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Abstract A static job shop scheduling problem (JSSP) is a
class of JSSP which is a combinatorial optimization problem
with the assumption of no disruptions and previously known
knowledge about the jobs and machines. A new hybrid algo-
rithm based on artificial immune systems (AIS) and particle
swarm optimization (PSO) theory is proposed for this prob-
lem with the objective of makespan minimization. AIS is a
metaheuristics inspired by the human immune system. Its
two theories, namely, clonal selection and immune network
theory, are integrated with PSO in this research. The clonal
selection theory builds up the framework of the algorithm
which consists of selection, cloning, hypermutation, mem-
ory cells extraction and receptor editing processes. Immune
network theory increases the diversity of antibody set which
represents the solution repertoire. To improve the antibody
hypermutation process to accelerate the search procedure, a
modified version of PSO is inserted. This proposed algorithm
is tested on 25 benchmark problems of different sizes. The
results demonstrate the effectiveness of the PSO algorithm
and the specific memory cells extraction process which is one
of the key features of AIS theory. By comparing with other
popular approaches reported in existing literatures, this algo-
rithm shows great competitiveness and potential, especially
for small size problems in terms of computation time.
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Introduction

The job shop scheduling problem (JSSP), which is a com-
binatorial optimization problem, is well-known as a class
of NP-hard problem which is unlikely to achieve the global
optimal solution in polynomial time. In this work, we assume
that most of the information of the system is predefined and
there exists no other disturbances, such as machine break-
down, during the whole scheduling process in our system.
This problem is called static JSSP. Due to its wide appli-
cability in production and manufacturing industries, and its
inherent complexity, it has attracted many researches in the
field. As a result, a wide range of approaches and algorithms
have been developed over the years.

Generally speaking, these approaches can be divided into
two categories, namely, exact methods and approximate
methods. The former identifies a precise solution. These
methods mainly include enumeration, Lagrangian relaxa-
tion, integer programming, dynamic programming, branch
and bound (B&B) method. Among these, B&B algorithm
is the most popular one. Thus plenty of research has been
focused on this method, and considerable advancement has
been made (Lageweg et al. 1977; Carlier and Pinson 1989).
The algorithm uses a dynamically constructed tree structure
to represent all feasible schedules in the search space, and its
basic principle is to enumerate all feasible solutions (Brucker
et al. 1994). However, as the problem size grows, the exact
methods become inefficient and time-consuming because of
the computational complexity. They cannot solve large prob-
lems within a reasonable time. As such, the research focus
has turned into the approximate approaches.

Although approximate methods cannot guarantee the
achievement of the global optimal, they are able to find
near-optimal solutions for problems of large sizes and even
for some complex problems in moderate computing time.
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Glover and Greenberg (1989) suggested that the direct tree
searching process is unacceptable for complex combinatorial
problems, while the heuristics inspired by natural phenom-
enon and artificial intelligence are more applicable. There-
fore, currently there are mainly four types of frequently-used
approximation techniques: priority dispatching rules, bottle-
neck based heuristics, artificial intelligence and local search
methods.

Approximation methods applied to static JSSP were first
developed based on the priority dispatching rules (PDRs)
because of their easy implementation and significant reduc-
tion in computational requirement (Baker 1974). In each step,
all available operations that can be scheduled are assigned a
priority according to the pre-defined rule, and the operation
with the highest priority is selected to be executed. However,
these methods only consider the current state of the schedul-
ing process rather than the global optimal, and the solution
quality is prone to suffer and degrade quickly as the problem
size grows.

Subsequently the shifting bottleneck procedure (SBP) was
proposed (Adams et al. 1988). It combines schedule con-
struction with iterative improvement and is guided by the
one-machine scheduling problem that one-machine relaxa-
tion is used to decide the scheduled machine sequence. But
this method requires a high level of programming technique.

With the advancement of computer technology, research-
ers started to work on artificial intelligence and local search
methods in the last decade. Artificial Intelligence (AI) meth-
ods are developed based on the biological knowledge and
principles found in nature to obtain solutions for complex
problems. One popular method for static JSSP is the neural
network method (Jain and Meeran 1999). It is inspired by
the brain structure of simple living entities that information
processing is carried out through a huge interconnected net-
work of parallel processing units. Wang and Brunn (1994)
presented a review of the application of this method in the
scheduling problem, and many researchers (Yahyaoui et al.
2011; Yang et al. 2010; Weckman et al. 2008) have applied
it to the static JSSP. Alternatively, the local search method
is constructed on the neighborhood structure and the rules
which define the way to obtain a new solution from the cur-
rent one. Its basic idea is to modify the current solutions in
terms of the modification method defined by the neighbor-
hood operator, so a new feasible solution is generated which
promisingly performs better. Different neighborhood opera-
tors or rules generate different meta-heuristic approaches.
The most famous ones applied to static JSSP include
genetic algorithm (GA) (Pérez et al. 2010), tabu search (TS)
(Nowicki and Smutnicki 1996; González et al. 2012; Geyik
and Cedimoglu 2004), simulated annealing (SA) (Aydin
and Fogarty 2004), and particle swarm optimization (PSO)
(Niu et al. 2008), and ant colony optimization (ACO) (Puris
et al. 2007). All these methods are well studied and their

variations are successfully applied in different domains. As
every single technique always exists with some drawbacks,
hybridizing is a reasonable way to take strengths and avoid
weakness. Hence, the hybrid methods become very popular
for the combinatorial optimization problem. For static JSSP,
hybrid methods are frequently used, such as hybrid genetic
and ant colony heuristics (Girish and Jawahar 2009), hybrid
GA-TS (Meeran and Morshed 2011), hybrid PSO with SA
(Lin et al. 2010), and hybrid TS-ACO (Eswaramurthy and
Tamilarasi 2009). Experiments show that all these hybrid
methods perform better than its corresponding single tech-
nique because they help each other escape from the local
optimal search space and accelerate the convergence rate. A
comprehensive and detailed survey of job shop scheduling
techniques can be found in (Jain and Meeran 1999).

