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Abstract 

 

We examine the force needed to extend/compress a bio-filament, a key issue in the study 

of cytoskeleton mechanics and polymer physics, by considering both the associated stretching 

and bending deformations.  Specifically, closed form relationships are derived to predict the 

buckling of stiff filaments such as F-actin and microtubules. Our results clearly demonstrate that 

the maximum force a 2D filament can sustain is higher than the Euler buckling load whereas the 

force in a 3D filament is always below it, and hence clarify some of the ambiguities in the 

literature. In addition, analytical expression is also obtained to describe how the extensional 

force increases when a flexible molecule, like DNA, is stretched close to its contour length, 

which has been shown to fit to a variety of experimental data very well. Our theory provides 

important corrections/improvements to several well-known existing models.     

 

Keywords:  Buckling, Bio-filament, Thermal fluctuations, Force-extension relationship 

 

 

1. Introduction  

 

Bio-filaments, such as F-actin and microtubule, are weak chains assembled from discrete protein 

monomers which can be further bundled or crosslinked to form the cytoskeleton or subcellular 

structures like the stress fibers interconnecting different adhesion sites. It is well documented that 

the force generation, presumably by polymerization or due to myosin motors, and load bearing 

capabilities of these filaments are essential to processes like cell migration (Pollard and Borisy, 
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2003) and cytokinesis (Eggert et al., 2006). As such, great attention has been devoted to examine 

how various bio-filaments resist deformation as well as its implications to their physiological 

functions (Fletcher and Mullins, 2010; MacKintosh, 2006). Specifically, it has been found that 

thermal excitation alone is significant enough to perturb the shape of these weak rod-like 

structures (Gittes et al., 1993; Isambert et al., 1995). Buckling of a single filament immersed in a 

thermal reservoir was considered by different researchers (Baczynski et al., 2007; Lee et al., 

2007; Gholami et al., 2006; Li, 2008; Odijk, 1998; Blundell and Terentjev, 2009) and its 

relevance in interpreting the mechanical behaviour of a filament network has also been examined 

(Liu et al., 2008; Chaudhuri et al., 2007).    

 

In contrast to stiff filaments like short F-actin or microtubules, many long chain molecules such 

as DNA can only support tensile load. The mechanics involved in stretching a flexible molecule 

is best summarized by the so-called force-extension relationship, a focal point in the study of 

polymer physics. Historically, such relationship was first derived from the freely joint chain (FJC) 

picture, where the tensile force, F, needed to stretch a molecule close to its contour length, 𝐿, is 

predicted to diverge as 𝐹 ∝ 1/𝜀. Here  𝜀 = (𝐿 − 𝐿′)/𝐿 with 𝐿′ being the actual end-to-end 

distance of the chain under stretch.  However, experiments conducted on DNAs (Smith et al., 

1992) suggested that this force is actually proportional to 1/𝜀2, which lead to the theory by 

Marko and Siggia (1995) based  on the worm-like-chain (WLC)  description where the bending 

of the molecule was taken into account. Different force-extension relationships listed above, as 

well as others not mentioned here, provide the basis for explaining and predicting the mechanical 

response of various polymer materials, like rubber (Arruda and Boyce, 1993) and biological gels 

(Gardel et al., 2004; Storm et al., 2005), as well as analyzing the enforced unfolding of proteins 

(Su and Purohit, 2009). One thing needs to be pointed out is that the filament is assumed to be 

inextensible in both the FJC and WLC formulations. However, numerous observations (Wang et 

al., 1997; Smith et al., 1996; Liu and Pollack, 2002) have convincingly demonstrated that 

molecules like DNA or long F-actin can actually be stretched beyond their contour lengths, 

suggesting that a more accurate model should take the axial deformation of filament into account. 

Indeed, an early attempt to address this issue has been made by Odijk (1995).  
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Despite all these efforts, several fundamental questions remain unsettled. For example, some 

studies (Baczynski et al., 2007; Lee et al., 2007) have suggested that, in 2D, thermal excitation 

actually strengthens a filament under compression, that is, the maximum force the filament can 

sustain is higher than the Euler buckling load. On the other hand, it has also been reported that 

filaments should be weakened by temperature effect in 3D (Odijk, 1998; Blundell and Terentjev, 

2009). However, a unified theory capable of explaining whether and why, if indeed, filaments 

behave differently in 2D and 3D is still lacking. In addition, although great attention has been 

paid to how the force increases when a filament is stretched close to its contour length, a rigorous 

analysis is not available. To address these issues, we revisit the problem of a filament under 

compression/stretching by considering both bending and stretching of the chain. We show that 

indeed the buckling behaviour of a filament in 2D is different from that in 3D. In addition, we 

further demonstrate that some existing force-extension relationships, such as that by Marko and 

Siggia (1995) or by Odijk (1995), are correct from the point of view of scaling but tend to 

considerably over-predict the force.    

 

 

2. Theory  

 

Consider a simply supported filament, with contour length L and both ends located on the x axis, 

is compressed through a distance 𝛿 = 𝐿 − 𝐿′ as shown in Fig. 1.  Notice that, here we consider 

the problem in a displacement controlled setup, that is, the compression distance 𝛿 is prescribed, 

so that the nominal compressive strain is 

 

                                                               𝜀 = 𝛿
𝐿
.                                                           (1) 

 

Assume that the stretching and bending rigidity of the filament are 𝜅𝑠  and 𝜅𝑏 respectively. We 

proceed by normalizing the physical parameters as  𝜅̃𝑠 = 𝜅𝑠𝐿
𝑘𝐵𝑇

, 𝜅̃𝑏 = 𝜅𝑏
𝑘𝐵𝑇𝐿

, 𝑈� = 𝑈
𝑘𝐵𝑇

, 𝐹� = 𝐹𝐿
𝑘𝐵𝑇

,

𝐿′� = 𝐿′

𝐿
= 1 − 𝜀, where 𝑘𝐵𝑇 is the thermal energy, F is the force applied at both ends of the 

filament and U is the elastic energy stored. We use 𝑢(𝑥) and 𝑣(𝑥) to denote filament deflections 

(defined in the deformed configuration and normalized by L) in the y and z directions, 



-4- 
 

respectively.  If we restrict our attention to cases where the deflections are small, then the total 

elastic energy induced by the deformation can be calculated as 

 
 
 

Figure 1. Schematic plot of a filament under compression. 

