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Abstract 
 

Vaccination for hepatitis B virus (HBV) infection and treatment for chronic 

hepatitis B (CHB), while effective for primary prevention and control of the disease, still 

have their limitations.  Global coverage of HBV immunization needs improvement. 

Several patient populations are noted to have suboptimal seroprotective rates after HBV 

vaccination. There are currently several potential new vaccines undergoing animal and 

human studies, most notably vaccines containing immunostimulatory DNA sequences. 

Long-term nucleoside analogue therapy is necessary in achieving permanent virologic 

suppression. Potential new treatments explore new mechanisms of action, including the 

inhibition of hepatitis B surface antigen release, targeting anti-fibrotic mechanism, and 

immunomodulation through novel interferons and therapeutic vaccines. The clinical 

application of potential new vaccines and therapies would enhance the prevention of 

HBV infection and treatment of CHB. 

(126 words) 
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Introduction 

 It is estimated that 2 billion people worldwide have been exposed to the hepatitis 

B virus (HBV) (1). Four hundred million patients are infected with chronic hepatitis B 

(CHB), with an estimated 600,000 deaths annually from its associated complications 

(2). The last few decades has witnessed remarkable progress in the treatment and 

prevention of CHB. The introduction of universal HBV vaccination has markedly 

reduced the prevalence of HBV infection (3, 4). Recent years have also seen a drastic 

increase in therapeutic options in CHB. Permanent virologic suppression, and 

sometimes even hepatitis B surface antigen (HBsAg) seroclearance, can now be 

achieved (5). Nevertheless, both vaccination and treatment in CHB still have their  

limitations. Future potential improvements in vaccination and therapy will be discussed 

thoroughly in this review. 

 

Vaccination – current standards and limitations 

 The first HBV vaccines being introduced in 1982 were plasma-derived, and with 

improvements in recombinant DNA technology, were gradually replaced by 

recombinant-based vaccines (6). Serum antibody to the hepatitis B surface antigen 

(anti-HBs) of ≥ 10 mIU/mL is defined as a protective level. Currently, 162 countries have 

already implemented universal HBV vaccination programs (7), although a World Health 

Organization report in 2006 found actual implementation of vaccination among 

newborns to be only 26 to 36% (8). 

 A study in Taiwan by Ni et al followed up 18,779 vaccinated newborns for 20 

years. They found the rate of HBsAg positivity to be only 1.2% (4). Other Taiwanese 
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studies established the efficacy of universal vaccination in reducing fulminant hepatic 

failure (9, 10) and hepatocellular carcinoma (HCC) (11). Studies in Hong Kong also 

confirmed the efficacy of both plasma-derived and recombinant-based vaccines without 

booster doses up to 22 years of follow-up, with highly effective anamnestic responses in 

patients with low anti-HBs titers i.e. a significant increase in anti-HBs titers indicating 

exposure to HBV without development of HBV infection. (12-15). Studies in Italy and 

Alaska, regions with an intermediate endemicity of CHB, also found universal HBV 

vaccination to achieve a similar efficacy (16, 17). A meta-analysis of 42 separate 

cohorts found the cumulative incidence of HBV breakthrough infection in 

immunocompetent subjects to be 0.7% (18). The occurrence of vaccine-escape HBV 

mutants, initially a concern when discovered (19), was noted to be of limited prevalence, 

probably due to the replicative weakness of the mutant virus (20, 21). 

