default target schema is Excel.
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We choose COMA++ as the schema matcher. It returns 34,

18, and 31 correspondences for Excel, Noris, and Paragon
with TPC-H respectively. As COMA++ requires the input

schema to be in XML format, we transform the relational

TPC-H schema into XML by the method in [22]. Based on the

similarity scores associated with the correspondences, we use

a bipartite matching algorithm [10], [9] to generate h = 100
possible mappings.

The target schemas, in XML, are changed to a relational

form by the method in [23]. Two relational schemas, namely

PurchaseOrder (PO) and Item, are yielded. We define 10
target queries: Q1-Q5 for Excel; Q6-Q7 for Noris; and Q8-

Q10 for Paragon (Table III). Each query can contain selection,
projection, Cartesian product, COUNT, and SUM, on more or

more tables. By default, Q4 is the target query, and SEF is

used for o-sharing. We implement e-MQO with the solution

in [12]. We use tq to denote the running time of target query
Tq . Each data point is an average of 50 runs.
Our algorithms, implemented in C++, are run on a PC with

Intel Core Duo 2.93GHz CPU and 3G RAM. Their source

codes can be found in www.cs.hku.hk/˜jgong/urm.

B. Results

1. Overlap of possible mappings. To measure the overlap
among the possible mappings, we define the o-ratio of two
mappings mi and mj as

|mi∩mj |
|mi∪mj | , which is the fraction of the

number of common correspondences over the number of all

distinct correspondences for mi and mj . We also define the o-
ratio of a mapping set M as the average of the o-ratio among
all pairs of mappings in M . In our experiment, the o-ratio of

the mappings between TPC-H and Excel, Noris, and Paragon
are respectively 79%, 68%, and 72%. Figure 9(a) shows that

the o-ratio for TPC-H and Excel is between 73%-79% for a

wide range of number of mappings. Hence, these mappings

are highly similar. As we show later, q-sharing and o-sharing
exploit this property and yield a higher query performance.

2. Simple solutions. We next analyze the time distribution
of the two phases in basic: query evaluation and tuple ag-

gregation. Figure 10(a) shows that the computation time is

dominated by query evaluation. This is because basic answers
a target query with every possible mapping separately. For

all the queries examined, the fraction of the query evaluation

time is more than 80%. We next consider e-basic and e-MQO,
which enhances the query evaluation phase of basic.
Figure 10(b) shows the performance of these solutions under

different database sizes. Both e-basic and e-MQO outperform

basic, because they evaluate distinct source queries, which are
fewer than those evaluated by basic. Moreover, e-basic is faster
than e-MQO. Note that e-MQO generates an optimal source

query plan, which executes the smallest number of operators.

However, the plan generation process is extremely expensive.

Thus, e-MQO is slower than e-basic, which does not generate
any query plan. In Figure 10(c), we test their performance

under different number of mappings. The evaluation time of e-
MQO rises sharply with the number of mappings; when |M | >
300, e-MQO is even worse than basic. With a larger number
of mappings, more source queries are produced, which results

in a lot of time for generating a query plan. Thus, e-MQO
does not scale well with the mapping set size. Since e-basic
is the best basic solution, we will compare it with q-sharing
and o-sharing in the rest of this section.
3. Query performance. Figure 11(a) shows the running

time of Q1 to Q10. We see that q-sharing is better than e-basic,
with an average improvement of 16%. Recall that e-basic
generates h source queries and finds the distinct ones among
them. On the other hand, q-sharing identify the representative
mappings, which are often a small portion of all mappings. For

example, for Q1 that contains three operators, there are only

12 representative mappings. These mappings, which can be

quickly obtained by the use of the partition routine, are then
used to derive the distinct source queries. Since q-sharing does
not involve the derivation of all source queries, it is faster than

e-basic.
We also see that o-sharing performs better than q-sharing.

While q-sharing can only combine identical mappings, o-
sharing allows the sharing of query effort, even if the map-

11041104



TABLE IV
OPERATOR SELECTION STRATEGIES.

Strategy time (s) # source operators

Random 215 433
SNF 58 135
SEF 55 132
e-MQO 320 112

pings are not exactly the same. Thus, o-sharing is more

flexible than q-sharing, and thus outperform it.

4. Effect of database size. Figure 11(b) shows tq (query
evaluation time) for different values of |D| on the default query
Q4. Again, o-sharing outperforms q-sharing, which is faster
than e-basic. Moreover, while the performance times of all
these methods increase the size of database, the increase rate

of o-sharing is the slowest. Thus, o-sharing scales well with
the database size.

5. Effect of the number of mappings. Figure 11(c)

shows the performance of Q4 over 100-500 mappings. Notice

that e-basic and q-sharing are quite sensitive to the number
of mappings. When the number of mappings increases, the

number of representative mappings, as well as that of distinct

source queries, increases rapidly. Thus they do not scale well

with the mapping set size. Although o-sharing also needs to
compute more e-units when more mappings are considered, it

is less sensitive to the number of mappings. This is because it

enjoys a higher degree of sharing among query operators than

q-sharing. Therefore, increasing the mapping set size brings
less impact to o-sharing.
6. Effect of query size. Figure 11(d) shows the performance

of queries with 1-5 selection operators on different attributes.

