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Non-Orthogonal Opportunistic Beamforming:
Performance Analysis and Implementation

Minghua Xia, Yik-Chung Wu, and Sonia Aı̈ssa, Senior Member, IEEE

Abstract—Aiming to achieve the sum-rate capacity in multi-
user multi-antenna systems where Nt antennas are implemented
at the transmitter, opportunistic beamforming (OBF) gener-
ates Nt orthonormal beams and serves Nt users during each
channel use, which results in high scheduling delay over the
users, especially in densely populated networks. Non-orthogonal
OBF with more than Nt transmit beams can be exploited to serve
more users simultaneously and further decrease scheduling delay.
However, the inter-beam interference will inevitably deteriorate
the sum-rate. Therefore, there is a tradeoff between sum-rate and
scheduling delay for non-orthogonal OBF. In this context, system
performance and implementation of non-orthogonal OBF with
N > Nt beams are investigated in this paper. Specifically, it is
analytically shown that non-orthogonal OBF is an interference-
limited system as the number of users K → ∞. When the inter-
beam interference reaches its minimum for fixed Nt and N , the
sum-rate scales as N ln

(
N

N−Nt

)
and it degrades monotonically

with the number of beams N for fixed Nt. On the contrary, the
average scheduling delay is shown to scale as 1

N
K lnK channel

uses and it improves monotonically with N . Furthermore, two
practical non-orthogonal beamforming schemes are explicitly
constructed and they are demonstrated to yield the minimum
inter-beam interference for fixed Nt and N . This study reveals
that, if user traffic is light and one user can be successfully served
within a single transmission, non-orthogonal OBF can be applied
to obtain lower worst-case delay among the users. On the other
hand, if user traffic is heavy, non-orthogonal OBF is inferior to
orthogonal OBF in terms of sum-rate and packet delay.

Index Terms—Multiple-input single-output (MISO), multi-user
scheduling, non-orthogonal transmission, opportunistic beam-
forming.

I. INTRODUCTION

FOR different scheduling strategies in the downlink of
multi-user wireless systems, there are two conflicting

goals. One is to satisfy the quality of service (QoS) require-
ments of different users, such as scheduling delay, and the
other aims to maximize system throughput [1], [2]. Round-
robin scheduling follows a strict order to serve each user once
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in each round such that it guarantees minimum scheduling
delay over the users. On the contrary, opportunistic scheduling
exploits multi-user diversity gain and achieves the sum-rate
capacity as the number of users K approaches infinity [3].
When the base station (BS) is equipped with Nt > 1 transmit
antennas, opportunistic scheduling can be implemented by
opportunistic beamforming (OBF), which generates N = Nt

beams and serves up to Nt users for each channel use [4],
[5]. While it achieves the sum-rate capacity, OBF can result
in significant scheduling delay over the users, especially in
densely populated networks. Specifically, when the number of
users K is large and all users have the same average signal-to-
noise ratio (SNR), the average scheduling delay for which each
user is served at least once is (K lnK)/Nt channel uses [1]. In
practice, shorter scheduling delay is much more desirable for
wireless applications in general and for delay-sensitive traffic
such as audio/video streaming, and is even a must for critical
data such as alarm applications [6]–[10].

Conventionally, opportunistic and round-robin scheduling
can be combined to keep a balance between scheduling delay
and sum-rate [11]. On the other hand, for the OBF, if N > Nt

beams are generated for each channel use, more users can be
simultaneously served and scheduling delay will be further
reduced. Unfortunately, in this case, inter-beam interference
will inevitably deteriorate the sum-rate. Therefore, there is
a tradeoff between sum-rate and scheduling delay when the
number of transmit beams N increases. This motivates us to
analytically investigate the performance and implementation
of OBF with N > Nt beams, by using the same amount
of system resource. Hereafter, the conventional OBF with
N = Nt beams is denoted by “orthogonal OBF” while the
scheme with N > Nt beams is referred to as “non-orthogonal
OBF”.

In order to simultaneously transmit on more than Nt

beams at the Nt-antenna BS, non-orthogonal beamforming
vectors have to be designed and analyzed. In [12], [13], a
Grassmannian beamforming scheme with N = Nt +1 beams
is proposed, where beamforming vectors can be constructed
from the vertices of a regular simplex in the space CNt

[14]. However, this construction cannot be extended to the
general case with N > Nt +1. In [15], a greedy algorithm is
proposed to construct non-orthogonal beamforming matrices
for arbitrary N . Unfortunately, the prior work [12], [13],
[15] show only some simulation results and no rigorous
analysis on the system performance has been made. Filling
this important gap, in this work we analytically investigate
system performance in terms of achievable sum-rate and
scheduling delay, and design optimal beamforming matrices
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achieving minimum inter-beam interference. In particular, our
results include previously reported results under orthogonal
transmission as special cases.