In terms of the no free lunch (NFL) theory (Wolpert and
Macready 1995), no algorithm is always superior to others
when compared over all possible issues and every approach is
able to exceed at least one subset of certain cases. Thus for the
static JSSP, no one method is superior in all situations. Addi-
tionally, continuous increase in the problem size increases
the complexity and difficulty of the problem for all methods.
Therefore, there is still much room for researchers to make
improvement and variations to the existing methods and pro-
pose new techniques for the problem. Recently, a relatively
new theory, artificial immune systems (AIS), has attracted
extensive attention owing to its successful applications to
many combinatorial optimization problems. Inspired by the
human immune system, AIS shows many appealing charac-
teristics, including discrimination of self from non-self, self-
learning, long lasting memory, cross reactive response, and
strong adaptability to the environment (de Castro and Timmis
2002), which makes it unique from other evolutionary algo-
rithms. It has been successfully applied to the fields of opti-
mization, clustering, pattern recognition, anomaly detection,
computer security, machine learning, scheduling, robotics,
and control (de Castro and Timmis 2002; Hart and Timmis
2008; Dasgupta et al. 2011; Aydin et al. 2010). For the sched-
uling problem, AIS has been used in the flow shop scheduling
problem (Kahraman et al. 2009), JSSP (Coello et al. 2003),
resource constraint project scheduling problem (Mobini et al.
2011), multiprocessor scheduling (Wojtyla et al. 2006), etc.
However, for the static JSSP, AIS mechanisms and theories
are rarely adopted with only few hybrid AIS approaches (Ge
et al. 2008; Zhang and Wu 2010). In this paper, a new hybrid
AIS-based algorithm with the meta-heuristics PSO is pro-
posed. Although Ge et al. (2008) have discussed a means to
combine AIS with PSO for JSSP, our idea reveals marked
differences in the PSO variation and hybrid mode. The pro-
posed hybrid algorithm is studied and compared in terms of
solution accuracy and computational efficiency.

The remainder of this paper is organized as follows: “Sta-
tic job shop scheduling problem” section and “Underlying
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theory” section briefly introduce the static JSSP, AIS and
PSO theories. In “A hybrid algorithm for static JSSP”, the
hybrid algorithm is proposed with each step being explained
in detail. Based on the benchmark problems, “Experimen-
tal analysis” section presents the experimental results and
analyzes the algorithm’s performance from three aspects.
Finally, conclusions are drawn in “Conclusion” section.

Static job shop scheduling problem

The JSSP is a traditional and classical problem. It is defined
as follows: given n jobs and m machines in the system with
each job consists of m operations, which should be processed
by one machine exactly once. At the beginning of the pro-
cess, all jobs are released and all machines are available.
Each machine can manage only one operation at a time, and
each job cannot be operated simultaneously by more than
one machine. The task is to schedule all the jobs on each
machine to achieve the scheduling objective. From a differ-
ent point of view, the scheduling goal may vary. In this paper,
one of the most popular problems—makespan minimization
is considered.

Our study focuses on the static JSSP that most of the
information about the system is previously known without
any unexpected events or machine breakdown during the
scheduling process. To simplify the problem, the following
assumptions are made: (1) Once an operation has begun on
a machine, it cannot be interrupted. (2) The processing time
and precedence order of operations for each job are prede-
fined. (3) The jobs can wait between two machines and the
intermediate storage is unlimited. (4) Other factors, including
machine setup time for two consecutive jobs, transportation
time and resource cost, are ignored.

Underlying theory

This paper proposes a new hybrid algorithm based on AIS
theory and PSO mechanism for the static JSSP. In the fol-
lowing sections, the two theories are introduced briefly.

Artificial immune systems (AIS)

Artificial immune systems (AIS) is a diverse and maturing
artificial intelligence methodology that attempts to bridge the
gap between immunology and engineering. It is developed
through the application of techniques including mathemati-
cal and computational modeling of immunology, abstraction
from these models into algorithms, and system design and
implementation in the context of engineering (de Castro and
Timmis 2002). It has become known as a kind of biologically

inspired approach that applies the human immune system
metaphors for the creation of novel solutions.

The human immune system is an effective and efficient
defense mechanism that protects its host from the invad-
ing foreign bodies, called antigens. It behaves as a general
and immediate pathogen defense mechanism which combats
against a wide variety of foreign invasions without requiring
previous exposure to them through the innate immune sys-
tem, and recognizes previously unknown pathogens (learn-
ing) and remembers them for future invasions (memory)
through the adaptive immune system (Twycross 2007). The
work of the adaptive immune system is performed by two
types of lymphocytes, namely, B-cell and T-cell. The for-
mer is responsible for the humoral immunity that secretes
antibodies binding to antigens by clonal proliferation, while
the latter aims at destroying the pathogens directly. These
immune cells collaborate in a corporative environment to
fight against antigen invasion in the process of recognition,
categorization and memorization (de Castro and Timmis
2002).

Inspired by the underlying capability of the human
immune system, AIS develops four immunological theories:
clonal selection, immune network, negative selection, and
dendritic cell algorithm. In this paper, the proposed algo-
rithm integrates clonal selection theory and immune network
theory, which encompasses the recognition, selection, matu-
ration, learning and memory processes of the human immune
system.

