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WISE: Warped Impulse Structure Estimation for
Time-Domain Linear Macromodeling

Chi-Un Lei and Ngai Wong, Member, IEEE

Abstract— We develop a rational function macromodeling
algorithm named warped impulse structure estimation for macro-
modeling of system responses with time-sampled data. The ideas
of digital filter design, Walsh theorem, and complementary signal
are introduced to convert the macromodeling problem into a non-
pole-based Steiglitz–McBride iteration without initial guess and
eigenvalue computation. Furthermore, we introduce frequency
warping as a preprocessing step to improve the numerical con-
dition in the computation. We demonstrate the fast convergence
and the versatile macromodeling requirement adoption through a
P-norm identification expansion, using examples from practical
structures.

Index Terms— Discrete-time domain, frequency warping,
macromodeling, system identification, time domain.

I. INTRODUCTION

W ITH the increasing operation frequency and decreasing
feature size of integrated circuits (ICs), high-frequency

effects have become dominant factors that limit IC system
performance. Therefore, in the design phase, accurate and
efficient macromodeling is required to capture the high-
frequency behaviors of systems for pre-layout simulation
and signal integrity verification. However, a full-wave elec-
tromagnetic analysis over the global system is impractical.
To generate reduced macromodels for efficient simulation,
frequency-domain algorithms, such as vector fitting (VF) and
its variants [1], have been used. Frequency-domain macromod-
eling requires spectral information which involves complicated
measurement and capture of relatively long data sequences.
Owing to its high computational cost, the full-wave analysis is
usually terminated before all transient responses vanish so that
truncated time responses are obtained. Macromodeling from
truncated time-sampled data is therefore desirable.

In the past, subspace-based state-space system identification
techniques [2] and generalized pencil-of-function methods [3]
have been used for the identification of linear structures with
time-sampled data. However, these methods are based on
large-scale matrix operations and expensive singular value
decomposition (SVD), and are less practical for macromod-
eling. VF-related techniques such as time-domain vector fit-
ting (TD-VF) [4] and discrete-time domain vector fitting
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(TD-VFz) [5] have been developed for macromodeling of
time-sampled data with lower computational cost, and they
have also been extended to multiport/multiple-input-multiple-
output (MIMO) macromodeling. However, their performance
is limited by the numerically sensitive pole-basis calculation,
expensive eigenvalue computation, and phase distortion due to
nonlinear pole flipping.

In light of the discrete-time nature of the fixed time-step
time-sampled response, a least-squares (LS) macromodeling
technique (VISA) has been proposed recently [6], [7]. The
idea is to regard the system response as a finite-length discrete
response sequence of a finite-impulse-response (FIR) filter,
and then an LS infinite-impulse-response (IIR) filter [8],
usually of much lower order, is used to approximate the FIR
response. This (low-order) IIR filter then provides a rational
function capture of the macromodel. Compared to VF-based
algorithms, VISA alleviates the computation in each iterative
step and avoids the numerically sensitive eigenvalue compu-
tation, nonlinear pole flipping and initial pole assignment.

In this paper, we generalize VISA by introducing a
frequency-warping process and propose warped impulse struc-
ture estimation (WISE) for efficient time-domain macromod-
eling. After the introduction in Section II, the mechanism
of the core of WISE, the algorithm convergence analy-
sis, convergence-related features (model order selection and
P-norm identification) and MIMO extension are shown in Sec-
tion III. Frequency warping, which redistributes the response
spectral information for the ease of numerical computation,
is proposed in Section IV. Macromodeling examples of real-
world data in Section V then confirm the efficiency and
accuracy of WISE.

II. TIME-DOMAIN MACROMODELING

Multiport linear macromodeling aims at modeling a linear
multiport structure with p input ports and q output ports,
whose responses can be obtained by exciting one input port
at a time and computing or measuring the responses at all
output ports. A multiport macromodel is often cast as a MIMO
transfer matrix with a common denominator (poles) and a
specific numerator (zeros) for each port response, e.g., for
the ease of generating SPICE circuit models. Macromodeling
techniques intend to fit the rational function

̂fu,v (s) = Pu,v (s)

Q (s)
=

N
∑

n=0

pu,v (n) sn

qnsn
= d +

N
∑

n=1

ru,v (n)

s − αn
(1)

where pu,v (n) , q (n) ∈ R, q (0) = 1, to the desired response
fu,v (s) at a set of computed/measured points at input port
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u (1 ≤ u ≤ p) and output port v (1 ≤ v ≤ q). The
data points can be frequency-sampled data [i.e., fu,v (sm),
for m = 1, 2, . . . , Ns ] or discrete-time-sampled data (i.e.,
input response Wu,v [m] and output response Yu,v [m], for
m = 0, 1, . . . , L − 1). For ease of explanation, the single-
input-single-output case is used in the following exposi-
tion. The extension to multiport macromodeling is presented
in Section III-H.