Specifically, we focus on the general non-orthogonal OBF
with N > Nt transmit beams. Increasing N is essentially
equivalent to increasing the spatial multiplexing gain. On the
contrary, the inter-beam interference due to non-orthogonal
beams will inevitably deteriorate the data-rate on each beam.
Therefore, the key question is: how does the number of beams
N and inter-beam interference affect the final sum-rate? In this
paper, the achievable sum-rate and the sum-rate scaling law
are established. In particular, the sum-rate scaling law reveals
that non-orthogonal OBF is an interference-limited technique.
Moreover, when inter-beam interference is minimized for
fixed Nt and N , the sum-rate monotonically decreases with
the number of beams N .

On the other hand, increasing N allows transmitting to more
users during each channel use, thus decreasing scheduling
delay. Our results show that the average scheduling delay,
which guarantees that each user is served at least once,
improves monotonically with increasing number of beams N .
Moreover, when practical constraints on the received SINR
and outage probability are imposed, the maximum number of
supported transmit beams is derived.

As aforementioned, in order to maximize the sum-rate for
fixed Nt and N , the inter-beam interference shall be kept as
small as possible. But, in practice, how to explicitly construct
the non-orthogonal beamforming vectors to achieve the small-
est inter-beam interference remains an open problem. Thus,
in the last part of this paper, two practical non-orthogonal
beamforming matrices are proposed and they are shown to
achieve the minimum inter-beam interference.

This study reveals that, if user traffic is light and one user
can be successfully served within a single transmission, e.g.,
in alarm applications, non-orthogonal OBF can be applied to
obtain lower worst-case delay among the users [1]. On the
other hand, if multiple transmissions are needed to success-
fully serve a user, orthogonal transmission is preferable due
to its higher achievable sum-rate and lower packet delay.

The rest of this paper is organized as follows. Section II
describes the system model and the scheduling strategy. In
Section III, the distribution function of the received SINR is
developed. Section IV focuses on the performance analysis
based on the obtained SINR distributions. Section V illustrates
two practical non-orthogonal beamforming matrices. Simula-
tion results and discussions are presented in Section VI and,
finally, Section VII concludes the paper.

II. SYSTEM MODEL AND SCHEDULING STRATEGY

We consider the downlink transmission from a BS equipped
with Nt antennas to K single-antenna users. The number of
users, K , is assumed to be larger than the number of transmit
beams, N . The block-fading channels of different users are
mutually independent and identically distributed. The transmit
power is equally allocated among different transmit antennas,
and the average SNRs for all users are assumed to be identical.

At each time slot, N different symbols in the vector x =
[x1, · · · , xN ]H are simultaneously transmitted onto N differ-

ent beams, where (.)H denotes the Hermitian transpose opera-
tor. Prior to transmission, x is multiplied by a Nt ×N beam-
forming matrix B = [b1, · · · , bN ], where bn is the beam-
forming vector for beam n. Therefore, the received symbol of
user k is given by yk =

√
ρ
N

∑N
n=1 h

H
k bnxn+zk, where ρ is

the average SNR at the BS, hk = [hk
1 , h

k
2 , · · · , hk

Nt
]H is the

complex Gaussian channel vector between the BS and user k,
with zero mean and unit covariance matrix I, and zk denotes
the additive white Gaussian noise (AWGN) with zero mean
and unit variance.

As to the scheduling strategy at the BS, each user calculates
the received SINRs on N different beams, and feeds back the
maximum SINR and its corresponding beam index to the BS.
Specifically, the received SINR of user k on beam n is given
by

γk, n =
|hH

k bn|2
N
ρ +

N∑
l=1, l �=n

|hH
k bl|2

, (1)

where |x| denotes the amplitude of x. For user k, the
maximum SINR among N beams is determined as γ̂k =
maxn=1, ··· , N γk, n, and the corresponding beam-index is
n̂k = argmaxn=1, ··· , N γk, n. Therefore, the feedback per-
taining to user k is the pair (γ̂k, n̂k).

After receiving all the feedbacks at the BS, the user with
the maximum SINR among all users whose n̂k = n is chosen
to be served on beam n. More precisely, the maximum SINR
achieved through beam n is determined as

γ̂max, n = max {γ̂k} s.t. n̂k = n. (2)

III. DISTRIBUTION FUNCTION OF RECEIVED SINR

In general, increasing the number of transmit beams en-
hances spatial multiplexing gain but also increases the total
inter-beam interference, thus degrading the achievable sum-
rate. Aiming at assessing this tradeoff, we analytically inves-
tigate the distribution function of the received SINR in this
section. The system performance analyses are provided in the
next section.