Clonal selection theory

The clonal selection theory presents the fundamental prop-
erties of an adaptive immune response to an antigenic stim-
ulus (Timmis 2007). When an antigen invades, the immune
system repertoire goes through a selection mechanism that
only those antibodies which are capable of recognizing an
antigenic stimulus proliferate and differentiate into effective
cells. Then these cells suffer somatic hypermutation during
reproduction to increase their repertoire diversity and also to
become gradually better in their capability of recognizing the
selective antigens. During the clonal expansion and mutation
process of antibodies, the average antibody affinity increases
for the antigen that makes the immune response more effec-
tive. This phenomenon is called affinity maturation. In this
procedure, the proliferation of antibodies is directly propor-
tional to the affinity of the antigen it binds, and the mutations
suffered by the antibodies are inversely proportional to this
affinity. That is to say, the higher the antigenic affinity is, the
more clones are generated, and the less mutation the anti-
body occurs. After the cloning and hypermutation process, a
percentage of the antibodies with high antigenic affinity are
stored as the memory cells to form a large initial specific and
efficient antibodies for subsequent re-infections, and some
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low antigenic affinity antibodies are assigned to undergo the
receptor editing process, in which these less efficient antibod-
ies are replaced by new ones. In terms of the memory cells, the
immune system presents the reinforcement learning capabil-
ity. The receptor editing mechanism develops new antibodies
that correspond to new search space, which encourages the
algorithm to escape from local optimal.

Immune network theory

Jerne (1974) proposed the immune network theory that
presents a novel perspective to important emergent proper-
ties of the immune system, such as learning, self-tolerance,
and diversity of immune repertoires. It is well used in the
machine learning and clustering problems. The premise of
this theory is that any antibody molecule could be recog-
nized by the matched antigens and a set of other antibody
molecules within the immune system. It is suggested that the
immune system is composed of a regulated and stable net-
work of cells that recognizes one another even in the absence
of antigens. According to the research in immunology, the
recognition of an epitope, which is the decision part of anti-
gen, by a paratope—the recognition part of antibody, results
in the reproduction of antibodies with the paratope (stimula-
tion), and the probabilistic reduction of antibodies with the
idiotope—the epitope of antibodies (suppression) (de Castro
and Timmis 2002). Therefore, the immune system displays a
status resulting from interactions among its components and
foreign substances.

When translating this feature into an immune-inspired
algorithm, it is to compute the affinity amongst all the anti-
bodies and then eliminate those antibodies whose affinity
with each other is less than a pre-defined threshold. This
action helps to increase diversity of the antibody set.

Particle swarm optimization (PSO)

Particle swarm optimization (PSO), a population based opti-
mization algorithm proposed by Kennedy and Eberhart
(1995), is one of the latest evolutionary optimization tech-
niques for continuous optimization problems. It simulates
the social interaction and communication in a flock of birds
or fishes. In this social group, there is a leader who presents
the best performance and guides the movement of the whole
swarm. The movement of each particle is directed by the
leader and its own knowledge. Thus, the behavior of each
particle is a compromise between its individual memory and
a collective memory.

In the standard PSO algorithm, each particle in the swarm
represents a potential solution. Particle k starts with a random
position Xk and a random velocity Vk . During the search-
ing procedure, the particle gains the knowledge about which
position Pt

k it has reached presents the best performance, and

which position Pg has achieved the best overall performance
among all particles. In each iteration t , the behavior of each
particle is a compromise among three possible alternatives
and its position is updated according to its velocity, shown
in Eqs. (1) and (2):

V t+1
k = ωV t

k + c1r1
(
Pt

k − Xt
k

) + c2r2

(
Pt

g − Xt
k

)
(1)

Xt+1
k = Xt

k + V t+1
k (2)

where ω is the inertia weight that controls the impact of the
previous velocity on the current velocity. c1 and c2 represent
the weights of the stochastic acceleration effect when the
next position is attracted to the previous best location of the
current particle and the whole particle swarm. r1 and r2 are
two random numbers within the range from 0 to 1. In each
iteration, the particle moves according to the reset velocity
and position, and the best locations of each particle and the
whole swarm are updated for the next generation according
the performance of newly generated positions (Xia and Wu
2006). The searching procedure stops when the termination
criterion is met.

From the equations, it is seen that the standard PSO is
especially suitable for the continuous solution space. There-
fore, when applying for the JSSP, a discrete problem, it is
necessary to make suitable modifications for PSO to hybrid-
ize with AIS. This is discussed in the next section.

A hybrid algorithm for static JSSP

In this section, the hybrid algorithm based on AIS theory and
PSO is described for the static JSSP. The flow chart showing
the main procedures of the algorithm is shown in Fig. 1. To
accelerate the convergence speed of the search algorithm, a
neighborhood search mechanism is formulated especially for
this problem.

The following paragraphs discuss the key steps in the flow
chart in detail.

Antibody generation

In the context of static JSSP, the problem is regarded as the
antigen while the antibody corresponds to the scheduling
plan. Thus, generating an antibody is equal to creating an
initial solution for the problem. The first consideration is
how to encode the antibody to represent a feasible schedule.
Referring to previous research on the chromosome repre-
sentation in GA, this algorithm adopts the operation-based
representation. Its main advantage is that this representa-
tion scheme guarantees that any possible permutation of the
random numbers produces a feasible schedule, so the repair
mechanism for the infeasible schedule always generated in
the antibody mutation process, such as the deadlock schedule
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Fig. 1 Flow chart of the hybrid
algorithm for static JSSP

Begin

Parameters Initialization

Randomly Generate N Antibodies

countIteration = 1

Compute Antibody,s Affinity based on its 
concentration and performance measure

Antibody Selection by Roulette Wheel Selection Method

Clone Selected Antibodies

Antibody Mutation based on PSO and other 
classical mutation methods

the best antibody is better than the 
one in the previous iteration

k=k+1

k = 0

k >= t

Neighborhood Search Mechanism

Adjust Parameters to accelerate search 
fluctuation to escape from stagnation state

Extract Memory Cells from the best antibodies

Receptor Editing to update the antibody 
repertoire based on memory cells

Output the best antibodies

countIteration > T

End

countIteration = countIteration + 1
     N

    Y

    Y

Y

N

N

that is incompatible with the scheduling constraints and can
never be finished, is avoided.