In time-domain macromodeling, TD-VF [4], [9], a
reformation of VF [1], attempts to fit the rational function (1)
to a set of calculated/sampled data points at given time in
the continuous-time domain with the help of a discretization
process during each iteration. A discrete-time domain (i.e.,
z-domain) formulation of TD-VF, called TD-VFz, was pro-
posed in [5]. TD-VFz is also a time-domain generalization
from VFz [10], which is a z-domain formulation of VF. As
in TD-VF, TD-VFz uses z-domain partial fractions to seek a
rational approximation, ̂F(z), to the desired z-domain response
F(z) and exploits special features of z-domain macromodel-
ing [11]. Furthermore, the convergence of TD-VFz is improved
because of the omission of discretization process and the
improved numerical condition for macromodeling. However,
their performance is limited by the weak numerical properties
of the iterative-based framework.

III. CORE FORMULATION OF WISE

Compared to existing algorithms, a promising observation
in the core of WISE (the original VISA) is that, through
a few generalizations, the identification problem boils down
to finding an appropriate allpass operator. As a result, the
numerator polynomial P(z) and the denominator polynomial
Q(z) can be determined based on simple division algorithm,
without exactly finding the location of poles. The exterior
spectral processing part of WISE is discussed in Section IV.

In the following sections, the obtained output response is
assumed to be generated by a normalized input pulse response
[w (0) = 1 and w (m) = 0 for m = 1, 2, . . . , L − 1].
Therefore, we assume the input signal is a narrow Gaussian
pulse signal, or the original output response is deconvoluted
with the original input response. Then the output signal y(t)
is treated as a digital FIR filter response H (z), and a digital
IIR filter approximation algorithm [8] is applied to generate
the linear macromodel.

A. Numerator Calculation

First, we define the error term �(z) as

�(z) = H (z) −
(

P(z)

Q(z)

)

(2)

where H (z) is specified as an FIR filter response approxi-
mation of a system, and H (z) = ∑L

m=0 hmz−m , hm ∈ R

and h0 �= 0. Computing P(z)/Q(z) requires nonlinear com-
putations, but if poles (α1, α2, . . . , αN ) are given, based on
Walsh’s theorem [12], the best L2 approximation to H (z)
is the unique function that interpolates to H (z) in all the
points, where z = ∞, 1/α∗

1, 1/α∗
2, . . . , 1/α∗

N , and ∗ denotes

hL h1h0

0 1
p1p0

L

z−NP(z−1)

z−LH(z−1)

z−L

0 L−2 L−1

rL−1rL−2 r0r1

1
+

−
z−NQ(z−1)/Q(z)

1/Q(z)
N

pN pN−1

L−1

N−110

hL−1··· ···

···

Fig. 1. Illustration of the digital filtering relationship in the interpolation
problem (6).

complex conjugate. For the situation with no repeated poles,
it means

H (z)|z=zk
= P(z)

Q(z)

∣

∣

∣

∣

z=zk

(3)

where k = 0, 1, . . . , N , and (3) dictates that �(z) vanishes
in the points zk [12]. Since the approximant is the impulse
response approximation of a system, the interpolation (3) is
used to describe �(z), and can be represented by a cascade
of a causal FIR filter R(z) and an allpass filter A(z) [13]

�(z) = A(z)z−1 R(z) = z−N Q(z−1)

Q(z)
z−1 R(z) (4)

where R(z) = ∑L−1
m=0 rm z−m and the zeros of A(z) are the

interpolation points zk . With (2), the interpolation problem
can be expressed by

P(z) = H (z)Q(z) − z−(N+1)Q
(

z−1
)

R(z). (5)

Through an elementwise vector flipping, (5) becomes

Q(z)
[

z−(L−1) R
(

z−1
)]

=
[

z−L H
(

z−1
)] [

z−N Q
(

z−1
)]

− z−L
[

z−N P
(

z−1
)]

⇒ Y (z) = z−N Q
(

z−1
)

Q(z)
X1(z) − z−L

Q(z)
X2(z) (6)

where U(z) = (z−L H (z−1))A(z) = ∑∞
m=0 um z−m , X1(z) =

z−L H (z−1), X2(z) = z−N P(z−1), and Y (z) = z−(L−1)

R(z−1). An illustration of the digital filtering relationship
in (6) is shown in Fig. 1. By equating the signal locations, (6)
can be described as an input–output description of a digital
filtering operation

rL−1−m = um (m = 0, 1, . . . , L − 1). (7)

That is for the first L time instances, [rL−1rL−2 · · · r0] =
[hLhL−1 · · · h0] ⊗ z−N (Q(z−1)/Q(z)) and ⊗ denotes the
convolution.