 Factors associated with failure of the HBV vaccine are listed in Table 1. Identified 

risk factors for vaccine failure among newborns include hepatitis B e antigen (HBeAg)-

positivity and a high viral load in HBsAg-positive mothers (4, 22). In addition, current 

HBV vaccines are noted to be suboptimal among adult populations with impaired 

immunity. Rates of seroprotection are lower with increasing age, obesity, smoking, 

diabetes and renal disease (23-25). In patients with end-stage renal disease (ESRD) 

receiving hemodialysis, response rates could be as low as 50 to 70% (26, 27), 

especially among patients with co-existing hepatitis C infection (28) and poor nutritional 

status (29). Outbreaks of HBV infection were still reported among hemodialysis units in 

developed countries (30). The response rates among patients with human 

immunodeficiency virus (HIV) infection are also lower (31, 32); using additional booster 



6 

 

doses and increasing the vaccine dose in such subjects only attained 1-year response 

rates of 58.8% to 63.0% (33, 34). Other patient groups prone to vaccine failure include 

chronic alcoholics with overt liver disease (35) and recipients of liver (36) and renal (37) 

transplant. 

 Hence, while universal HBV vaccination has a profound impact in the prevention 

of HBV transmission, there are two areas needing improvement: increasing global 

vaccination coverage, and enhancing response rates among the suboptimal response 

groups mentioned above. The first aspect requires international collaborative efforts by 

governments of endemic countries, the World Health Organization and different non-

profit organizations. The following sections will concentrate on the second aspect. 

 

Enhancing vaccination response 

 A recent study analyzed data from 2,356 children born to HBsAg-positive 

mothers in Taiwan found children born to HBeAg-positive mothers to have a higher 

prevalence of HBsAg-positivity compared to children born to HBeAg-negative mothers 

(9.26% and 0.23% respectively, p <0.001) (22). The authors suggested utilizing serum 

HBeAg in addition to HBsAg as screening tools to identify vaccinated children at high 

risk of developing CHB. Prospective trials would be needed to justify its cost-

effectiveness.  

Nucleoside analogue therapy in HBeAg-positive mothers has been shown to 

reduce perinatal transmission. In two recent studies, telbivudine treatment in HBeAg-

positive mothers, starting in the second or third trimester, was associated with a 

significant reduction in rates of perinatal transmission up to 28 weeks after delivery (38, 
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39). There are also studies showing the administration of hepatitis B immunoglobulin 

(HBIG) to either HBsAg-positive mothers (40) or newborns (two-dose injections) (41) is 

able to improve vaccine responsiveness. Long-term follow-up results of the above 

studies would be needed to ascertain the efficacy of both antenatal nucleoside 

analogue therapy and perinatal HBIG administration. 

Various strategies have also been employed to improve vaccine responsiveness 

in high-risk adults (Table 1). Intradermal vaccination, when given to patients with ESRD, 

is able to achieve higher rates of anti-HBs positivity (42, 43), although an improved 

response was not reproduced among patients with HIV infection (44, 45). Increasing the 

vaccine dosage among patients with ESRD can also improve vaccine response (46). 

Other suggested approaches include improving the vaccine adjuvant formula (47, 48), 

using plasmid DNA vaccines that encode HBsAg (49, 50), and administrating HBsAg-

pulsed blood dendritic cells (51). Many such suggested methods are still undergoing in 

animal studies. 

There is currently one promising vaccine that has already undergone multiple 

clinical trials – the hepatitis B surface antigen-1018 ISS adjuvant containing vaccine 

(HELIPSAV). 

 

Hepatitis B surface antigen-1018 ISS adjuvant containing vaccine (HELIPSAV) 

Immunostimulatory DNA sequences (ISS) are unmethylated cytosine 

phosphoguanosine (CpG) motifs that are found in various viruses, including HBV, but 

are rare in mammalian cells (52). These CpG motifs are recognized by toll-like receptor 

9, resulting in the preferential activation of type 1 (TH1) immune response that 
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subsequently amplifies adaptive immune responses (53). Several cytokines, including 

interleukin-12 and type I interferon (IFN) secreted by dendritic cells, are involved in this 

immune process (54). As a result, synthetic ISS are attractive vaccine adjuvants that 

stimulate specific pathways critical to immune response regulation, resulting in minimal 

toxicity (55).  