Again, q-sharing and o-sharing perform better than e-basic,
since they do not generate all the h source queries. When

a query contains more operators (≥2), o-sharing performs

better, since it uses operator-level sharing on the mappings;

by contrast, q-sharing obtains more representative mappings,
and has to execute more distinct source queries.2 Figure 11(e)

shows the performance of queries with 1 to 3 self-joins on

the PO schema. The results are similar to Figure 11(d). If a

query contains more relations, more target attributes need to

be handled, yielding more source queries and operators. Here,

when the number of Cartesian products is two or more, o-
sharing, which allows more sharing of query effort than that
of q-sharing or e-basic, performs the best.
7. Operator selection strategies. Next, we study the oper-

ator selection strategies mentioned in Section VI-A: Random,
SNF, and SEF. Figure 11(f) shows their performance for the
queries on Excel. Observe that both SNF and SEF perform

much better than Random. Also, o-sharing using SEF is faster
than when SNF is used. This can be explained by Table IV,

which shows the query evaluation time and the number of

source operators executed for Q4. We also include the results

of e-MQO, which yields an optimal query plan, or equiva-

2When there is only 1 operator, no operator sharing for o-sharing is allowed;
it only enables query-level sharing. The extra overhead of maintaining the u-
trace explains why o-sharing needs slightly more time than q-sharing.

lently, the smallest number of source query operators. We see

that Random executes more operators than both SNF and SEF
do. This is because Random ignores mapping information; it

makes a poor choice by choosing target operators that leads

to many source operators. The number of operators for SNF
and SEF are both close to the optimal (i.e., the number of

operators required by e-MQO. However, SEF needs fewer

operators than SNF. While SNF does not use the information

about the number of mappings in each partition, SEF uses

it effectively by computing the entropy function. Hence, SEF
makes a better decision and helps the target query to run faster

than when SNF is used. We conclude that o-sharing, when used
with SEF, often performs the best in most of our experiments.
8. Top-k query. Figures 12(a)-12(c) compare the basic

solution (which uses o-sharing to find probabilities of all

tuples), and our new top-k algorithm. We vary k from 1 to 20,

for Q4 (Excel), Q7 (Noris), and Q10 (Paragon). When a small

value of k is used, top-k runs faster, since it can stop before
completely exploring the u-trace. For Q10 (Figure 12(c)), at

k = 10, top-k performs about the same as o-sharing. This is
because Q10 returns no more than 10 distinct tuples; thus, top-
k cannot stop evaluation earlier than o-sharing when k ≥ 10.

IX. CONCLUSIONS

We studied efficient query evaluation on uncertain schema

matching. We developed q-sharing and o-sharing, which ex-
ploit the similarity among different mappings. We examined

two metrics for choosing target operators in o-sharing. Our
experiments show that o-sharing performs the best when used
with SEF. We also effectively extended o-sharing to support
probabilistic top-k queries. In the future, we will study the

use of o-sharing to support other complex queries (e.g., set

operators, subqueries, and recursive queries), and design data

structures to facilitate o-sharing evaluation.
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APPENDIX A

Q-SHARING (SECTION 3)

Algorithm 3 (partition) shows the details of constructing a
partitioning tree, for a given set of mappings M and target

query qT . It first creates a new partition tree rooted at r
(Step 1), then it calls the recursive function put to assign each
mapping in M to an appropriate bucket in the partition tree

(Steps 2-5).The recursive function put assigns the mapping m
into the partition tree node n at the k-th level. The base case
is when node n is a leaf node (Step 1), which implies that

m is ready to be assigned to a partition. Then m is deposited

to the bucket and the algorithm exists (Step 2). For the other

cases, i.e., n is not a bucket, it checks if there exists a mapping
m′, such that m′ and m match ak, the k-th target attribute,
with the same source attribute a′k: 1) if m

′ exists, it can find
a node n′ of n’s child, such that the edge (n, n′) is labeled
with a′k. Then, it recursively calls the function put to assign
m to the next level (Steps 6-9); and 2) if m′ does not exist,
then it creates a new node or bucket, depending on whether ak
is the last target attribute (Steps 12-18), and then recursively

calls the function put to assign m to the next level (Step 18).