B. Denominator Calculation

In numerical calculation, (4) is modified for designing an
allpass operator A(i)(z) of a given order N , in the i th iteration,
with

�(i)(z) = A(i)(z)z−1 R(i)(z)

= z−N Q(i)
(

z−1
)

Q(i−1)(z)
z−1 R(i)(z). (8)

Since ‖�(i)(z)‖ = ‖R(i)(z)‖ = ‖U (i)(z)‖ in (4) and (7),
WISE involves a digital filtering operation (convolution) and
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Algorithm 1 Pseudocodes of the core of WISE

1: Find H (z), and Q(0)(z) := 1;
2: repeat
3: Calculate X (i)(z) through (9) with the given H (z) and

Q(i−1)(z);
4: Construct d(i) and B(i) through elements of X (i)(z)

by (11);
5: Calculate the new Q(i)

1 (z) and R(i)(z) by (7) and (11);
6: until Q(i)

1 (z) converges after NT iterations;
7: Calculate P(z) through (6) and (7) with the given H (z),

Q(NT )(z) and R(NT )(z);

a set of overdetermined equations to minimize ‖�(i)(z)‖.
First, we define Q(0)(z) := 1, Q(i)(z) = 1 + Q(i)

1 (z)z−1,
Q(i)

1 (z) = ∑N−1
n=0 q(i)(n + 1)z−n , where Q(i)

1 (z) contains
transient characteristics of the system and is used in the
interpolation. By (4), (7), and (8), a filtering operation (9) and
a relationship (10) are set up to solve the LS problem (11)

X (i)(z) =
∞
∑

n=0

x (i) (n) z−n = z−L H
(

z−1
)

Q(i−1)(z)
(9)

U (i)(z) = z−L H
(

z−1
)

(

z−N Q(i)
(

z−1
)

Q(i−1)(z)

)

⇒ U (i)(z) = X (i)(z)z−N
(

1 + Q(i)
1

(

z−1
))

⇒ U (i)(z) = z−N X (i)(z)+X (i)(z)z−(N−1)Q(i)
1

(

z−1)

(10)

min
∥

∥

∥�(i)(z)
∥

∥

∥

2
= min

∥

∥

∥U (i)(z)
∥

∥

∥

2
= min

∥

∥

∥B(i)q(i) − d(i)
∥

∥

∥

2
(11)

where q(i) = [ q(i) (N) · · · q(i) (1) ]T

d(i) = −
[

0 · · · 0 x (i) (0) · · · x (i)(L − M − 1)
]T

B(i) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x (i) (0) 0 · · · 0

x (i) (1) x (i) (0)
. . .

...
...

...
. . . 0

x (i) (N − 1) x (i) (N − 2) · · · x (i) (0)
...

...
...

x (i) (L − 1) x (i) (L − 2) · · · x (i) (L − N)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Allpass operator (8) converges after sufficient iterations NT ,
and we take Q(z) := Q(NT )(z). The pseudocodes summarizing
the flow of the core of WISE is shown in Algorithm 1.

Some implementation remarks are in order.

1) P(z) can be found analytically with the given polyno-
mials H (z), Q(z), and R(z) through (6) and (7), and
Q(z) can be obtained numerically from (7) and (11).
Therefore, the macromodel can be obtained without
knowing the location of poles [i.e., the zeros of Q(z)].

2) By applying Cauchy–Schwarz inequality, it is proved
that for an arbitrary X (i)(z) which minimizes (11), the
maximum pole (zeros of Q(z)) radius is always < 1,
i.e., the macromodel is always stable [8]. Therefore, the

macromodel phase response will not be deteriorated by
the pole flipping technique used in VF.

3) WISE may not generate a passivity-guaranteed macro-
model. However, passivity check/enforcement tech-
niques in the continuous-time domain (as shown in [14])
can be used to rectify the model, since the bilinear
continuous-to/from-discrete- transformation is passivity-
preserving [15]. Furthermore, discussions about passiv-
ity in z-domain system can be found in [15].

4) WISE is proposed to identify fixed-time step responses.
We may convert the variant time step response into
fixed-time step response through downsampling and
signal interpolations with considerations of sampling
frequency [16]. However, the interpolated response may
lose information in the densely sampled region due to
the downsampling process.