The ISS contained in HELIPSAV is a 22-mer phosphorothioate oligonucleotide, 

which is mixed with 20 µg of yeast (56). Excellent protective anti-HBs titers and good 

tolerability were noted in initials phase I studies (57). This was followed by a phase II 

comparative study using a licensed recombinant HBV vaccine among 99 healthy 

subjects aged 18 to 28 years. A greater proportion of HELIPSAV-treated recipients had 

a seroprotective anti-HBs levels at week 28 after when compared to those given 

recombinant HBV vaccine (100% and 64% respectively, p <0.001). HELIPSAV-treated 

group also had higher geometric mean titers than the recombinant vaccination group 

(2,074 versus 32 mIU/mL) (58).  

 The phase III results of HELIPSAV have been recently published (59). The first 

study, involving 2,415 healthy subjects aged 11 to 55 compared two doses of 

HELIPSAV versus three doses of recombinant HBV vaccination. HELIPSAV was able to 

achieve a higher seroprotective rates when compared to recombinant vaccine at the 

primary immunogenicity endpoint (95.1% and 81.1% respectively). Another phase III 

study investigated the efficacy of HELIPSAV in 420 healthy subjects aged 40 to 70 

years and seronegative to HBsAg, anti-HBs and antibody to the hepatitis B core antigen 

(anti-HBc) (60). The seroprotective rate of HELIPSAV was significantly higher at week 

50 when compared to recombinant vaccine (100% versus 68.6%). A third study 
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involving 2,449 participants aged 40-70 found HELIPSAV to achieve a seroprotective 

rates of 94.6%, 94.7% and 95.6% in males, obese subjects and smokers respectively. 

The seroprotective rates in the recombinant vaccine group among these three subject 

populations were only 67.8%, 65.4% and 65.3% respectively (61). In all studies, 

HELIPSAV was well-tolerated with similar safety profiles when compared to the 

recombinant vaccine.  

 The report of a case of Wegener’s granulomatosis 171 days after the second 

dose of HELIPSAV  (59) led to the vaccine being put on hold by the United States Food 

and Drug Administration in 2008 (62). However, clinical hold on HELIPSAV has been 

lifted since September 2009 after the provision of additional safety data by the 

manufacturing pharmaceutical company. 

 

Other vaccine adjuvants 

Other clinical trials in human subjects are summarized in Table 2. CPG 7909 is 

another CpG motif-based HBV vaccine adjuvant that has been found effective in phase 

I studies (63) and phase II studies involving HIV-infected subjects (64). Vaccine 

adjuvants systems that stimulate both cellular and antibody immune responses have 

been recently proven to be effective against malaria (65), and a similar system known 

as AS02, using monophosphoryl lipid A and Quillaja saponaria as vaccine adjuvants is 

also effective against HBV (66) , including in patients with renal insufficiency (67). There 

are also oral  (49) and intranasal (68) HBV vaccines undergoing clinical evaluation.  
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Information on HBV vaccines still in the phase of animal studies has been 

described in detail elsewhere (69, 70). Therapeutic vaccines aimed at CHB treatment 

would be described in a subsequent section. 

 

Treatment of chronic hepatitis B – current standards 

 Treatment of CHB has been revolutionized in the last two decades. Sustained 

and profound virologic suppression is now possible with continuous nucleoside 

analogue therapy (71, 72). These can result in a reduction in the incidence of cirrhotic 

complications and HCC (73, 74), as well as in reversing biopsy-proven cirrhosis (75). 

Certain CHB populations also respond satisfactorily to pegylated IFN therapy (76). 

Despite the favorable responses achieved with current available therapy, there 

are definitely aspects for improvement. Pegylated IFN therapy is still limited by its 

suboptimal response rate in certain CHB populations and its side-effect profile (77). 

Concerning nucleoside analogue therapy, HBsAg seroclearance, the ultimate treatment 

endpoint, is rarely seen (78). A prolonged treatment duration with potent nucleoside 

analogue therapy is needed in order to achieve histologic regression of fibrosis or 

cirrhosis (75). The reduction in the incidence of HCC, though significant, is not absolute 

(79). Lastly, no treatment can totally eradicate HBV in infected individuals. This ultimate 

objective may not be achievable since HBV forms highly stable covalently closed 

circular DNA (cccDNA) in the hepatocyte nuclei, as well as integrates into the host 

genome from the early stage of the infection. 