 

                                      𝑈� = 1
2
𝜅̃𝑠𝜀𝑟2 + 1

2
𝜅̃𝑏 ∫ ��𝜕

2𝑢
𝜕𝑥2

�
2

+ �𝜕
2𝑣

𝜕𝑥2
�
2
� 𝑑𝑥𝐿′�

0 ,                       (2) 

 

where 𝜀𝑟 = 1 − ∫ �1 + [𝑢′(𝑥)]2 + [𝑣′(𝑥)]2𝐿′�
0 𝑑𝑥  is the axial strain in the filament and, like 

other length variables, 𝑥 has been normalized by L here. Notice that, for a simply supported 

filament, the deflection profile can be expressed as 

 

                         𝑢(𝑥) = ∑ 𝑎𝑛∞
𝑛=1 sin �𝑛𝜋𝑥

𝐿′�
� ,   𝑣(𝑥) = ∑ 𝑏𝑛∞

𝑛=1 sin �𝑛𝜋𝑥
𝐿′�
� .                 (3) 

 

For small 𝜀, the axial strain can be found as 𝜀𝑟 ≈ 1 − ∫ [1 + [𝑢′(𝑥)]2/2 + [𝑣′(𝑥)]2/2]𝑑𝑥𝐿′�
0 ≈

𝜀 − 𝜋2

4
∑ 𝑛2(𝑎𝑛2 + 𝑏𝑛2)𝑛 , where higher order terms in 𝜀 (or equivalently in 𝑎𝑛2  and 𝑏𝑛2)  have been 

neglected. As such, the total energy stored is 

 

                          𝑈� = 1
2
𝜅̃𝑠 �𝜀 −

𝜋2

4
∑ 𝑛2(𝑎𝑛2 + 𝑏𝑛2)𝑛 �

2
+ 1

4
𝜅̃𝑏𝑛4𝜋4 ∑ (𝑎𝑛2 + 𝑏𝑛2)𝑛 .       (4) 
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In addition to the elastic energy, we also need to take into account the entropy of the system 

when such filament is immersed in a thermal bath. A standard way to achieve this is to analyze 

the so-called free energy which, within the framework of classical statistical mechanics, can be 

calculated as H� = − ln Z, with Z = ∫ …∫ e−U�∞
−∞

∞
−∞ da1 … dandb1 … dbn being the partition 

function of the system (Dill and Bromberg, 2002). Once H� is known, the force needed to be 

applied at both ends of the filament can be determined as 

 

                         𝐹� = 𝑑𝐻�

𝑑𝜀
= 𝜅̃𝑠𝜀 −

π2

4
𝜅̃𝑠

∫ …∫ ∑ 𝑛2�𝑎𝑛2+𝑏𝑛2�𝑛 𝑒−𝑈�∞
−∞

∞
−∞ 𝑑𝑎1…𝑑𝑎𝑛𝑑𝑏1…𝑑𝑏𝑛

∫ …∫ 𝑒−𝑈�∞
−∞

∞
−∞ 𝑑𝑎1…𝑑𝑎𝑛𝑑𝑏1…𝑑𝑏𝑛

 .      (5) 

 

Notice that a positive value of 𝐹� means that the force is compressive. Of course, here it is 

assumed that the filament can deflect in both y and z directions. For a filament confined within a 

plane, i.e. it can only deflect in one direction, the force can be calculated by simply setting all 𝑏𝑖 

to zero in Eq. (4) and dropping integrations over them in Eq. (5). Now, the task that remains is 

the evaluation of the integrals that appear in Eq. (5). 

 

 

3. Results and Discussions  

 

Buckling of stiff filament in 2D 

 

Let’s proceed by neglecting the entropy contribution first. In this case, equilibrium is achieved 

when the total elastic energy 𝑈� (not free energy), defined in Eq. (4), reaches its minimum. As 

such, the set of variables 𝑎𝑛, as functions of 𝜀, must satisfy 𝜕𝑈
�

𝜕𝑎𝑛
= 0. Once the values of 𝑎𝑛 are 

determined, the compressive force acting on the filament can be found as (refer to the Appendix) 

                                               

                                        𝐹�𝑆=0 = 𝑑𝑈�

𝑑𝜀
= �

𝜅̃𝑠𝜀,                     for  𝜀 < 𝜀𝑐0
𝐹�𝑐0 = 𝜅̃𝑏𝜋2,      for  𝜀 ≥ 𝜀𝑐0

�,                         (6) 

 

where 𝜀𝑐0 = 𝜅̃𝑏𝜋2/𝜅̃𝑠 and the subscript “𝑆 = 0” indicates that the force is obtained by neglecting 

any entropy effect. Notice that, in its un-normalized form, the maximum compressive force the 
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filament can sustain is 𝐹𝑐0 = 𝜋2𝜅𝑏
𝐿2

 , identical to the well-known Euler buckling load. Furthermore, 

it can be shown that 𝑎𝑛 = 0 (for all 𝑛) when 𝜀 < 𝜀𝑐0 (see Appendix). Hence, our results 

essentially reduce to predictions from classical stability analysis, that is, filament deflection will 

take place only when the axial force reaches the Euler buckling load whereas the column is 

expected to remain straight when the load level is below this critical value.  