In the operation-based representation approach, the anti-
body encodes a schedule as a sequence of operations, and
defines all the operations for a job as the same number and

then interprets it according to the order of occurrence in the
given antibody. Thus, an antibody consists of n × m num-
bers for an n jobs and m machines problem. Each job index
appears m times in the antibody, and each repeated number
represents a unique operation of the job. For example, given
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an antibody [1, 2, 2, 1, 1, 2], the numbers 1 and 2 repre-
sent job 1 and job 2 respectively. In this case, there are three
machines and two jobs, and a total of six operations. Each
job number is repeated three times. The first integer 2 rep-
resents the first operation of job 2, and the second integer 2
represents job 2’s second operation. Hence in general, this
antibody represents [O11, O21, O22, O12, O13, O23], where
Oi j stands for the j th operation of job i . However, this rep-
resentation method produces redundancy in the search space
whose size is expanded to (n × m)!/(m!)n , i.e., different
antibodies may represent the same schedule. Therefore, all
generated antibodies should be standardized to re-map their
relationships with the schedules from many-to-one to one-
to-one relationships. This standardization is introduced in
“Affinity calculation of antibody” section according to the
scheduling plan generated by the antibody.

According to the operation-based representation, the anti-
bodies for the problem with n jobs and m machines are eas-
ily produced by ranking n × m random numbers. Take the 2
jobs and 3 machines problem as an example, we generate a
random numerical string [4.5, 0.7, −3.5, 77, −9.2, 6.1] and
then rank it in an ascending sequence [4, 3, 2, 6, 1, 5], i.e.
the smallest number is −9.2 and we grant the serial number
1 to it; the second one is −3.5 and we grant serial number 2
to it and so on. Finally, divide each serial number by m and
round the quotient upwards to the nearest integer. Then the
antibody is mapped as [2, 1, 1, 2, 1, 2]. As this random string
generation method is prone to create redundant antibody, the
newly generated antibody should be compared with exist-
ing antibodies such that only a new antibody that is different
from the existing ones is accepted.

Affinity calculation of antibody

The antibody’s affinity is partly determined by its perfor-
mance measures, i.e., the makespan of its generated schedule.
This is to decode the antibody to the corresponding sched-
uling plan. By scanning the number of the antibody from
left to right, the operation is arranged at the maximum time
between the earliest available time of the desired machine and
the completion time of the job last preceding operation. This

type of schedule is known as semi-active schedule without
any excess idle time, but with some “holes”. These “holes”
can be deleted by shifting some operations to the front with-
out delaying others. This operation is called the “finding and
reducing holes procedure”, which searches idle time of the
working machine and inserts the operation into the idle period
without violating the operation precedence constraints. Tak-
ing Fig. 2 as an example, the second operation of job 0 work-
ing on machine 1 is shifted to fill the holes, and the makespan
is reduced by 2 units. This improved schedule is called the
active schedule.

According to the generated scheduling plan, the perfor-
mance measure (makespan) is obtained, i.e., the finish time
of the last operation completed in the schedule. Additionally,
the antibody can be standardized by reordering the antibody
sequence on the basis of the start time of each operation. If
the start time is the same, the order is determined by its job
index. Thus each schedule corresponds to only one antibody.

In short, the antibody decoding process arranges the active
schedule in terms of operation start time, standardizes the
antibody to be unique to each schedule, and obtains the make-
span value.

Inspired by the immune network theory, it is necessary
to consider the population diversity in terms of the antibody
similarity with other antibodies to adjust the antibody’s affin-
ity. This helps to maintain a high diversity of the antibody
set to keep the variety of search space and prevent prema-
ture convergence. One method is to delete the antibodies
whose affinity amongst all the antibodies, i.e., the recip-
rocal of concentration, is less than a predefined threshold.
However, this operation may leave out some potential good
solutions. Therefore, another method which aims to use the
antibody’s concentration to adjust the antibody’s antigenic
affinity that is determined by its performance measure is
adopted, shown in Eq. (3):

Antibody Affinity = 1/ (Makespan × Concentration) (3)

The antibody with a higher concentration is assigned a
lower affinity with the antigen. The antibody concentration is
obtained by averaging the similarity with all other standard-
ized antibodies, which is always measured by the distance

Fig. 2 Converting from semi-active scheduling to active scheduling
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between them. As each position of an antibody is represented
by a job number without any quantitative meaning and phys-
ical association, the commonly adopted distance calculation
method—Euclidean distance, cannot measure the difference
between two antibodies. Here, the similarity of two antibod-
ies is computed based on the percentage of the same positions
between two standardized antibodies. For an n jobs and m
machines problem, the concentration of the antibody Abi is
expressed as SCi shown in Eq. (4):

SCi =
NAb∑

j=1

n×m∑

k=1

Abk
i j

/

[(n × m) × NAb]

(i = 1, 2 . . . NAb; j = 1, 2 . . . NAb) (4)

where NAb is the number of antibodies whose affinities are
calculated, and the similarity count at the kth locus among
the standardized antibody Abi and Ab j is expressed as Abk

i j
shown in Eq. (5):

Abk
i j =

{
1 if the jobs at the k locus of Abi and Abj are identical
0 else

(5)

Then the antibody affinity with the antigen is normalized
in the range of [0, 1] after all antibodies’ affinities with the
antigen are computed.