An exhaustive summary of novel anti-HBV drugs undergoing human and animal 

trials can be found elsewhere (80). This review concentrates on therapies with the 
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potential to be approved for widespread use in the foreseeable future. These include 

novel nucleoside analogues, HBsAg release inhibitors, novel IFNs, anti-fibrotic agents 

and therapeutic vaccines (Table 3). 

 

Novel reverse transcriptase inhibitors 

 Given the established efficacy of nucleos(t)ide analogues in controlling CHB 

infection, there are several novel drugs that inhibit the reverse transcriptase involved in 

HBV DNA replication for both wild-type and drug-resistant HBV. These include besifovir 

and lagociclovir. 

 

Besifovir (LB-80380) 

 Besifovir is an acyclic nucleotide phosphonate with its chemical structure similar 

to that of adefovir and tenofovir (81). It is a prodrug which is converted to LB-80331 

through deacetylation in both the liver and intestine, then further oxidized to LB-80317, 

the active metabolite with antiviral effect towards HBV (Figure 1). LB-80317, unlike the 

prodrugs of adefovir and tenofovir, uses guanine instead of adenine as its base moiety, 

which contributes to an improved drug efficacy due to the lower intracellular 

concentrations of potentially competing guanine nucleotides compared to adenine 

nucleotides (82). Preclinical studies have found besifovir to show potent antiviral 

efficacy against both wild-type and drug-resistant HBV, with little reduction in 

mitochondrial DNA or lactic acid accumulation. Animal studies also found besifovir , 

when used in a similar dose as adefovir, to be 45 times less nephrotoxic (81).  
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A randomized placebo-controlled phase Ib dose escalation study of besifovir  

was performed in 29 Asian HBeAg-positive CHB patients for 4 weeks with a 12-week 

follow-up period (83).  The maximum median HBV DNA reductions were 3.05, 4.20, 

3.67 and 3.68 log copies/mL for doses 30, 60, 120 and 240 mg respectively. All 

reductions in viral loads were significantly greater when compared to placebo (p = 

0.011).  

A phase II, open-label, multicenter, dose escalation study was performed in 65 

lamivudine-resistant HBeAg-positive CHB patients (84). Besifovir was given together 

with lamivudine for 4 weeks, then followed by 8 weeks of besifovir monotherapy, 

subsequently followed by 24 weeks of adefovir. The mean HBV DNA reductions from 

baseline were 2.81, 3.21, 3.92, 4.16 and 4.00 log copies/mL for doses 30, 60, 90, 150 

and 240 mg respectively. The degree of HBV DNA suppression at week 12 was dose-

dependent (p <0.001). The drug was also well-tolerated with no drug-related adverse 

events reported. Another phase IIb multicenter study compared the efficacy and safety 

of besifovir with entecavir up to 48 weeks (85, 86). One hundred and fifteen CHB 

patients were randomized in a ratio of 1:1:1 to receive either besifovir 90 mg, besifovir 

150 mg or entecavir 0.5 mg daily. After 48 weeks, besifovir 90 mg and 150 mg were 

found to have similar rates of virologic suppression when compared with entecavir 

(67.7%, 81.8% and 80.0% respectively achieving HBV DNA <60 IU/mL, p >0.05). Rates 

of HBeAg seroconversion were also comparable (21.1%, 16.7% and 14.3% 

respectively, p >0.05). Full sequencing of the HBV polymerase region during follow-up 

did not detect any resistant mutations. Both doses of besifovir were significantly 
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associated with the lowering of L-carnitine levels, which were normalized in all patients 

with carnitine replacement. No other drug-related adverse events were reported. 