C. WISE: Reformulation of Steiglitz–McBride (SM) Iteration

From (8), the objective function of WISE in the i th iteration
becomes

min
L−1
∑

j=0

∣

∣

∣�(i) (z j
)

∣

∣

∣

2= min
L−1
∑

j=0

∣

∣

∣

∣

∣

∣

z−N Q(i)
(

z−1
j

)

Q(i−1)
(

z j
) z−1 R(i)(z j

)

∣

∣

∣

∣

∣

∣

2

= min
L−1
∑

j=0

1
∣

∣Q(i−1)
(

z j
)∣

∣

2

∣

∣

∣z−(N+1) Q(i)
(

z−1
j

)

R(i) (z j
)

∣

∣

∣

2

= min
L−1
∑

j=0

1
∣

∣Q(i−1)
(

z j
)∣

∣

2

∣

∣

∣Q(i) (z j
)

H
(

z j
)

−
(

Q(i) (z j
)

H
(

z j
) − z−(N+1)Q(i)

(

z−1
j

)

R(i) (z j
)

)∣

∣

∣

2

= min
L−1
∑

j=0

1
∣

∣Q(i−1)
(

z j
)∣

∣

2

∣

∣

∣Q(i) (z j
)

H
(

z j
) − P(i) (z j

)

∣

∣

∣

2
.

(12)

Consequently, WISE is considered as a reformulation of the
SM iteration [17]. For sufficient order macromodels in white
noise environments, the convergence rate of SM iteration is
related to the signal-to-noise ratio (SNR) [18].

D. Macromodel Order Selection

As a reformulation of SM iteration, WISE provides a priori
error bound for an N th-order approximant, namely

min
deg( P

Q )=N

⎛

⎝

1

2π

∫ π

−π

∣

∣

∣

∣

∣

H (e jω) − P(i)(e jω)

Q(i)(e jω)

∣

∣

∣

∣

∣

2

dω

⎞

⎠

1
2

≤ σN+1

(13)

where σn stands for the nth Hankel singular values (HSVs).
This error bound is important, as it provides a certificate
for the identification accuracy and can be used to select the
approximant order. It is shown that the singular value of
an upper triangular Hankel matrix H is equivalent to the
HSVs of the impulse response system [19]. The HSVs can be
computed efficiently and arranged in descending magnitude
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Fig. 2. Illustration about the complementary signal of a triangular signal.

characterizing the order of importance of each state. Exactly
analogous to balanced truncation [19], the macromodel order
N is chosen such that σN 
 σN+1. This approach gives a
metric to determine an appropriate macromodel order.

E. Interpretation of the Algorithm Derivation Using Comple-
mentary Signal Concept

To calculate Q(z), conventional methods have to extract
response characteristics using eigenvalue calculations. WISE
determines Q(z) through an energy-conserved allpass filter
characteristic, denoted as the complementary signal [20]. An
illustration of the complementary signal of a triangular signal
is shown in Fig. 2. First, the time-reversed response signal
of the FIR filter H (z) is defined as ˜H [k], where k =
0, 1, . . . , L − 1. The idea of complementary signal is that,
if ˜H [k] is fed into the allpass filter A(z) of which the time
response is A [m], m = 0, 1, . . ., then the energy of the allpass-
filtered time-reversed signal a [n] = A [m]⊗ ˜H [k] (⊗ denotes
convolution) is distributed as

∞
∑

n=−∞
|a [n]|2 =

∞
∑

n=−L+1

|a [n]|2

=
0

∑

n=−L+1

|a [n]|2
︸ ︷︷ ︸

�1

+
∞
∑

n=1

|a [n]|2
︸ ︷︷ ︸

�2

(14)

where �1 is the approximation error energy and �2 is the
energy of the approximant. Through an allpass filtering and
array operations, an arbitrary signal can be separated into an
error signal and an approximant signal in the time domain. The
algorithm objective is to design an N-th order allpass filter that
minimizes the error energy, i.e., the energy within duration
0 ≤ n ≤ L − 1 during the energy redistribution [8], [20].
In WISE, an iterative approach is used to determine A(z) by
setting the energy minimization objective, which is described
by (14), into the LS solving in (11).

F. Numerical Performance Comparison with Other Algorithms

As a simplification of SM iteration, WISE can be interpreted
as a class of first-order interpolation and second-order interpo-
lation problem [13]. Compared to the first-order interpolation
(e.g., Padé approximation), SM iteration compensates the
information of truncated responses (which always happens in
time-domain macromodeling) during identification, generates
stable macromodels and works robustly in noisy responses.