Antibody selection and cloning

The sorted antibodies are selected based on their affinity val-
ues to go through the cloning process. The number of anti-
bodies to be selected is s%×N, where s% is the selection
rate and N is the antibody population size. Compared to the
Elitist Selection Approach that only selects the best ones, the
Roulette Wheel Selection Method is adopted for its better
performance. In this method, the probability of selecting an
antibody in the population is directly proportional to its affin-
ity value. Preserving some poorer antibodies with lower affin-
ity values to proliferate is able to advance the diversity of the
antibody set and expand the search space. The selected anti-
bodies will then be cloned. The whole clone population is set
as the product of three pre-defined parameters, namely, anti-
body population size N , selection rate s% and clone amount
C . The number of clones of each selected antibody is directly
proportional to its affinity value. Hence the number of clones
of the selected antibody i(Ci ) is calculated as:

Ci = N × s% × C × A f fi
∑N×s%

i=1 A f fi

(i = 1, 2, . . . , N × s%) (6)

where A f fi is the affinity value of the selected antibody i .

Antibody mutation

In the antibody mutation step, all clones go through the muta-
tion process to convert into some new ones. The mutation rate
(u%) is pre-defined. The clonal selection theory suggests that
the mutation suffered by the clones is inversely proportional
to their antigenic affinity, so the mutation rate of each clone
should be further adjusted in a way that is inversely pro-
portionally to its affinity. To keep the mutation procedure in
a more diverse manner, three different mutation approaches
are applied with different probability. They are the PSO algo-
rithm, point mutation and fragment inverse mutation.

Inspired by the principles of PSO, the proposed algorithm
hybridizes with PSO to improve the somatic hypermutation
process of the clones to obtain better variations. In the hybrid
algorithm, the particle is the antibody. The operators in a
classical PSO model, namely, addition and subtraction oper-
ators are translated into selection, crossover and mutation
processes as shown in Eq. (7).

Xk(t + 1) = c1·(Pk(t) − Xk(t)) + c2·(Pg(t) − Xk(t))

+c3·[Xk(t)]′ (7)

Here, the meaning of each variable is the same as for the
classical PSO model, while the operations are significantly
different. The subtraction operator means the crossover pro-
cess between the two items. [Xk(t)]′ represents the random
mutation process of Xk(t). And the addition operator means
the selection process among all individuals. Therefore, the
newly generated particle Xk(t + 1) is set as the best one
among Pk(t)− Xk(t), Pg(t)− Xk(t) and [Xk(t)]′. The coef-
ficients ci (i = 1, 2 and 3) are randomly generated numbers
that are controlled by the adjusted mutation rate in the range
of [0, 1] for controlling the degree of crossover and mutation
process. To simplify the selection process for more efficient
runtime, when computing the three items sequentially, once a
better item is generated compared with Xk(t), it is assigned
as the new particle Xk(t + 1) while the others will not be
further calculated.

This modified PSO model aims to optimize the mutation
process by speeding up the search process in a more efficient
way based on the internal acceleration of each particle rather
than using random search.

Another two mutation methods are classical ones. One
is the point mutation which interchanges two randomly
selected jobs of the antibody. The other is the fragment
inverse mutation that randomly picks up a continuous frag-
ment of the antibody and reverses the sequence. These two
methods are illustrated by Figs. 3 and 4. As the mapping
relationship between the non-standardized antibody and the
schedule is many-to-one in the operation-based representa-
tion, the mutated antibody by exchanging two near jobs or
reversing a short fragment of the antibody may yield the

123



496 J Intell Manuf (2014) 25:489–503

Fig. 3 Point mutation of antibody

Fig. 4 Fragment inverse mutation of antibody

same schedule as the original one. To minimize such occur-
rences, the randomly selected two positions in the antibody
for exchange should be far away from each other, and the
inversed fragment should not be too short. Here, a parame-
ter called “mutation range” (L), is introduced to define the
least distance that two exchanged positions should be sepa-
rated from each other and the least length of the inversed
fragment. The larger L is, the more global search effect
occurs.

In the mutation process, there are three different muta-
tion approaches. Each clone randomly adopts one of them.
Being a novel approach of hybridizing PSO with AIS, it is
worthwhile to investigate the effect of PSO on the proposed
algorithm. Thus another parameter, called the PSO utiliza-
tion rate p%, is introduced to define the probability that PSO
is applied in the mutation process for a clone. The other two
classical mutation methods are used under the same proba-
bility, i.e., (1 − p%)/2.

When all the clones finish their mutation processes, there
are two choices to reserve the better mutated ones in the rep-
ertoire. One way is to pick up a number of the best ones with
the highest affinity among all clones and their original anti-
bodies. Another way is to replace each antibody with its own
most efficient clone. This approach is better than the former
one as it collects only the best one among the mutated clones
from each antibody to keep the diversity of the antibody set.
So the second method is adopted.

Neighborhood search mechanism

When decoding the antibody to obtain the scheduling plan,
the active schedule is adopted instead of the semi-active one
by “finding and reducing holes procedure”. Here, another
neighborhood search mechanism is introduced to find better
neighborhood solutions for the active schedule.