With its high potency, besifovir may find its place in the future as a third first-line 

agent, both for treatment-naïve as well as for lamivudine-resistant patients. 

 

Lagociclovir 

 Lagociclovir valactate (also known as MIV-210) is a prodrug of 3’-fluoro-2’, 3’-

dideoxyguanosine (FLG). Animal studies have found FLG to be a potent inhibitor of 

hepadnavirueses, which includes HBV (87), and is active against lamivudine-, adefovir- 

and entecavir-resistant HBV (88).  

A woodchuck model involving different doses of lagociclovir found serum HBV 

DNA to decrease by more than 7 log after 10 weeks of therapy. There was also a 2 log 

decrease in intrahepatic covalently closed circular DNA (cccDNA). The reduction in 

HBV DNA, when compared to previous woodchuck models, was comparable to 

entecavir and better than lamivudine or adefovir (89). Phase I and II clinical studies are 

currently ongoing in Europe and Asia (80). 

 

HBsAg release inhibitors  

 All currently available oral anti-HBV medication are nucleos(t)ide analogues, 

which target the activity of reverse transcriptase in viral replication. There has been 

research aimed at developing novel drugs targeting other areas in the biology of HBV. 

The inhibition of HBsAg release is one such potential target, especially since the 
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therapeutic reduction of serum HBsAg is associated with a corresponding decline in 

intrahepatic cccDNA (90).  

 The HepG2 and HepA2 cell lines transfected by HBV have been applied as in 

vitro models in evaluating the efficacy of novel anti-HBV drugs. A study reported 

artesunate-containing herbal extracts were able to effectively inhibit serum HBsAg 

release in HepG2 cells (91). Serum HBsAg production was also similarly suppressed by 

pyranocoumarin analogues in HepA2 cells based on extracts isolated from the 

medicinal plant Clausena excavate (92). An aromatically substituted tetrahydro-

tetrazolo-(1, 5-a)-pyrimidine known as HBF-0259 was able to suppress HBsAg 

production in HepG2 cells without affecting HBeAg or HBV DNA synthesis (93). A 

chemically improved version of HBF-0259 was able to achieve potent HBsAg inhibition 

in HBV-transgenic mice and was effective against both wild-type and drug-resistant 

HBV. No signs of toxicity through serum chemistry analysis were noted (94). 

 

REP 9AC 

 REP 9AC is a nucleic acid-based amphipathic polymer, which belongs to a new 

class of antiviral compounds based on the sequence-independent activity of 

phosphorothioated oligonucleotides. Similar amphipathic molecules have been found to 

exhibit potent antiviral activity against human immunodeficiency virus (HIV) (95), 

hepatitis C virus (96) and cytomegalovirus (97). REP 9AC facilities innate immunity 

against HBV by inhibiting release of subviral particles, including HBsAg, from infected 

hepatocytes. Both HBsAg and HBeAg have been reported to abrogate the toll-like 
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receptor induced innate response against HBV, resulting in the persistence of HBV 

infection (98). 

 Phase I/II studies of REP 9AC are currently ongoing. Interim reports found the 

intravenous infusion of REP 9AC resulted in >99.5% reduction in HBsAg in 7 of 8 

patients within 7 days to 32 weeks of treatment, with a corresponding reduction in 

serum HBV DNA also noted. After stopping therapy, 3 patients maintained serum HBV 

DNA <500 copies/mL and HBsAg <10 IU/mL, while the other patients had >90% 

reduction in HBsAg and 2 to 7 log reductions in HBV DNA (99, 100). These preliminary 

results indicate HBsAg release inhibitor could become an important new tool in the 

control of CHB in the future. 