 

Of course, if thermal fluctuations are taken into account then the axial force within filament, as a 

function of the nominal strain 𝜀, will be different from that given in Eq. (6) and must be 

calculated from Eq. (5). Nevertheless, the Euler buckling load  𝐹�𝑐0(= 𝜅̃𝑏𝜋2) and the 

corresponding buckling strain 𝜀𝑐0(= 𝜅̃𝑏𝜋2/𝜅̃𝑠) are expected to set the force and strain scales of 

the problem. It turns out that the normalized force  𝐹�/𝐹�𝑐0  depends only on the normalized strain 

𝜀̃ = 𝜀/𝜀𝑐0 and the parameter 𝛼 = 𝜅̃𝑠𝜀𝑐02  (refer to the Appendix). Specifically, we have found that 

as long as  𝜅̃𝑠𝜀𝑐02 > ~0.5, very accurate results can be obtained by considering the first deflection 

mode only. Notice that 𝜅̃𝑠𝜀𝑐02 = 𝜋4𝜅𝑏
2

𝐿3𝜅𝑠𝑘𝐵𝑇
,  so a relatively large value of 𝛼 corresponds to a short 

(and hence stiff) filament. For example, 𝛼 can be estimated to be around 1 for a 160 nm long F-

actin, whose persistence length and diameter are taken as 10 μm and 8 nm (Boal, 2002), 

respectively. The first mode solution can be found as 

 

  F
�

F�c0
= ε� − 23/4eα(1−ε�)2/4

π√α[α(1−ε�)2]1/4
Γ(3/4) F1 1�−1/4,1/2,−α(1−ε�)2/2�+�2α(1−ε�)2Γ(5/4) F1 1�1/4,3/2,−α(1−ε�)2/2�

I1/4(α(1−ε�)2/4)+I−1/4(α(1−ε�)2/4)     (7) 

 

where Γ is the Gamma function,  1F1 and I stand for the hypergeometric function and the 

modified Bessel function of the first kind respectively. Choosing 𝜅̃𝑠𝜀𝑐02 = 1, the force evolution 

predicted by Eq. (7)  is shown in Fig. 2. Direct calculations by taking two or three modes into 

account have also been conducted and the results were found to be indistinguishable to the one 

mode solution.  
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Figure 2. Force as a function of nominal strain in a 2D or 3D filament. 

 

Form Fig. 2, it is clear that the maximum force a 2D filament can sustain is greater than the Euler 

buckling load. Furthermore, we found that this maximum force, as well as the strain at which this 

maximum is achieved, take the following forms (refer to the Appendix)  

 

                                    𝐹
�𝑚𝑎𝑥
𝐹�𝑐0

= 1 + 0.41827

�2𝜅�𝑠𝜀𝑐02
,    𝜀𝑚𝑎𝑥

𝜀𝑐0
= 1 + 2.8091

�2𝜅�𝑠𝜀𝑐02
.                              (8) 

 

Comparison between predictions from Eq. (8) and numerical results by choosing different 

deflection modes is shown in Fig. 3, which clearly demonstrates that Eq. (8) is very accurate as 

long as κ�sεc02 > 0.5.  Notice that Eq. (8) also implies that the buckling load of a 2D filament 

elevates with √T. In comparison, Baczynski et al. (2007) examined similar problem, without 

considering the extensibility of the filament, and concluded that the buckling force increases 

linearly with temperature.  
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Figure 3. The maximum force, as well as the corresponding strain, as a function of  𝜅̃𝑠𝜀𝑐02 . 

Analytical results are from Eq. (8) while numerical results are obtained by taking into account 

one or two deflection modes. 

 

Buckling of stiff filament in 3D 

 

For a filament in 3D, the one mode solution is 

 

 𝐹�

𝐹�𝑐0
= 1 −�2

𝜋
exp[−𝛼(1−𝜀̃)2/2]

√𝛼erfc��𝛼/2(1−𝜀̃)�
.                                         (9) 

 

𝐹� as a function of strain is shown in Fig. 2 for 𝜅̃𝑠𝜀𝑐02 = 1. An immediate observation from the 

plot, as well as from Eq. (9), is that the force within the filament will always be less than the 

Euler buckling load, in direct contrast to the two dimensional case. Physically, this suggests that 

thermal fluctuations tend to weaken the filament under compression. However, if a filament is 

confined to deform within a plane, then the constraint imposed on the filament will strengthen it 

and furthermore this strengthening will out-weigh the weakening induced by thermal excitations 

which eventually leads to an elevated buckling force in 2D. We must point out that the same 

conclusion, i.e. the maximum force a 3D filament can sustain is lower than the classical Euler 

buckling load, has also been obtained by Odijk (1998) via a harmonic analysis as well as recently 
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by Blundell and Terentjev (2009) via a mean-field approach. However, to the best of our 

knowledge, Eq. (9) is the first exact formula for describing how the force within a 3D filament 

evolves as compression increases. In addition, our theory provides a seamless connection 

between two and three dimensional cases and clearly demonstrates their differences.   

 

 

Stretching of soft filament in 3D 

 

In this section, we shift our attention to the stretching of long and flexible filaments. Since 𝜅̃𝑠𝜀𝑐02  

is expected to be much less than 1 in this case, we have to consider the contributions from higher 

order deflection modes. It turns out that the solution can be expressed as 

 

                                              𝐹
�

𝐹�𝑐0
= 1 − 3

exp[3𝛼(𝜀�−5/2)]∙ℎ(𝛼,𝜀�)−1
,                          (10) 

 

where ℎ(𝛼, 𝜀̃) is a complicated function whose form is given in the Appendix. One quantity we 

can immediately calculate from Eq. (10) is the force at full extension, that is 𝐹�0 = 𝐹�(𝜀 = 0). 

Since the filament is treated as extensible here, 𝐹�0 will be finite, in contrast to predictions from 

the FJC and WLC models. Surprisingly, despite the complexity involved in Eq. (10), we found 

that this force can be well approximated by 

 

                                                         𝐹
�0
𝐹�𝑐0

= − 1.259

�𝜅�𝑠𝜀𝑐02 �2/3 ,                                               (11) 

as shown in Fig. 4. Notice that the negative sign here represents the fact that the force is tensile. 