This method defines a neighborhood solution based on
the concept of blocks. A block is defined as the consecu-
tive operations processed on the same machine in the crit-
ical path, that is, the longest continuous path in the corre-
sponding Gantt Chart of the schedule. It has three charac-
teristics: the operations in the block belong to the critical
path; each block contains the operations processed on the
same machine; the operations in two consecutive blocks are
processed on different machines. By moving the operations
nearer to the border line of blocks on the critical path, a
better neighbor solution may be generated. This is done by
swapping the last two operations in the first block, or the
first two operations in the last block, or the first two or the
last two operations for other blocks, because swapping other
adjacent operations in blocks has been demonstrated to be
ineffective (Nowicki and Smutnicki 1996). Taking Figs. 5
and 6 as an example, the operations in the critical path are
labeled by the red “

√
”. There are four blocks in Fig. 5, and

three blocks in Fig. 6. Only the third block in Fig. 5 and the
first and second block in Fig. 6 are applicable to the neigh-
borhood search mechanism. Exchange two operations in the
third block of Fig. 5, i.e., the third operation of job 1 and
the third operation of job 2. A new schedule is generated as
shown in Fig. 6. The makespan is as a result shortened by
three units.

As this neighborhood search mechanism is computation-
ally complex and relatively time-consuming, it is applied
only when the algorithm is trapped in a local optimum.
Therefore, in this algorithm, this method and the following
parameter adjustment step are executed only when the best
performance measure, i.e., minimal makespan, in the anti-
body set has not improved in consecutive t iterations.

Parameters adjustment

A large number of parameters including antibody popula-
tion size N , clone amount C , selection rate s%, mutation
rate u%, mutation range L , and replacement rate r% are
used in the next step. As mentioned previously, when the
solution is trapped in a local optimum, the parameters are
modified to increase the search fluctuation so as to help the
algorithm escape from the stagnation stage and widen the
search space globally. The parameter adjustment algorithm
therefore increases the values of u%, L , C and r% by 10 %.
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Fig. 5 Gantt chart of the original schedule

Fig. 6 Gantt chart of the schedule that is improved by neighborhood search mechanism

Memory cells extraction

The antibodies with the highest affinity are assigned to dif-
ferentiate into memory cells for future re-infections. Rather
than “starting from scratch” every time, the memory cells
help both the speed and accuracy of the solution process
as the immune response becomes increasingly stronger after
each infection. Thus the system continuously learns from the
direct interaction with the environment. As such, the memory
cells extraction process is adopted to advance the antibody
(scheduling plan) to accelerate the convergence in the pro-
posed method.

In each iteration, there always exists more than one best
antibody (solution) with the same highest affinity value (the
predominant objective value). During the search procedure,
all these best antibodies are selected for memory cells extrac-
tion. The characteristic of the best antibodies to be picked up
as the memory cells is decided by the problem to be solved.

The static JSSP’s solution is to identify the start operating
time of each job on each machine. But the start time of each
operation is changeable because it always varies for all anti-
bodies even with the same objective value. In addition, the
operation start time cannot take a fixed value as it is controlled
and constrained by the job sequence and processing time con-
straints. A small fluctuation of one operation start time may
result in a totally different scheduling plan with the same per-
formance. As such, each operation start time is not suitable to
be the memory cells. Therefore, another factor is considered.
From each solution, we also get the job sequence for each
machine and this information provides important informa-
tion for the scheduling plan. Suppose a schedule is efficient,
its corresponding job sequences on each machine are also
good. For a certain machine, different best solutions always
have the same job sequence. Thus this sequence can be con-
sidered good for this machine, and be used in other solutions
to improve their quality. Moreover, unlike the operation start
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time, any jobs permutation on a machine is feasible because
it is not restricted by the problem’s constraints. Therefore,
the sequence of processing jobs on each machine can be a
good candidate of memory cells.

At the end of each iteration, all the best antibodies are col-
lected. Their corresponding job sequences on each machine
are obtained. Suppose there are m machines in the problem,
the memory cells are therefore divided into m groups. Each
group represents a machine and consists of several memory
cells. Each memory cell represents a job sequence on this
machine, and it is assigned an affinity value represented by
the frequency that it appears in all the best antibodies. Then
these memory cells are used to generate new antibodies in
the next step.

Receptor editing

The receptor editing process aims to generate new antibodies
to escape from the unsatisfactory local optimum. In this step,
r% (replacement rate) less efficient antibodies which gains
the lowest affinity are replaced by the new ones generated
from the memory cells.

The number of the selected memory cells should be in
the range of [0, m], because there are only m memory cell
groups and the cells in each group are incompatible. It is
known that the memory cells become more mature in later
iterations. Therefore, the number of memory cells picked
up from the memory cell set is proportional to the iteration
number. Hence, the later iterations will extract more memory
cells, i.e., more machines’ job sequence will be pre-defined.
In the last iteration, all machines’ job sequences are deter-
mined by the memory cells, while in the first iteration, rela-
tively few machines’ job sequences (m/T) are defined, and
others should be generated randomly that are complied with
the job sequence constraints.

In the memory cells selection step, only one memory cell
is picked from each memory cell group. In each memory cell
group, the selection rate of each memory cell is proportional
to its affinity value. The higher affinity a memory cell has, the
higher probability this memory cell is to be selected. Then
the selected memory cells are combined to generate a new
antibody. In some cases, some memory cells from different
groups are incompatible because of the logical paradox in
the job sequence. In such cases, this combination is ignored,
and the memory cells are re-selected.

Experimental analysis

The proposed algorithm is evaluated on a number of well-
known benchmark problems in the OR-library (Beasley
1990), and compared with other approaches to show its per-
formance. 24 instances in seven groups which differ in the

problem sizes (n jobs ×m machines) are selected from the
OR-library. They are FT06 (6×6), LA01 (10×5), FT10 and
ORB01∼ORB10 (10×10), LA06 (15×5), LA21 (15×10),
LA11∼LA14 and FT20 (20×5), LA26∼LA27 (20×10),
and ABZ8∼ABZ9 (20×15). The parameters are set dif-
ferently based on the problem size as follows: N = 2 ×
m × n, C = 20, s% = 0.7, u% = 0.6, L = m, r% = 0.2,
T = m × n, t = 0.1 T.