 

Interferon-lambda (IFN-λ) 

 IFN-based therapy in CHB, while offering the advantage of a finite duration of 

therapy and the slightly higher rate of HBsAg seroclearance, is associated with high 

rates of virologic rebound after treatment cessation and an unfavorable side-effect 

profile (101). The multiple side-effects seen are related to the abundant IFN-α receptor 

distributed throughout the whole human body. IFN-λ (Figure 2), discovered in 2003 

(102), induces antiviral response via a pathway similar to IFN-α and -β. IFN-λ receptors, 

although expressed in high amounts in hepatocytes(103), are not found in other human 

cells including fibroblasts, monocytes, adipocytes or primary central nervous system 

cells, and is thus associated with less systemic side-effects when administered (104, 

105). 
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 IFN-λ, despite its molecular difference, shares similar biological characteristics 

with IFN-α and –β. The stimulation of IFN-λ, similar to IFN-α and –β, involves toll-like 

receptors (102, 106). All three IFNs activate IFN-stimulated regulatory factor 3 and 

induces the expression of genes containing IFN-stimulated response elements (106). 

Nevertheless, IFN-λ does not bind to the IFN-α receptor complex, but triggers its cellular 

activity through a receptor consisting of two subunits: an interleukin-10 receptor and an 

IFN-λ receptor 1 (107). 

IFN-α inhibits HBV replication by preventing the assembly of viral RNA-

containing capsids in the cytoplasm (108). IFN-λ operates through a similar molecular 

mechanism as demonstrated by a study using murine hepatocytes (107). Subsequent 

studies using human hepatocytes also demonstrated a similar efficacy in inhibiting HBV 

replication (109, 110). 

Phase I and II studies in CHB patients are currently ongoing. From published 

data on pegylated IFN-λ in chonic hepatitis C patients, IFN-λ was well-tolerated with 

minimal adverse effects (111). The efficacy of IFN-λ was reduced in chronic hepatitis C 

patients with prior IFN-α treatment (105)  Its effect against HBV will have to await the 

results of current clinical trials. 

  

 

FG-3019 – novel antifibrotic agent 

Hepatic fibrogenesis is a common pathway of liver damage seen in many chronic 

liver diseases, including CHB. The development of anti-fibrotic agents aimed at 

regressing liver fibrosis has thus aroused great interest. Fibrogenic mechanisms are 
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dependent on the interplay of many pro- and anti-fibrotic cytokines, of which 

transforming growth factor beta (TGF-β) has been viewed as the ―master‖ cytokine 

crucial for the advancement of fibrosis (112). Important regulators of these cytokines are 

the connective tissue growth factors (CTGFs). Initially discovered in 1991 in the 

conditioned medium of human umbilical vein endothelial cells (113),  CTGF consists of 

four domains (Figure 3), and up-regulates the majority of pro-fibrotic cytokines, including 

TGF-β, hence promoting hepatic fibrosis (114). CTGF expression has been noted in 

hepatic stellate cells (HSCs), the main producers of extracellular matrix proteins related 

to fibrosis, in both experimental models and human patients (115, 116). Hepatocytes 

infected by HBV are also noted to have increased CTGF and TGF-β up-regulation 

(117). Fibrogenesis is likely triggered by the X protein of HBV, with human and rat 

HSCs exposed to the X protein showing an increased expression of CTGF, TGF-beta 

and other fibrogenic cytokines (118). 

FG-3019 is an anti-CTGF monoclonal antibody that is designed to inhibit to 

inhibit TGF-β related fibrosis. The second domain of CTGF, which is homologous to the 

von Willebrand factor type C repeat, is the binding site of FG-301 (Figure 3). FG-3019 

has the potential to be used in multiple disease entities in which fibrogenesis is a major 

pathophysiological element, including pulmonary fibrosis, pancreatic cancer, kidney 

disease and liver fibrosis. Animal studies have found FG-3019 able to improve 

histologic signs of liver fibrosis by reducing the accumulation of extracellular matrix in 

the liver and reduce the number of activated HSCs  (119). Hydroxyproline:proline 

(Hyp:Pro) ratios, which quantitatively scores organ fibrosis by measuring the collagen 

content relative to total organ protein, are increased by the co-administration of CTGF 
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and TG-Fβ. Hyp:Pro ratios are however significantly reduced in the liver through the 

administration of FG-3019 (120).  