One thing we want to point out is that in reality, depending on the nature of the bio-molecule, 𝐹�0 

may not be able to reach the level predicted by Eq. (11) due to force-induced filament failure, a 

scenario that has not been considered here. 
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Figure 4. Force at zero strain as a function of 𝜅̃𝑠𝜀𝑐02 . 

 

Comparisons between our predictions and several sets of experiments on DNAs or F-actin are 

shown in Fig. 5. The dsDNA data in Fig. 5(a) is taken from (Wang et al., 1997) with 𝐿 ≈ 1.3 μm 

and 𝜅𝑠 ≈ 1246 pN while the two F-actin data, one with 𝐿 ≈ 11.3 μm, 𝜅𝑠 ≈ 32 nN and the other 

with 𝐿 ≈ 19 μm, 𝜅𝑠 ≈ 35 nN , are from (Liu and Pollack, 2002). If the persistence lengths of 

the DNA and the F-actin are taken to be 50 nm and 8 μm, respectively, then the values of  𝜅̃𝑠𝜀𝑐02  

corresponding to these three sets of data are all of the order of 10−7. The theoretical values were 

arrived at by choosing 𝜅̃𝑠𝜀𝑐02 = 4 × 10−7. Similarly, the three data sets in Fig. 5(b) are from 

(Smith et al., 1992), (Smith et al., 1996) and (Baumann et al., 2000), corresponding to long 

dsDNAs with lengths of 26 μm , 16.4 μm  and 16.5 μm, respectively, and, consequently, values 

of 𝜅̃𝑠𝜀𝑐02  of the order of 10−10. Hence, the theoretical prediction plotted in Fig. 5(b) was based on 

𝜅̃𝑠𝜀𝑐02 = 2 × 10−10. Clearly, our theory is capable of explaining all the data well.  

 

For practical purposes, it might be desirable that a simple force-extension relationship, instead of 

the complicated one shown in Eq. (10), can be derived. In light of Eq. (11), we found that Eq. 

(10) can be well approximated by (see the Appendix for details)  
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                                          (a)                                                                       (b) 

 
Figure 5. Comparison between theory and experimental data. (a)- Theoretical prediction, with 

𝜅̃𝑠𝜀𝑐02 = 4 × 10−7, versus data on short DNA (Wang et al., 1997) and long F-actin (Liu and 

Pollack, 2002);  (b)- Theoretical prediction, with 𝜅̃𝑠𝜀𝑐02 = 2 × 10−10, versus data on long DNAs 

(Smith et al., 1992; Smith et al., 1996; Baumann et al., 2000). Notice that, since 𝐹�0 is negative, 

refer to Eq. (11), a positive value of 𝐹�/𝐹�0 here means that 𝐹� is also negative, i.e. this force is 

tensile.  

 

                                             𝜀
𝜀𝑐0

= 1.412
𝜅�𝑠𝜀𝑐02

� 1
−𝐹�/𝐹�𝑐0

�
1/2

+ 𝐹�

𝐹�𝑐0
,                                          (12) 

 

which has the same scaling form as that proposed in (Odijk, 1995), however the constant, i.e. 

1.412, here  is different from that derived by Odijk (1995). Eq. (12) suggests that, when 𝐹� is 

relatively small (compared to 𝐹�0), we should have the following scaling relation 

 

                                        𝐹
�

𝐹�𝑐0
= −�1.412

𝜅�𝑠𝜀𝑐02
�
2
�𝜀𝑐0
𝜀
�
2

, or  𝐹𝜅𝑏
(𝑘𝐵𝑇)2 = −0.2 1

𝜀2
.                   (13)     

 

To test the validity of Eq. (13), its prediction was compared to the exact solution and the result is 

shown in Fig. 6. Obviously, as expected, Eq. (13) is indeed very accurate when the force is small 

(note that log[1.4122] = 0.3). Eq. (13) also shows that the force will elevate with 1/𝜀2 as the 

filament is stretched close to its contour length, a well-known result previously obtained by 
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Marko and Siggia (1995). However, we must point out that the tensile force predicted here is 

~20%, rather significantly lower than that from the WLC model (Marko and Siggia, 1995). 

Several factors may contribute to such discrepancy, for one thing the axial stretching of filament 

has been considered in our analysis which leads to the appearance of quartic terms of the 

amplitudes of each deflection mode in the energy expression as shown in Eq. (4). In contrast, the 

elastic energy in the WLC formulation contains only quadratic terms of these random variables 

because the bio-polymer is assumed to be inextensible. In addition, undulations of the filament in 

two transverse directions are coupled in our model, refer to Eq. (4), whereas they were 

essentially treated as independent in (Marko and Siggia, 1995).     

 

 
Figure 6. Evolution of filament force with respect to the nominal strain. The solid line represents 

the prediction by Eq. (13) while the symbols correspond to exact solutions obtained from Eq. 

(10). 

 

 

4. Conclusions  

 

In this paper, we present a unified theory for examining the behaviour of filaments under 

stretching as well as compression, an issue of fundamental significance in, for example, 

cytoskeleton mechanics and polymer physics. By considering the stretching and bending of the 
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filament simultaneously, we are able to obtain closed form force-extension relationships 

predicting how stiff filaments buckle as well as how a flexible filament behaves when stretched 

close to its contour length. The main findings of this study are summarized as follows. 

 

• The maximum force a 2D filament can sustain is found to be higher than the Euler 

buckling load which suggests that the filament is strengthened by the constraint imposed. 

In addition, analytical expression of this buckling force, as well as the strain at which this 

maximum load is achieved, has also been derived. 

 

• In comparison, we found that the force in a 3D filament is always lower than the Euler 

buckling load suggesting that thermal fluctuations weaken the filament under 

compression. 