As the novelty of this algorithm lies in the integration of
AIS and PSO, it is necessary to perform sensitivity analy-
sis for the parameter—PSO utilization rate p%, to show the
effect of PSO in the hybrid algorithm. Additionally, one of
the distinct features of AIS, memory cells which are exacted
from previous outstanding antibodies for the next immune
response, is investigated. The experiments are designed to
consider the following three perspectives: firstly, to perform
sensitivity analysis on p%; secondly, to evaluate the hybrid
algorithm and compare it with other similar approaches; and
thirdly, to demonstrate the effectiveness of the memory cells
mechanism.

Sensitivity analysis on parameter p%

This experiment aims to demonstrate the usefulness and
effectiveness of PSO in the proposed hybrid algorithm. If
the hybrid algorithm shows the best performance when p%
is set as zero, PSO will be regarded as redundant. Here, six
problems with four different sizes, namely, ORB02, ORB04
and ORB06 (10×10), LA06 (15×5), LA21 (15×10), and
FT20 (20×5) are used to investigate the impact of PSO on
the hybrid algorithm. The PSO utilization rate p% is tested
on 11 cases. They are 0, 0.1, 0.2, 0.3, …, 1.0. For each
case, these six problems are solved by the algorithm for 50
times repeatedly and independently with the same param-
eters. Figure 7 shows the relationship between p% and the
average makespan value. The curve is in a “V” shape show-
ing the algorithm performs well when p% is in the range of
[0.4, 0.7]. When p% is less than 0.4, the average objective
value decreases as p% grows. This exemplifies that the PSO
variation has a positive influence to the mutation process
in helping the antibodies move to a more favorable search
space. On the other hand, when p% is greater than 0.7,
the average makespan value increases rapidly with increas-
ing p%. This illustrates the negative impact on the perfor-
mance when PSO is excessively used in the mutation process.
In summary, PSO helps the proposed algorithm accelerate
the hypermutation process of the clones, though the muta-
tion process should be varied and be controlled by differ-
ent mutation methods, otherwise, the algorithm is prone to
converge to some local optimum in the search space. Thus
an optimal value of p% should be set in the range of [0.4,
0.7].
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Fig. 7 The relationship between p% and the average makespan

Performance of the hybrid algorithm

The proposed algorithm is evaluated by solving the bench-
mark problems. Initially, the parameter p% is set to 60 %.
Depending on the performance of the algorithm, the value
of p% is adjusted within the range of [0.4, 0.7]. For each
case, the algorithm is executed 50 times independently to
compute the average value (Avg.), standard deviation (SD)
and average relative error (Avg. RE). The results are sum-
marized in Table 1. In our experiments, the relative error
is defined as the percentage deviation from the best known
solution, as shown in Eq. (8).

Relative Error (%) = (heuristic solution − best solution)/

best solution × 100

(8)

The performance of the algorithm is compared with the
greedy randomized adaptive search procedure (GRASP),
modified genetic algorithm (GA), best-so-far artificial bee
colony (best-so-far ABC), multi-modal immune algorithm,
and other AIS based or hybrid algorithms discussed in the
references (Binato et al. 2002; Wang and Zheng 2002; Luh
and Chueh 2009; Chandrasekaran et al. 2006; Ge et al. 2008;
Coello et al. 2003). From Table 1 and related literatures from
those references, the algorithm performs competitively in all
cases as it achieves the global optimal solution even for large-
size problems. In terms of the computation time, it is in the
acceptable range. With this parameter setting, the average
computation time for problem sizes of 6×6, 10×5, 10×10,
15×5, 15×10, 20×5, 20×10, 20×15 require about 20 s,
30 s, 5 min, 2.5 min, 20 min, 4 min, 52 and 55 min respectively
to run on a Intel Core 2 Quad Q9400 (2.66 GHz, 2 GB RAM)
PC under Microsoft Windows XP Professional Operating
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Table 1 Experimental results of
solving different problems
instances

Problem Size Best known Optimal Avg. SD Avg. RE (%)

FT06 6×6 55 55 55 0.0 0.0

LA01 10×5 666 666 666 0.0 0.0

FT10 10×10 930 930 930 0.0 0.0

ORB01 10×10 1,059 1,059 1,059 0.0 0.0

ORB02 10×10 888 888 888.06 0.23990 0.00676

ORB03 10×10 1,005 1,005 1,005 0.0 0.0

ORB04 10×10 1,005 1,005 1,005.22 0.88733 0.0219

ORB05 10×10 887 887 887 0.0 0.0

ORB06 10×10 1,010 1,010 1,010.22 0.76372 0.02178

ORB07 10×10 397 397 397 0.0 0.0

ORB08 10×10 899 899 899 0.0 0.0

ORB09 10×10 934 934 934 0.0 0.0

ORB10 10×10 944 944 944 0.0 0.0

LA06 15×5 926 926 926 0.0 0.0

LA21 15×10 1,046 1,046 1,046.92 2.33728 0.0879

FT20 20×5 1,165 1,165 1,166.38 3.26946 0.1185

LA11 20×5 1,222 1,222 1,222 0.0 0.0

LA12 20×5 1,039 1,039 1,039 0.0 0.0

LA13 20×5 1,150 1,150 1,150 0.0 0.0

LA14 20×5 1,292 1,292 1,292 0.0 0.0

LA26 20×10 1,218 1,218 1,218 0.0 0.0

LA27 20×10 1,235 1,239 1,245.98 8.01908 0.88907

ABZ8 20×15 670 672 677.12 9.16914 1.14007

ABZ9 20×15 691 693 694.68 3.81030 0.49973

Fig. 8 Gantt chart showing the best scheduling for FT06 (1)

System. To reduce the computation time without deteriorat-
ing the performance, it is possible to decrease the maximal
iteration number T as the algorithm always converges to the
optimal solution in less than T iterations for some instances,
especially for small size problems. For example, when solv-
ing the cases FT06 (6×6), LA01 (10×5), LA06 (15×5)

and LA11∼LA14 (20×5), the algorithm obtains the opti-
mal solution in the first iteration. Thus the computation time
for these problems is actually about 0.56, 0.6, 2 and 2.4 s to
achieve the best solutions.