In the numerical sense, conventional SM iteration suffers
from ill-conditioned calculation with hundreds of sampled
data. Compared to other algorithms, WISE simplifies the
numerical computation process, so it improves numerical
accuracy and shortens computation time. WISE is also superior
to other SM-related algorithms for the following reasons.

1) It uses frequency-/time-independent polynomial basis
instead of frequency-/time-dependent pole-based basis.
Therefore, it does not require initial-pole assignment
(since Q(0)(z) := 1), and its calculation is not deteri-
orated by: 1) the dynamic behavior and the initial guess
of pole-based basis, and 2) the dynamic behavior of
frequency/time parameters [21].

2) The denominator polynomial Q(z) can be calculated
through convolution (vector multiplication) and overde-
termined equation-solving in (7) and (11). The numer-
ator polynomial P(z) can be numerically obtained
through convolution and elementwise operation in (6)
and (7), which does not involve any numerically sensi-
tive calculations (e.g., root finding or numerical integra-
tion) and matrix operations. Therefore, the computation
is numerically robust and efficient [22].

G. P-Norm Identification Criterion

The selection of identification criteria is important for
system identification. The identified model should admit an
exact description of the real system. An L2-norm error pre-
diction is usually used in VF. Other criterion extensions
can also be developed for specific applications. The 2-norm
(L2) identification in (12) can be generalized to a P-norm
(L p) one, which meets different macromodeling requirements
and gives a more realistic description of the system. For
example, L∞ (Chebyshev norm) identification gives a smaller
macromodel for a linear-phase response, L2 identification
gives a more accurate macromodel for a noisy response,
and L1 identification is favorable for system identification
with impulsive-noise-contaminated signals (outliers). For a
P-norm identification, the minimization framework (12) is
generalized to

min
L−1
∑

j=0

∥

∥

∥�(i) (z j
)

∥

∥

∥

p
= min

∥

∥

∥B(i)q(i) − d(i)
∥

∥

∥

p

= min
L−1
∑

j=0

1
∥

∥Q(i−1)
(

z j
)∥

∥

p

∥

∥

∥Q(i) (z j
)

H
(

z j
) − P(i) (z j

)

∥

∥

∥

p

(15)

for which the overdetermined equations (15) can be solved
using any optimization tools (e.g., CVX [23]) effectively. It is
noted that P-norm identification may deteriorate the L2 con-
vergence property, whereas L∞-constrained L2 identification
can be used to guarantee the convergence.

H. Multiport System Macromodeling in WISE

VF-like algorithms require a large system equation to
macromodel a multiport system, so the port splitting method is
applied to fit a subset of port responses at one time, which are
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then combined into a large macromodel [24]. Here, the transfer
matrix with a common denominator is used so that Walsh’s
theorem can be applied to multiport macromodeling. The
optimal numerator polynomial can be calculated through (6)
and (7) by replacing H (z) in (6) by Hu,v(z). The common
denominator is calculated by the same basis function for all
port responses, then all the elements of Bp×q are stacked into
a single column of overdetermined equations

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

B(i)
1,1

B(i)
1,2
...

B(i)
p,q

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

q(i)
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

d(i)
1,1

d(i)
1,2
...

d(i)
p,q

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(16)

where B(i)
u,v and d(i)

u,v are B and d in (11) for input port u (1 ≤
u ≤ p) and output port v (1 ≤ v ≤ q), respectively. The model
order selection for the multiport macromodeling can be devel-
oped based on the derivation in Section III-D. A significant
advantage of MIMO WISE is that it has an O

(

N2 Lpq
)

com-
plexity in each iteration in LS for the denominator polynomial
calculation of a multiport system, whereas the original TD-VF
and TD-VFz have an O

(

(pq + 1)2 N2 Lpq
)

complexity for
each iterative pole calculation, and other algorithms [2], [3]
have an even higher computation complexity. Hence, signifi-
cant memory storage and computation time can be saved by
using WISE, which makes WISE a powerful macromodeling
tool.

IV. FREQUENCY WARPING IN WISE

In this section, the exterior z-domain spectral processing
part of WISE is introduced. In short, the z-domain macro-
modeling is generalized to a frequency-warped z-domain
(̃z-domain) macromodeling for a better conditioned identifica-
tion, through a parameter-controlled first-order mapping [25].