 

• Closed form relationship has been obtained to predict how force increases when a 

flexible filament is close to being fully stretched. The theory proposed here is capable of 

explaining a variety of experimental observations rather well. 

 

• From the point of view of scaling, our theory is consistent with several well-known 

results such as that obtained by Odijk (1995) or by Marko and Siggia (1995). However, 

in comparison with our results, those models seem to over-predict the filament force 

considerably. 

   

We believe that findings obtained here might be important in future investigations on the 

mechanical response of branched actin networks, commonly formed in the leading edge of 

motile cells, which consist of short filaments with lengths in the range of 100 nm − 1 μm 

(Fletcher and Mullins, 2010). Specifically, it has been reported that, when under compression, 

such highly organized network will actually undergo stress softening (Chaudhuri et al., 2007). 

Furthermore, it was found that such a softening stage is completely reversible suggesting that 

buckling of individual F-actin filaments may play an important role there. As such, our results on 

the buckling of stiff bio-polymers in 3d could be very useful in explaining or predicting how 

these branched networks behave. For instance, it might be possible to utilize Eq. (9) or similar 
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relationships obtained under different boundary conditions as input functions, describing the 

behavior of individual filaments, in simulating the bulk response of such actin networks which 

could greatly reduce the computation cost. In addition, recent advances in technology have 

enabled researchers to grow and then manipulate individual bio-filaments confined between two 

coverslips. For example, forces developed by a polymerizing F-actin (Berro et al., 2007) and a 

growing microtubule (Janson and Dogterom, 2004; Kerssemakers et al., 2003) have all been 

estimated by analyzing the two-dimensional buckling of these filaments. It is conceivable that Eq. 

(11) and (12) obtained here, describing the compressive response of stiff bio-polymers in 2d, 

could be used to guide the design as well as interpret the data of similar experiments in the future.  

Finally, the force-extension relationship of  long and flexible filaments derived in this study 

could serve as a building block for future constitutive modelling (Arruda and Boyce, 1993; 

Gardel et al., 2004; Storm et al., 2005; Palmer and Boyce, 2008), as well as numerical simulation 

(Onck et al., 2005; van Dillen et al., 2008; Chen and Shenoy, 2010), of different polymer 

materials where the phenomenon of stress stiffening is thought to be directly linked to the 

elevated force needed to fully stretch a polymer molecule.      
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Appendix 

 

Compressive response of a filament when entropy effect is neglected 

Since the contribution of entropy is neglected here, equilibrium is achieved when the total elastic 

energy 𝑈� defined in (4), reaches its minimum. As such, the set of variables 𝑎𝑛, as functions of 𝜀, 

must satisfy 

 

                                𝜕𝑈
�

𝜕𝑎𝑛
= 𝑎𝑛 �

1
2
𝜅̃𝑏𝑛4𝜋4 + 𝜋2

2
𝑛2𝜅̃𝑠 �−𝜀 + 𝜋2

4
∑ 𝑚2𝑎𝑚2𝑚 �� = 0.                        (A1) 

 

Hence, the only admissible combinations of 𝑎𝑛 are 

                                                𝑎𝑛 = 0, 𝑛 = 1,2,3 …                                                                 (A2a) 

or 

                               �
1
2
𝜅̃𝑏𝑛4𝜋4 + 𝜋2

2
𝑛2𝜅̃𝑠 �−𝜀 + 𝜋2

4
𝑛2𝑎𝑛2� = 0, for arbitrary 𝑛    

𝑎𝑚 = 0,                                                   for  𝑚 ≠ 𝑛
, �                 (A2b) 

 

from which a critical nominal strain level can be identified as 𝜀𝑐0 = 𝜅̃𝑏𝜋2/𝜅̃𝑠. For  𝜀 < 𝜀𝑐0, the 

minimum energy configuration is achieved by 

 

                                            𝑎𝑛 = 0, 𝑛 = 1,2,3 … ;    𝑈� = 1
2
𝜅̃𝑠𝜀2,                                               (A3) 

suggesting that the filament will remain straight if the nominal strain is below 𝜀𝑐0. However, for  

𝜀 ≥ 𝜀𝑐0, minimization of  𝑈� leads to 

                   

                            𝜋
2

4
𝑎12 = 𝜀 − 𝜀𝑐0, 𝑎𝑚 = 0  for  𝑚 > 1;    𝑈� = 𝜅̃𝑏𝜋2(𝜀 − 𝜀𝑐0) + 1

2
𝜅̃𝑠𝜀𝑐02 ,        (A4) 

 

i.e. deflection (or buckling) of filament will take place under such circumstance. At this point, it 

is clear that the compressive force acting on the filament takes the following form 

 

                                              𝐹�𝑆=0 = 𝑑𝑈�

𝑑𝜀
= �

𝜅̃𝑠𝜀,                     for  𝜀 < 𝜀𝑐0
𝐹�𝑐0 = 𝜅̃𝑏𝜋2,      for  𝜀 ≥ 𝜀𝑐0

�,                                   (A5) 
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where the subscript “𝑆 = 0” indicates that the force is obtained by neglecting any entropy effect. 

Notice that the maximum compressive force the filament can sustain, in its un-normalized form, 

is 𝐹𝑐0 = 𝜋2𝜅𝑏
𝐿2

 which is exactly the classical Euler buckling load.  