Moreover, the proposed algorithm is able to obtain multi-
ple optimal solutions with the same objective value as in each
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Fig. 9 Gantt chart showing the best scheduling for FT06 (2)

Table 2 Comparison of the two
approaches Problem Size Best known Method Optimal Avg. SD Avg. RE (%)

ORB02 10×10 888 Proposed algorithm 888 888.06 0.23990 0.00676

Modified version 888 888.24 0.1263 0.0096

ORB04 10×10 1005 Proposed algorithm 1,005 1,005.22 0.88733 0.0219

Modified version 1005 1005.30 1.0274 0.0311

ORB06 10×10 1010 Proposed algorithm 1,010 1,010.22 0.76372 0.02178

Modified version 1010 1010.40 0.9215 0.0248

LA21 15×10 1046 Proposed algorithm 1,046 1,046.92 2.33728 0.0879

Modified version 1046 1047.46 2.68184 0.13958

FT20 20×5 1165 Proposed algorithm 1,165 1,166.38 3.26946 0.1185

Modified version 1165 1167.04 3.48150 0.17511

LA26 20×10 1218 Proposed algorithm 1,218 1,218 0.0 0.0

Modified version 1218 1218.04 0.282843 0.00328

A27 20×10 1235 Proposed algorithm 1,239 1,245.98 8.01908 0.88907

Modified version 1250 1253.16 3.649769 1.47045

ABZ8 20×15 670 Proposed algorithm 672 677.12 9.16914 1.14007

Modified version 674 678.92 9.6459 1.2194

ABZ9 20×15 691 Proposed algorithm 693 694.68 3.81030 0.49973

Modified version 693 695.02 4.0071 0.5843

iteration the antibodies in the repertoire can be different. This
provides alternative scheduling plans for the decision maker
who can take into account other practical factors and adopt
the most suitable and appropriate optimal setting. For exam-
ple, the algorithm obtains 22 different scheduling plans for
the problem FT06 (6×6) with the same minimal makespan
value of 55 where two of these are shown in Figs. 8 and 9.
To improve the robustness of the scheduling system in real
situations, it is suggested to increase the adaptability and
flexibility of each operation by maximizing the slack time
of each operation. This helps the scheduling process reduce
the negative effect caused by some unexpected events, such

as the fluctuation of each operation’s processing time and
machine breakdown. Thus the first solution is selected from
Figs. 8 and 9.

Effectiveness of memory cells

To show the effectiveness of introducing the memory cells,
an experiment based on the benchmark problems is designed
to compare the proposed algorithm with its modified version
where memory cells extraction step is taken out. The results
are shown in Table 2, where only the cases with positive
average relative error are presented. It is obvious that the
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Table 3 Average iteration
number to achieve the optimal
solution

Problem Size Total iteration no. (T) Average iteration number to reach the optimal solution

Proposed algorithm Modified version
(without memory cells extraction)

FT06 6×6 36 1 1

LA01 10×5 50 1 1.04

FT10 10×10 100 16.42 44.78

ORB01 10×10 100 13.80 38.06

ORB03 10×10 100 48.04 74.56

ORB05 10×10 100 22.70 44.16

ORB07 10×10 100 11.78 23.90

ORB08 10×10 100 28.54 57.40

ORB09 10×10 100 19.66 51.00

ORB10 10×10 100 15.28 43.36

LA06 15×5 75 1 1.08

LA11 20×5 100 1 1.02

LA12 20×5 100 1 1.10

LA13 20×5 100 1 1.04

LA14 20×5 100 1 1.08

introduction of memory cells increases the chance to obtain
the optimal solution.

Additionally, for the cases where both approaches achieve
the optimal solution in all the runs, it is necessary to compare
the number of iterations when the approach first achieves
the optimal solution. The experiments results, as shown in
Table 3, illustrate that the algorithm with memory cells intro-
duced obtains the best schedule in fewer iterations. There-
fore, it is concluded that the use of memory cells accelerates
the convergence rate of the algorithm and reduces the com-
putation time.

Conclusions

This paper proposes a new hybrid algorithm based on the
clonal selection, immune network, and PSO theories for
solving static JSSP. The algorithm simulates the clonal
selection process of antibodies with improvement of the
mutation process by PSO. To demonstrate its feasibility and
efficiency, experiments are designed with the benchmark
problems under three perspectives. Firstly, PSO is demon-
strated to make a positive impact on the mutation process to
a certain degree as excessive use deteriorates the objective
value. Secondly, the algorithm is tested on 25 benchmark
problems and compared with other popular approaches. The
results demonstrate the competitiveness of the proposed algo-
rithm where multiple optimal solutions are obtained within
reasonable computation time, especially for some small size

problems in which the algorithm achieves the optimal solu-
tion in less than 3 s. Thirdly, one of the key features of AIS—
immune cells extraction is demonstrated to have the ability
to accelerate the convergence.

As AIS show good learning and memory capabilities and
strong adaptability to the dynamic environment, it is possible
to adapt other immune theories that are associated with self-
regulation and control of dynamic situations, such as den-
dritic cell algorithm and idiotypic network, to deal with
dynamic JSSP where unexpected disturbances are consid-
ered in the scheduling process. We find that this research
direction is fruitful in practice in our current research.
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