Frequency warping changes the signal sampling rate with
respect to the frequency. It modifies the spectral distri-
bution in order to achieve a better numerical condition.
When the response is warped, the emphatic region of the
frequency response is stretched and the remaining regions
compressed, which gives a higher resolution (accuracy) in
the emphatic frequency region and a lower resolution in
other regions. The response is warped through a first-order
allpass mapping, which preserves the model order and avoids
numerical failure in long signal sequence transformation.
Furthermore, frequency warping reduces the condition number,
and thus delivers a more accurate solution. The warping
also preserves the stability and optimality in the Chebyshev
sense [26].

From a conformal mapping perspective, the warping starts
by replacing the original variable z−1 by a new variable z̃−1.
For example, distinct points z−1

1 , z−1
2 , and z−1

3 in the z-domain
plane are mapped to distinct points z̃−1

1 , z̃−1
2 , and z̃−1

3 in the
z̃-domain plane. In our situation, z-domain dc is mapped to
z̃-domain dc (i.e., z−1

1 = z̃−1
1 = 1) and half the sample rate in

z-domain is mapped to half the sample rate in z̃-domain (i.e.,
z−1

2 = z̃−1
2 = −1) [25]. Therefore, the first-order (bilinear)
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Fig. 3. Relationship of the sampled location between the z-domain (original
frequency) and the z̃-domain (warped frequency) with different warping
parameters (γ ).

transformation can be expressed by

z̃−1 = z−1 + γ

1 + γ z−1 and γ = z̃−1
3 − z−1

3

1 − z−1
3 z̃−1

3

(17)

where γ is the warping parameter to describe the emphatic
location of the warped frequency response. The mapping of
the sampled location between z-domain and z̃-domain of some
γ values is shown in Fig. 3. The mapping with γ = 0 gives the
original mapping (i.e., z̃ = z). When 0 < γ < 1, the warping
gives a more accurate identification for the low-frequency
region, rendering it suitable for practical macromodeling struc-
tures with lowpass responses.

From a z-domain system perspective, the warping starts by
replacing the unit-delay operator z−1 in the original signal
system H (z) by an allpass operator z̃−1 in the system of the
warped signal G (̃z)

H (z) ≈ G (̃z) ⇔
L

∑

m=0

hmz−m ≈
L

∑

m=0

gmz̃−m . (18)

The warping of time-sampled response is performed through
an allpass filtering, i.e., gm = ∑L

n=0 hn
(

z̃−1 (m)
)n

. After
macromodeling in the z̃ domain, the z̃-domain approximant
̂G (̃z) can also be converted to the z-domain approximant
̂H(z) through an inverse bilinear transform of (17). Frequency
warping can be applied for multiport macromodeling, by
calculating the common poles of the macromodel in the
warped domain and the numerator for each port response in
the original domain.

The selection of the warping parameter γ is instrumental to
an accurate identification. Although it is difficult to find the
globally optimal γ due to its case dependence, we can select
a γ that linearizes the frequency response in its corresponding
domain, i.e., finding γ by min−1<γ<1

|(d2/dz̃2)G (̃z)|, as an

empirical guess. γ can also be optimized using the bisection
method with the identification error as the optimization
criterion.

V. NUMERICAL EXAMPLES

WISE is coded in MATLAB m-script files and run in the
MATLAB 7.5 environment on a 1-GB RAM, 3.4-GHz PC.
We use several practical examples to show the performance
of WISE.



136 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 2, NO. 1, JANUARY 2012

0 0.2 0.4 0.6 0.8 1
−30
−20
−10

0

Normalized frequency

M
ag

. (
dB

) S(1,1)

WISE
Original

0 0.2 0.4 0.6 0.8 1

−20
−10

0

Normalized frequency

M
ag

. (
dB

) S(1,2)

0 0.2 0.4 0.6 0.8 1

−50

0

Normalized frequency

M
ag

. (
dB

) S(1,3)

0 0.2 0.4 0.6 0.8 1

−40
−20

0

Normalized frequency

M
ag

. (
dB

) S(2,1)

0 0.2 0.4 0.6 0.8 1
−40

−20

0

Normalized frequency

M
ag

. (
dB

) S(2,2)

0 0.2 0.4 0.6 0.8 1

−20
−10

0

Normalized frequency

M
ag

. (
dB

) S(2,3)

0 0.2 0.4 0.6 0.8 1

−20
−10

0

Normalized frequency

M
ag

. (
dB

) S(3,1)

0 0.2 0.4 0.6 0.8 1
−40

−20

0

Normalized frequency

M
ag

. (
dB

) S(3,2)

0 0.2 0.4 0.6 0.8 1
−30
−20
−10

0

Normalized frequency

M
ag

. (
dB

) S(3,3)

Fig. 4. Magnitude responses of S(u,v) of the circulator example using WISE
in normalized frequency domain. S(u,v) is the scattering parameter at the input
port u and output port v .