 

Buckling force of a 2D filament immersed in a thermal bath 

If only the first mode is considered, then according to (5) the filament force can be calculated as 

                       𝐹
�

𝐹�𝑐0
= 𝜀

𝜀𝑐0
− 1

𝜀𝑐0

∫ 𝑎2𝑒−𝑈�𝑑𝑎∞
−∞
∫ 𝑒−𝑈�𝑑𝑎∞
−∞

    ,      𝑈� = 𝜅̃𝑠 �
1
2
𝑎4 + (𝜀𝑐0 − 𝜀)𝑎2�.                          (A6) 

The maximum force is achieved when 𝜕𝐹
�

𝜕𝜀
= 0, which leads to 

                        1 − ��∫ 𝑎2𝑒−𝑈�𝑑𝑎∞
−∞ �

′
�∫ 𝑒−𝑈�𝑑𝑎∞
−∞ �−�∫ 𝑎2𝑒−𝑈�𝑑𝑎∞

−∞ ��∫ 𝑒−𝑈�𝑑𝑎∞
−∞ �

′

�∫ 𝑒−𝑈�𝑑𝑎∞
−∞ �

2 �
𝜀=𝜀𝑚𝑎𝑥

= 0.                  (A7) 

Notice that the Taylor series expansion of 𝑒−𝑈�  at 𝜀 = 𝜀𝑐0 is 

                                   𝑒−𝑈� = ∑ [𝜅�𝑠(𝜀−𝜀𝑐0)]𝑛

𝑛!
∞
𝑛=0 𝑎2𝑛𝑒−

𝜅�𝑠
2 𝑎

4
,                                                          (A8) 

from which Eq. (A7) can be rewritten as 

                         1
2

=
∑

𝛤�2𝑛+54 �
𝑛! ��2𝜅�𝑠(𝜀−𝜀𝑐0)�

𝑛∞
𝑛=0

∑
𝛤�2𝑛+14 �

𝑛! ��2𝜅�𝑠(𝜀−𝜀𝑐0)�
𝑛∞

𝑛=0

− ��
∑

𝛤�2𝑛+34 �
𝑛! ��2𝜅�𝑠(𝜀−𝜀𝑐0)�

𝑛∞
𝑛=0

∑
𝛤�2𝑛+14 �

𝑛! ��2𝜅�𝑠(𝜀−𝜀𝑐0)�
𝑛∞

𝑛=0

�

2

�

𝜀=𝜀𝑚𝑎𝑥

.                 (A9) 

This equation can be generalized as 

                                 
∑

𝛤�2𝑛+54 �
𝑛! 𝑥𝑛∞

𝑛=0

∑
𝛤�2𝑛+14 �

𝑛! 𝑥𝑛∞
𝑛=0

− �
∑

𝛤�2𝑛+34 �
𝑛! 𝑥𝑛∞

𝑛=0

∑
𝛤�2𝑛+14 �

𝑛! 𝑥𝑛∞
𝑛=0

�

2

= 1
2
,                                                      (A10) 

which has multiple solutions with the smallest one being 𝑥 = 2.80911. Therefore (A9) can be 

solved by 

                                                       𝜀𝑚𝑎𝑥
𝜀𝑐0

= 1 + 2.80911

�2𝜅�𝑠𝜀𝑐02
.                                                             (A11) 
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By substituting (A11) into (A6), the buckling load can be obtained as 

                                      𝐹
�𝑚𝑎𝑥
𝐹�𝑐0

= 𝜀𝑚𝑎𝑥
𝜀𝑐0

− 1
𝜀𝑐0
� 2
𝜅�𝑠

∑
𝛤�2𝑛+34 �

𝑛! 2.80911𝑛∞
𝑛=0

∑
𝛤�2𝑛+14 �

𝑛! 2.80911𝑛∞
𝑛=0

,                                            (A12) 

which can be further reduced to 

                                                         𝐹
�𝑚𝑎𝑥
𝐹�𝑐0

= 1 + 0.41827

�2𝜅�𝑠𝜀𝑐02
 .                                                          (A13) 

 

Filament force in 3D 

Let 𝑟𝑛2 = π2

4
𝑛2(𝑎𝑛2 + 𝑏𝑛2), we can convert the integrals in (5) into polar coordinates. Next, 

replacing 𝑟𝑛2  with 𝑥𝑛 leads to 

 

    𝐹
�

𝐹�𝑐0
= 𝜀

𝜀𝑐0
− 1

𝜀𝑐0

∫ …∫ ∑ 𝑥𝑛𝑒−𝑈
�

𝑛 𝑑𝑥1…∞
0 𝑑𝑥𝑛

∞
0
∫ …∫ 𝑒−𝑈�𝑑𝑥1…∞

0 𝑑𝑥𝑛
∞
0

,       𝑈� = 𝜅̃𝑠 �
1
2

(∑ 𝑥𝑛𝑛 )2 + 𝜀𝑐0 ∑ 𝑛2𝑥𝑛𝑛 − 𝜀 ∑ 𝑥𝑛𝑛 �.  (A14) 

 

We proceed by making another transformation of variables as 𝑦1 = ∑ 𝑥𝑛𝑛
1 , 𝑦2 = 𝑥2, …, 𝑦𝑛 = 𝑥𝑛. 

As a result, integration over 𝑦1 can be carried out exactly and the force becomes 

          𝐹
�

𝐹�𝑐0
= 1 −�2

𝜋
𝑒
−𝜅�𝑠(𝜀−𝜀𝑐0)2

2

�𝜅�𝑠𝜀𝑐02

∫ …∫ 𝑒
−𝜅�𝑠�

1
2�∑ 𝑦𝑛

𝑛
2 �

2
−(𝜀−𝜀𝑐0)∑ 𝑦𝑛

𝑛
2 +𝜀𝑐0 ∑ �𝑛2−1�𝑦𝑛

𝑛
2 �

𝑑𝑦2…∞
0 𝑑𝑦𝑛

∞
0

∫ …∫ erfc��𝜅�𝑠2 �∑ 𝑦𝑛𝑛
2 −(𝜀−𝜀𝑐0)��𝑒−𝜅�𝑠𝜀𝑐0 ∑ �𝑛2−1�𝑦𝑛𝑛

2 𝑑𝑦2…∞
0 𝑑𝑦𝑛

∞
0

,              (A15) 

from which the one mode solution can be found as 

 

                                       𝐹
�

𝐹�𝑐0
= 1 −�2

𝜋
𝑒
−𝜅�𝑠(𝜀−𝜀𝑐0)2

2

�𝜅�𝑠𝜀𝑐02

1

erfc�−�𝜅�𝑠2 (𝜀−𝜀𝑐0)�
.                                           (A16) 