Finally the algorithm returns all the buckets in the partition

tree as partitions of mappings (Step 5).
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Algorithm 3 The partition Algorithm
Input: mapping set M , target query qT
Output: partitions of M
1: ptree←create a new partition tree rooted at r
2: for all m ∈M do
3: put(m, r, 1)
4: end for
5: return all the buckets in ptree

procedure put(mapping m, node n, integer k)
1: if n is a bucket then
2: put m in n
3: else
4: ak ← the k-th attribute in qT
5: for all out-going edge e of n do
6: if e is labeled as a′k , (a

′
k, ak) ∈ m then

7: let n′ be the child of n connected by e
8: put(m,n′, k + 1)
9: end if
10: end for
11: if the above e does not exist then
12: create an edge e labeled with a′k , (a

′
k, ak) ∈ m

13: if ak is the last target attribute then
14: create a new bucket n′ connected with e
15: else
16: create a new node n′ for ak+1 connected with e
17: end if
18: put(m,n′, k + 1)
19: end if
20: end if

APPENDIX B

THE TOP-K ALGORITHM

Algorithm 4 first partitions the mapping set and finds out

the representative mappingsM ′ (Steps 1-2). Then it initializes
a u-trace, rooted at the e-unit u1, whose query tree is qT and

mapping set is M ′ (Step 3). Afterwards, it creates a heap,

and set the initial values for LB and UB (Steps 4-5). Next it

calls the recursive function run qt topk to find the candidate
query answers and put them in the heap (Step 6), and finally

returns the top-k tuples from the heap (Step 7).

The function run qt topk works as follows. It first exam-
ines u’s query tree, and there are three cases.
Case 1: (Steps 1-2) u.T has no operator, which means that

u.T is a single relation containing a set of tuples as possible

query answers. Then it calls the function decide result to
process these tuples, and decides whether the algorithm can

safely stop, i.e., all the top-k tuples are found. In detail, for
each distinct tuple r, it first checks if r is already in the heap,
then it increases the lower bound of r accordingly (Steps 3-4);
else, if r is a potential top-k answer, i.e., UB > LB, then it
inserts r into the heap, and set its lb and ub properly (Steps 6-
7). After all the tuples are processed, it updates LB and UB
based on definition (Steps 10-11). Then it decides whether

all the top-k tuples are found, by checking the following two
conditions: 1) for each tuple r′ in the heap whose lower bound
probability ranks larger than k, r′.ub ≤ LB (which implies

that r′ cannot be a top-k answer), and 2) whether UB ≤ LB
(which implies that any new tuple returned by the remaining

e-units cannot be a top-k answer). If the above two conditions
satisfy, then the function returns TRUE, which implies that the

all the top-k tuples are found (Steps 12-16).

Algorithm 4 top-k
Input: mapping set M , target query qT , source instance D, k
Output: all the top-k query answers
1: P1, . . . , Pn ← partition(qT ,M)
2: M ′ ← represent(P1, . . . , Pn)
3: u1 ← init u trace(qT ,M ′)
4: heap← new heap of tuples, sorted by tuple’s lb
5: LB ← 0, UB ← 1
6: run qt topk(u1, D)
7: return the top-k tuples in heap

function run qt topk(E-Unit u, Instance D)
Output: TRUE/FALSE (i.e., if all top-k results found, or not)

1: if u.T has no operator then
2: return decide result(u)
3: else if u.T contains empty relation then
4: u.T ← ∅
5: return decide result(u)
6: else
7: (P1, . . . , Pg)← next(u)
8: reorder op(u, u.onext)
9: for all Pi ∈ P1, . . . , Pg do
10: m← arbitrary mapping in Pi
11: o′ ← reformulate op(onext,m),
12: ansS ← run qs(o′, D)
13: ui.T ← create qtree(u.T, u.onext, ansS)
14: ui.M ← Pi
15: if run qt topk(ui, D) = TRUE then
16: delete u, return TRUE
17: end if
18: end for
19: delete u, return FALSE
20: end if
function decide result(E-Unit u)
Output: TRUE/FALSE (i.e., if all top-k results decided, or not)

1: remove duplicate tuples in u.T
2: for all r ∈ u.T do
3: if ∃r′ ∈ heap, r′ = r then
4: r′.lb← r′.lb+

∑
m∈u.M Pr(m)

5: else if UB > LB then
6: r.ub← UB, r.lb←

∑
m∈M′ Pr(m)

7: heap.push(r)
8: end if
9: end for
10: UB ← UB −

∑
m∈u.M Pr(m)

11: LB ← r′.lb, r′ is the k-th (or the last) tuple in heap
12: if ∀r′ ∈ heap[k + 1, |heap|], r′.ub ≤ LB and UB ≤ LB then
13: delete u, return TRUE
14: else
15: delete u, return FALSE
16: end if

Case 2: (Steps 3-5) u.T contains empty relation, then it also

calls the function decide result, after replacing u.T with an

empty relation; in this case, decide result will skip Steps 1-9,
and only update UB.
Case 3: (Steps 7-20) Similar to Algorithm 2, it finds u.onext
and reorder u.T ; for each partition Pi of onext, it reformulates
onext and computes it to obtain another e-unit ui, and then

recursively calls the function run qt topk on ui. Notice that if
the recursive call on any partition returns TRUE, which means

the top-k tuples are found, the recursion stops immediately.
Complexity. In the worst case, all the e-units will be visited,

so its complexity will be the same as the o-sharing algorithm.
However, our experiments found that the performance of this

algorithm is better, especially for small values of k. An
example run of this algorithm can be found in Table II.
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