TABLE I

COMPARISON BETWEEN WISE AND TD-VF IN THE

CIRCULATOR EXAMPLE

25th order 32nd order

WISE TD-VF WISE TD-VF

Max. deviation 0.0019 0.0028 0.0011 0.0013
when converged
Avg. rms error 0.0069 0.0085 0.0055 0.0051

when converged
CPU time for 4.07 64 5.72 77

convergence (s)
CPU Time to 3.10 38 4.29 44

−40-dB error (s)

A. Macrmodeling of a Three-Port RF Circulator

The first example is from a three-port counterclockwise RF
circulator [27]. Time-domain transient scattering responses are
computed ranging up to 4 GHz. All the nine port responses
are excited and fitted simultaneously using the core WISE
with a 25th-order macromodel. Time samples are taken at
the intervals of 86 ps for the first 800 points (6.88 μs). The
algorithm requires 13 iterations (4.07 s) to converge. Figs. 4
and 5 plot, respectively, the normalized frequency-domain
responses and the time-domain responses of the converged
approximant. Since there is a measurement defect at 0.68 fs

in the sampled data, WISE demonstrates robust and accurate
fitting in both time and frequency domains. The model is
also generated with TD-VF [9], which is commonly used
in commercial tools (such as IdEM [24]). The quantitative
comparison of both algorithms is shown in Table I. It shows
that WISE is an accurate (18% less average rms error after
convergence) and efficient algorithm (>15× faster for conver-
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Fig. 5. Time responses of S(u,v) of the circulator example using WISE.
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Fig. 6. L2 error in macromodeling using TD-VF and WISE in the circulator
example. (a) 25th-order macromodel. (b) 32nd-order macromodel.

gence and >12× faster to achieve a −40 dB accuracy). The
data is further fitted using WISE and TD-VF with a 32nd-order
macromodel. From Table I, WISE again generates a more
accurate macromodel in the L∞ sense and with more efficient
computation. Fig. 6 shows the L2 error during iterations for
the two cases, showing that WISE converges much faster than
TD-VF, due to the simple computation in WISE. In general,
WISE converges quickly (within 60 iterations) for general
responses, and actually faster for minimum-phase responses.
We also check the robustness of the WISE by repeating the
circulator example with a 25th-order model under an SNR
of 30 dB. In this case, WISE converges with a −33.5 dB
error.

B. Model Order Selection in WISE

Next, we investigate the use of HSVs in practical guiding
the model order selection in WISE. Computing the HSVs of
the example requires 3 s, and Fig. 7(a) shows the HSVs of
the circulator example impulse responses. The figure shows
a drop in HSVs, significant at first and gradual afterwards.
Region of the largest HSVs and the relative error of different
macromodel orders are shown in Fig. 7(b).
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TABLE II

COMPARISON BETWEEN DIFFERENT P -NORM IDENTIFICATIONS, WHERE

2∗ REPRESENTS L∞-CONSTRAINED 2-NORM IDENTIFICATION

P-norm approx. L1 err. L2 err. L∞ err. CPU time (sec.)

1 0.0932 0.0111 0.0042 213.67
2 (CVX) 0.0674 0.0028 4.4e-4 4.44

∞ 0.0664 0.0027 3.1e-4 7.05

2∗ 0.0657 0.0027 2.7e-4 3.35
2 (QR) 0.0674 0.0028 4.4e-4 0.11

C. P-Norm Identification in WISE

Response S(1, 1) has been extracted and fitted with the crite-
ria of 1-norm, 2-norm, L∞-constrained 2-norm, and ∞-norm,
using CVX [23] and a 13th-order macromodel. The result
is compared to the 2-norm criteria using QR decomposition
(LSQR). The implementation details are shown in Table II.
It shows that identifications can be faster (24.5 % CPU time
reduction) and more accurate (3.5% L2 error and 29.5% L∞
error reduction) using nontraditional norm criteria, compared
to LS-CVX identification. Compared to the original approach,
P-norm identification can give a more accurate solution, at
the expense of more computation time.