Similarly, let  𝑧2 = ∑ 𝑦𝑛𝑛
2 , 𝑧3 = 𝑦3, …, 𝑧𝑛 = 𝑦𝑛, (A15) can be further reduced to     
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   𝐹
�
𝐹�𝑐0

= 1 − 

3𝑒
9
2𝜅�𝑠𝜀𝑐0

2
∫ …∫ erfc��𝜅�𝑠2 �∑ 𝑧𝑛𝑛

3 −(𝜀−4𝜀𝑐0)��exp�−𝜅�𝑠𝜀𝑐0 ∑ �𝑛2−4�𝑧𝑛𝑛
3 �𝑑𝑧3…∞

0 𝑑𝑧𝑛
∞
0

∫ …∫ �exp�3𝜅�𝑠𝜀𝑐0�𝜀−𝜀𝑐0−∑ 𝑧𝑛𝑛
3 ��erfc��𝜅�𝑠2 �∑ 𝑧𝑛𝑛

3 −(𝜀−𝜀𝑐0)��−exp�92𝜅�𝑠𝜀𝑐0
2 �erfc��𝜅�𝑠2 �∑ 𝑧𝑛𝑛

3 −(𝜀−4𝜀𝑐0)���exp�−𝜅�𝑠𝜀𝑐0 ∑ (𝑛2−4)𝑧𝑛𝑛
3 �𝑑𝑧3…∞

0 𝑑𝑧𝑛
∞
0

.                                                                                                                           

                                                                       (A17) 

Note that (A17) can be rewritten as 

               𝐹
�

𝐹�𝑐0
= 1 − 3

𝑒3𝜅�𝑠𝜀𝑐0𝜀−
15
2 𝜅�𝑠𝜀𝑐0

2 ∫ …∫ erfc��𝜅�𝑠2 �∑ 𝑧𝑛𝑛
3 −(𝜀−𝜀𝑐0)��exp�−𝜅�𝑠𝜀𝑐0 ∑ �𝑛2−1�𝑧𝑛𝑛

3 �𝑑𝑧3…∞
0 𝑑𝑧𝑛

∞
0

∫ … ∫ erfc��𝜅
�𝑠
2 �∑ 𝑧𝑛𝑛

3 −(𝜀−4𝜀𝑐0)��exp�−𝜅�𝑠𝜀𝑐0 ∑ �𝑛2−4�𝑧𝑛𝑛
3 �𝑑𝑧3…∞

0 𝑑𝑧𝑛
∞
0

−1

         (A18) 

which, surprisingly, can be evaluated exactly as 

                           𝐹
�

𝐹�𝑐0
= 1 − 3

𝑒
3𝜅�𝑠𝜀𝑐0

2 � 𝜀
𝜀𝑐0

−52�

1
∏ �𝑗2+4𝑗+3�𝑛
𝑗=1

erfc��
𝜅�𝑠𝜀𝑐0

2

2 �1− 𝜀
𝜀𝑐0

��+𝑎

1
∏ �𝑗2+4𝑗�𝑛
𝑗=1

erfc��
𝜅�𝑠𝜀𝑐0

2

2 �4− 𝜀
𝜀𝑐0

��+𝑏

−1

                                   (A19) 

With 

       𝑎 = ∑ (−1)𝑖𝑛
𝑖=1

𝑓(𝑖)
∏ (𝑗−𝑖)(𝑗+𝑖+4)𝑛
𝑗=𝑖+1

erfc ��𝜅�𝑠𝜀𝑐0
2

2
�(𝑖 + 2)2 − 𝜀

𝜀𝑐0
�� exp �(𝑖 + 1)(𝑖 + 3)𝜅̃𝑠𝜀𝑐02 �1

2
+ (𝑖+2)2

2
− 𝜀

𝜀𝑐0
�� 

and 

           𝑏 = ∑ (−1)𝑖𝑛
𝑖=1

𝑔(𝑖)
∏ (𝑗−𝑖)(𝑗+𝑖+4)𝑛
𝑗=𝑖+1

erfc ��𝜅�𝑠𝜀𝑐0
2

2
�(𝑖 + 2)2 − 𝜀

𝜀𝑐0
�� exp �𝑖(𝑖 + 4)𝜅̃𝑠𝜀𝑐02 �2 + (𝑖+2)2

2
− 𝜀

𝜀𝑐0
��. 

𝑓(𝑖) and 𝑔(𝑖) are functions of i and relate to each other as 𝑔(𝑖) = (𝑖+2)2−1
(𝑖+2)2−4

𝑓(𝑖). To determine 

these functions, we first realize that (A14) can be rewritten as 
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𝐹�

𝐹�𝑐0
=

1 − 3

𝑒
3𝜅�𝑠𝜀𝑐0

2 � 𝜀
𝜀𝑐0

−52�
𝑓′(0)erfc��

𝜅�𝑠𝜀𝑐0
2

2 �1− 𝜀
𝜀𝑐0

��+∑ (−1)𝑖𝑛
𝑖=1 𝑓′(𝑖)erfc��

𝜅�𝑠𝜀𝑐0
2

2 �(𝑖+2)2− 𝜀
𝜀𝑐0

��exp�(𝑖+1)(𝑖+3)𝜅�𝑠𝜀𝑐0
2 �12+

(𝑖+2)2
2 − 𝜀

𝜀𝑐0
��

𝑔′(0)erfc��
𝜅�𝑠𝜀𝑐0

2

2 �4− 𝜀
𝜀𝑐0

��+∑ (−1)𝑖𝑛
𝑖=1 𝑔′(𝑖)erfc��

𝜅�𝑠𝜀𝑐0
2

2 �(𝑖+2)2− 𝜀
𝜀𝑐0

��exp�𝑖(𝑖+4)𝜅�𝑠𝜀𝑐0
2 �2+(𝑖+2)2

2 − 𝜀
𝜀𝑐0

��

−1

,         

                           (A20) 

where, for 𝑖 ≥ 1, 𝑓 ′(𝑖) and 𝑔′(𝑖)  relate to 𝑓(𝑖) and 𝑔(𝑖) as 

                                 𝑓 ′(𝑖) = 𝑓(𝑖)
∏ �𝑗2+4𝑗�𝑛
𝑗=1

∏ (𝑗−𝑖)(𝑗+𝑖+4)𝑛
𝑗=𝑖+1

 ,    𝑔′(𝑖) = 𝑔(𝑖)
∏ �𝑗2+4𝑗�𝑛
𝑗=1

∏ (𝑗−𝑖)(𝑗+𝑖+4)𝑛
𝑗=𝑖+1

 . 