Phase I and II studies are currently ongoing in South East Asia, investigating the 

effect of FG-3019 or placebo with entecavir in CHB. FG-3019 is well-tolerated with no 

drug-related adverse effects, as shown in clinical trials involving pancreatic cancer and 

diabetic kidney disease (121, 122). 

   

Therapeutic vaccines 

 A key element in the chronicity of HBV infection is the weakened innate immunity 

system resulting in the failure of viral clearance. Hepatocytes infected by HBV inhibit 

CD8 T cells, leading to the impairment of T-cell function and reduction of anti-viral 

cytokines (e.g. IFN-γ and tumor necrosis factor-α) (123). Therapeutic vaccination is thus 

a potential strategy which could theoretically eradicate HBV by strengthening the 

patient’s immune response (124), although the results of such trials have not been 

satisfactory.  

 A double-blind placebo controlled phase II trial used a therapeutic vaccine 

containing HBsAg–anti-HBs immune complexes in HBeAg-positive CHB. Although 

increased rates of HBeAg seroconversion were seen in the therapeutic vaccine arm, 

there was no difference in the rates of virologic suppression (125). Moderate levels of 

serum HBV DNA and HBsAg levels were still seen 24 weeks post-treatment (126). DNA 

vaccines are gaining in popularity given their ability to induce both humoral and cellular 

immune responses. Two phase I studies investigated therapeutic plasmid DNA 

vaccines based on recombinant HBsAg proteins, which, although well-tolerated and 



19 

 

immunologically effective, did not result in significant HBV DNA suppression (127, 128). 

Another study found combining a DNA vaccine containing recombinant interleukin-12 

with lamivudine did not improve rates of virologic suppression (129). DNA vaccines also 

fail to maintain virologic remission after cessation of nucleoside analogue therapy (130).  

 One promising therapeutic vaccine currently undergoing clinical trials is DV-601. 

This vaccine comprises of recombinant HBsAg and hepatitis B core antigen (HBcAg), 

and is engineered to stimulate a broad spectrum of T cells. In a phase I dose-escalation 

study, 14 CHB patients were started on concurrent entecavir and DV-601. A preliminary 

analysis showed all patients to have substantial reductions in both serum HBV DNA and 

HBsAg titers; HBeAg titers were also reduced in HBeAg-positive patients. Anti-HBs and 

antibody to the hepatitis B e antigen (anti-HBe) developed in higher dose groups. The 

vaccine was also well-tolerated (131). 

 The problem with therapeutic vaccines is that most CHB patients, especially 

those from Asia, Africa and certain Mediterranean countries, have been exposed to the 

virus since early childhood when the immune system is not yet fully matured. These 

carriers have also been exposed to large amounts of HBsAg for long periods of time. 

With the virus forming cccDNA inside the hepatocyte nuclei as well as viral integration 

into the host genome, CHB patients might not mount a satisfactory immune response to 

therapeutic vaccination.  

 

Future directions 

 CHB is now both preventable and treatable due to the remarkable advances 

achieved in the last three decades. Yet, eliminating and eradicating HBV totally remains 
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difficult. In the era of universal immunization, HBV vaccination can be further improved 

in three areas: increasing global coverage, recognizing HBsAg-positive mothers with 

increased risk of mother-to-infant transmission, and improving responsiveness among 

high-risk individuals. The use of nucleoside analogues in high-risk HBsAg-positive 

mothers, while effective, requires long-term data of affected infants for validation, 

especially if universal implementation is planned. HELIPSAV can achieve high 

seroprotective rates in hyporesponsive individuals, and its future global availability 

would be crucial in the prevention of HBV among high-risk subjects. 