D. Macromodeling of a Time-Delayed Backplane Channel

This test example is from modeling an electrically long
(40.5”) differential transmission channel on a full mesh ATCA
backplane [27]. The 750-point time-sampled response ranging
up to 15 GHz is excited, normalized, and fitted using the
core WISE. Since the delayed output signal cannot be fitted
directly, the principal delay of the output signal is extracted
by signal shifting before identification. The delay-extracted
output signal is fitted with a 30-pole approximant, ending up
at a relative error of −49.77 dB. It takes 5 iterations (0.0716 s)
for WISE to reach convergence. The delay is included as
z−(Td/Ts )(P(z)/Q(z)) during the post processing stage, where
Td is the delay time and Ts is the sampled time. Fig. 8(a)
and (b) plot the fitting of the delay-extracted frequency-domain
responses and the time-domain responses, respectively. Both
show that WISE delivers excellent accuracy in modeling time-
delayed responses, which often appear in on-board structures
with high operating frequency.

E. Macromodeling of On-Chip Passive Structures

The four examples in [28] are from the macromodeling of
measured two-port time responses of on-chip passive struc-
tures: a meander resistor (RPOLY2-ME), a spiral inductor
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Fig. 8. Response of the differential channel example using WISE.
(a) Magnitude response with delay extraction in normalized frequency domain.
(b) Time domain response.

TABLE III

COMPARISON BETWEEN WISE AND TD-VF IN THE ON-CHIP

STRUCTURE EXAMPLES. THE BRACKETED VALUE IS THE TD-VF RESULT

Max. Avg. rms CPU
deviation error (s)

RPOLY2-ME 0.0002(0.0004) 0.0006(0.0008) 0.24(8)
CMIM 0.0001(0.0032) 0.0005(0.0149) 0.40(8)

SP-SMALL 0.0003(0.0008) 0.0007(0.0027) 0.63(8)
U-COPL 0.0003(0.0004) 0.0010(0.0011) 0.21(7)

(SP-SMALL), a coplanar line (U-COPL) and a metal-
insulator-metal capacitor (CMIM). These on-chip passive
structures often appear in compact and fully integrated chips.
TD-VF cannot give a converged result for the first three exam-
ples, whereas the core WISE produces converged solutions for
all cases. The quantitative comparison of the best result of
TD-VF and the converged result of WISE is shown in
Table III, generating macromodel with 51% less L2 error on
average and much faster computation.

F. Frequency Warping in WISE

Examples of the backplane in Section V-D are used for
demonstration. The 500-point time-sampled response of a dif-
ferential channel in the backplane is sampled at 3-ps intervals.
The response is delay-extracted and warped using (17) and
identified with a 40-pole approximant, where γ is optimized
using the bisection method. Fig. 9(a) plots the normalized
frequency responses of the original signal (z-domain), the
warped signal (̃z-domain) with γ = 0.4156, and the back-
transformed identification. Fig. 10(a) shows that warping with
γ = 0.4156 gives the best identification, which reduces the
L2 error by >73% (from 0.0215 to 0.0057) compared to the
original case (γ = 0). The error plot in Fig. 9(b) shows
that the z̃-domain identification error in the low-frequency
region is reduced compared to the z-domain identification, due
to the emphatic macromodeling in the low-frequency region.
In this example, the warped identification converged within
nine iterations for each γ , and the final solution converged
within six iterations (2.29 s) in the bisection method process.
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Furthermore, the maximum condition number of B in (11)
decreases significantly (from 1.6×1016 to 2.3×104), as shown
in Fig. 11. Therefore, it shows that an appropriate warping
can improve the numerical condition and the accuracy of the
identification. The crosstalk between two differential channels
is also modeled to generate a 60th-order macromodel with
the same warping configuration, whose frequency responses
and identification errors are shown in Fig. 9(c) and (d),
respectively. The L2 error of crosstalk macromodeling using
WISE is reduced by >48% (from 0.0035 to 0.0018).

In the above examples, the warped response is most
linearized for the differential channel with γ = 0.5,
which also gives a good fitting. It shows the γ , where

min−1<γ<1

∣

∣(d2/dz̃2)G (̃z)
∣

∣, can serve as a promising choice of

the warping parameter.
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Fig. 11. Maximum condition number during iterative calculations in two
macromodeling examples using frequency warping with 0 ≤ γ ≤ 0.7.

VI. CONCLUSION

WISE has been presented for the efficient generation of
discrete-time domain macromodels. It has been shown that
WISE constitutes a simplified MIMO SM iteration without
pole-sensitive computations and initial guess assignment. The
macromodel parameters can be efficiently obtained from an
allpass operator design process. Model order selection and
P-norm identification have been proposed to automate the
macromodeling process. Furthermore, frequency warping has
been introduced as a pre-processing step to improve the numer-
ical condition. Examples have confirmed that the superiority
of WISE over conventional algorithms.
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