In addition, as 𝑛 → ∞, we found 

                                                       𝑔′(𝑖) − 𝑓′(𝑖) = (𝑖+2)2

4
. 

Therefore, the asymptotic expressions of 𝑓 ′(𝑖) and 𝑔′(𝑖), as 𝑛 → ∞,  can be determined as 

                                              𝑓 ′(0) = 1
4

,    𝑓′(𝑖) = (𝑖+2)4−4(𝑖+2)2

12
 for  𝑖 ≥ 1,  

                                              𝑔′(0) = 1,   𝑔′(𝑖) = (𝑖+2)4−(𝑖+2)2

12
   for  𝑖 ≥ 1, 

from which the expressions of 𝑓(𝑖) and 𝑔(𝑖) can be obtained as  

                         𝑓(𝑖) = (𝑖+2)4−4(𝑖+2)2

12
lim𝑛→∞

∏ (𝑗−𝑖)(𝑗+𝑖+4)𝑛
𝑗=𝑖+1

∏ (𝑗2+4𝑗)𝑛
𝑗=1

= (𝑖+2)4−4(𝑖+2)2

12
∏ 1

(2𝑗+3)(2𝑗+4)
𝑖
𝑗=1  ,       

                         𝑔(𝑖) = (𝑖+2)4−(𝑖+2)2

12
lim𝑛→∞

∏ (𝑗−𝑖)(𝑗+𝑖+4)𝑛
𝑗=𝑖+1

∏ (𝑗2+4𝑗)𝑛
𝑗=1

= (𝑖+2)4−(𝑖+2)2

12
∏ 1

(2𝑗+3)(2𝑗+4)
𝑖
𝑗=1 . 

Notice that 𝑓(𝑖) and 𝑔(𝑖) are independent of n. Now we are able to obtain the general 

expressions of 𝑓′(𝑖) and 𝑔′(𝑖) as     
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      𝑓′(0) =
∏ �𝑗2+4𝑗�𝑛
𝑗=1

∏ (𝑗2+4𝑗+3)𝑛
𝑗=1

 ,    𝑓′(𝑖) = (𝑖+2)4−4(𝑖+2)2

12

∏ �𝑗2+4𝑗�𝑛
𝑗=1

∏ (2𝑗+3)(2𝑗+4)𝑖
𝑗=1 ∏ (𝑗−𝑖)(𝑗+𝑖+4)𝑛

𝑗=𝑖+1
  for  𝑖 ≥ 1,     (A21a) 

       𝑔′(0) = 1,                       𝑔′(𝑖) = (𝑖+2)4−(𝑖+2)2

12

∏ �𝑗2+4𝑗�𝑛
𝑗=1

∏ (2𝑗+3)(2𝑗+4)𝑖
𝑗=1 ∏ (𝑗−𝑖)(𝑗+𝑖+4)𝑛

𝑗=𝑖+1
  for  𝑖 ≥ 1.      (A21b) 

Substituting (A21) into (A20), finally, the force can be expressed as   

                                    𝐹
�

𝐹�𝑐0
= 1 − 3

exp�3𝜅�𝑠𝜀𝑐02 (𝜀/εc0−5/2)�∙ℎ�𝜅�𝑠𝜀𝑐02 ,   𝜀/εc0�−1
 ,                                    (A22) 

where               

ℎ(𝜅̃𝑠𝜀𝑐02 ,   𝜀/𝜀𝑐0) =

𝑓′(0)erfc��
𝜅�𝑠𝜀𝑐0

2

2 �1− 𝜀
𝜀𝑐0

��+∑ (−1)𝑖𝑛
𝑖=1 𝑓′(𝑖)erfc��

𝜅�𝑠𝜀𝑐0
2

2 �(𝑖+2)2− 𝜀
𝜀𝑐0

��exp�(𝑖+1)(𝑖+3)𝜅�𝑠𝜀𝑐02 �12+
(𝑖+2)2

2 − 𝜀
𝜀𝑐0

��

𝑔′(0)erfc��
𝜅�𝑠𝜀𝑐0

2

2 �4− 𝜀
𝜀𝑐0

��+∑ (−1)𝑖𝑛
𝑖=1 𝑔′(𝑖)erfc��

𝜅�𝑠𝜀𝑐0
2

2 �(𝑖+2)2− 𝜀
𝜀𝑐0

��exp�𝑖(𝑖+4)𝜅�𝑠𝜀𝑐02 �2+(𝑖+2)2
2 − 𝜀

𝜀𝑐0
��

           (A23) 

 

with 𝑓′(𝑖) and 𝑔′(𝑖) given by (A21).   Of course (A22) is rather complicated and might not be so 

convenient to use, so an approximate formula, i.e. (12), was proposed here. Comparison between 

predictions from (12) and the exact solutions, given by (A22), is shown in Fig. A1, which clearly 

demonstrates that (12) is indeed an excellent approximation of (A22). 
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Figure A1. Filament force as a function of the nominal strain. The lines represent predictions by 

(12) whereas symbols correspond to exact results obtained from (A22). 

 

 