 Concerning CHB treatment, long-term nucleoside analogue therapy is needed to 

maintain permanent virologic suppression. Potential new therapies explore new 

methods of HBV control, including inhibiting HBsAg release, improving 

immunomodulation and targeting mechanisms of fibrosis. Different mechanisms of 

action could signify the potential for combination therapies in the future. Yet it is still 

uncertain if these methods could achieve HBsAg seroclearance, or more importantly, 

reduce and eradicate HBV cccDNA from infected hepatocytes. To elevate the aim of 

HBV therapeutics from virologic suppression to eradication, future studies on 

intrahepatic virologic kinetics are needed, with the focus on investigating mechanisms of 

intrahepatic cccDNA decline in patients achieving spontaneous or treatment-related 

HBsAg seroclearance. Until then, long-term nucleoside analogue therapy would remain 

the best treatment option for CHB. 
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Figure legends 

 

Figure 1. The molecular structure of besifovir (LB-80380), and its two metabolites LB-

80331 and LB-80317. 

Figure 2. The molecular structure of interferon-lambda. 

Figure 3. The 4 domains of connective tissue growth factor (CTGF), with the second 

domain being the binding site of FG-3019. 
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Table 1. Factors associated with HBV vaccination failure 

Subjects Factors Methods to improve vaccine 

response 

Newborn HBsAg-positive mothers (especially 

HBeAg-positive) 

 HBsAg / HBeAg 

screening 

 Nucleoside analogue 

therapy for high-risk 

mothers 

 HBIG for high-risk 

mothers / infants 

 Mothers with high viral load 

Adult Increasing age  ISS-based vaccination 

(e.g. HELIPSAV) 

 Intradermal vaccination 

 Increasing vaccination 

dose 

 Improving vaccine 

adjuvant formula 

 Using plasmid DNA 

vaccines 

 Using HBsAg-pulsed 

dendritic cells 

 Obesity 

 Smoking 

 Diabetes 

 End-stage renal disease 

 HIV infection 

 Alcoholics with overt liver disease 

 Recipients of liver / kidney 

transplantation 

HBV, hepatitis B virus; HBsAg, hepatitis B surface antigen; HBeAg, hepatitis B e 

antigen; HBIG, hepatitis B immunoglobulin; ISS, immunostimulatory DNA sequences; 

HIV, human immunodeficiency virus. 

Table



Table 2. Promising HBV vaccine adjuvants undergoing clinical trials in human subjects 

  Stage of 

research 

Efficacy 

HELIPSAV Immunostimulatory 

CpG 

Phase III Effective in normal and 

hyporesponsive subjects 

CPG 7909 Immunostimulatory 

CpG 

Phase II Effective in HIV-infected 

individuals 

AS02 Monophosphoryl lipid 

A and QS 21 

Phase II Effective in patients with 

renal insufficiency 

Plasmid DNA 

pWRG7128 

DNA vaccine taken 

orally 

Phase I Humoral and cell-mediated 

responses induced in 

hyporesponsive subjects 

NASVAC Recombinant HBsAg 

and HBcAg taken 

intranasally 

Phase I Seroprotective up to 90 days 

CpG, cytosine phosphoguanosine; QS, Quillaja saponaria; HBsAg, hepatitis B surface 

antigen; HBcAg, hepatitis B core antigen 



Table 3. Promising therapeutic options for chronic hepatitis B 

 

Drug Category Phase of 

clinical trial 

Preliminary results 

Besifovir Nucleotide 

analogue 

Phase II High rates of virologic 

suppression in both 

treatment-naïve and 

lamivudine-resistant CHB 

Lagociclovir Nucleoside 

analogue 

Phase I Significant reduction in 

cccDNA in woodchuck model 

REP 9AC HBsAg release 

inhibitor 

Phase II Significant serum HBsAg 

reduction 

Interferon-λ Interferon Phase II Inhibit HBV replication in 

animal studies 

FG-3019 Connective tissue 

growth factor 

Phase II Reduces liver fibrosis in 

animal studies 

DV-601 Therapeutic 

vaccine 

Phase I Significant reductions in 

serum HBV DNA, HBsAg and 

HBeAg 

 