With the principle of orthogonal projection, the beamform-
ing vector bl can be expressed in terms of bn via their cross-
correlation coefficient δl, n �

∣∣∣bHl bn

∣∣∣, that is, bl = δl, nbn +√
1− δ2l, n b

⊥
l, n, 1 ≤ l, n ≤ N , where b⊥l, n is the orthonormal

vector of bl to bn. Substituting the previous equation into (1)
and performing some algebraic manipulations, we obtain

γk, n = X

{
N

ρ
+

N∑
l=1, l �=n

[
δ2l, nX +

(
1− δ2l, n

)
Yl

+ δl, n

√
1− δ2l, n Zl

]}−1

, (3)

where X �
∣∣∣hH

k bn

∣∣∣2, Yl �
∣∣∣hH

k b⊥l, n
∣∣∣2, and

Zl � hH
k bn

(
hH
k b⊥l, n

)H

+ hH
k b⊥l, n

(
hH
k bn

)H

. (4)

Based on the theory of optimal Grassmannian line packing
[17], in order to guarantee that the correlation between any
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two beamforming vectors is as small as possible, beamforming
vectors must be symmetric, i.e., δl, n = δ0, where 1 ≤ l ≤ N
and l �= n. Define α � (N − 1)δ20 as the total inter-beam
interference from the other N − 1 beams on beam n. Also,
let β � 1 − δ20 , η � δ0

√
1− δ20 , Y �

∑N
l=1, l �=n Yl, and

Z �
∑N

l=1, l �=n Zl. Then, when the inter-beam interference
are symmetric, (3) can be rewritten as

γk, n =
X

N
ρ + αX + βY + ηZ

. (5)

Since hk is a complex Gaussian random vector and that bn
and b⊥l, n are normalized constant vectors, it is clear that X is
of exponential distribution with unit mean and unit variance,
and Y is of chi-square distribution with 2(N − 1) degrees of
freedom. Furthermore, the PDF of Z in (5) is summarized in
the following lemma.

Lemma 1: The PDF of Z in (5) is given by

f(z) =
1

2NΓ(N)
zN−1W0, N− 1

2
(2z), −∞ < z < +∞,

(6)
with zero mean and variance 2(N−1), where Wκ, μ(z) denotes
the Whittaker function [19, Eq.(13.14.3)].

Proof: See Appendix A.
Due to the high complexity of the PDF in (6), the exact

distribution function of γk, n in (5) is hard to obtain. However,
after carefully examining the distributions of αX , βY and
ηZ in the denominator of (5), we find that ηZ is negligible.
Specifically, βY has mean N−1 and variance (N−1)(1−δ20)

2,
and ηZ has zero mean and small variance 2(N−1)δ20(1−δ20),
since δ0 is usually very small (δ20 � 1) in order to avoid inter-
beam interference. For example, when N = 5 and δ0 = 0.25,
the PDF and cumulative density function (CDF) of αX , βY
and ηZ are plotted in Fig. 1. It is observed that the PDF of ηZ
is symmetric with respect to zero and its values are generally
much smaller than βY . Therefore, the effect of ηZ on the
received SINR γk, n is negligible, and (5) can be approximated
using

γk, n ≈ X
N
ρ + αX + βY

. (7)

Consequently, the CDF and PDF of γk, n in (7) can be,
respectively, expressed as

FΓk, n
(γ) = 1− exp

(
− Nγ

ρ(1− αγ)

)(
1 +

βγ

1− αγ

)−(N−1)

(8)
and

fΓk, n
(γ) =

exp
(
− Nγ

ρ(1−αγ)

)
(1− αγ)

(
1 + βγ

1−αγ

)
×

[
N

ρ

(
1 +

βγ

1− αγ

)
+ (N − 1)β

]
. (9)

Note that, as a special case, the orthogonal OBF with N =
Nt implies δ0 = 0 and, thus, α = 0 and β = 1. Putting α = 0
and β = 1 into (7), (8), and (9), the expressions reduce to the
exact counterparts under orthogonal case [18]. Consequently,
our analysis is general and applicable to either orthogonal or
non-orthogonal OBF. Also, the accuracy of the approximation
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Fig. 1. Distribution functions of αX , βY and ηZ in the denominator of
the received SINR in (5), with N = 5 and δ0 = 0.25.

in (7) will be further illustrated in Fig. 2, and is detailed in
Section VI.

Since the maximum SINR in (2) is given by γ̂max, n =
maxk=1, ··· ,K γk, n, by using the results from the theory of
order statistics, the CDF and PDF of γ̂max, n in (2) is,
respectively, given by

FΓmax, n(γ) = FK
Γk, n

(γ) (10)

and
fΓmax, n(γ) = K fΓk, n

(γ)FK−1
Γk, n

(γ). (11)

Note that when a user simultaneously obtains the maximum
SINR on different beams, the transmitter has to choose another
user who has the second largest SINR. This probability is very
small when the number of users is large [4], and it is neglected
herein.

IV. PERFORMANCE ANALYSES

Based on the distribution function of the received SINR, the
sum-rate scaling law is first investigated in this section. The
analysis of the average scheduling delay over the users then
follows. Moreover, when practical constraints on the received
SINR and outage probability are imposed, the maximum
number of supported transmit beams and access probability
are derived.

A. Sum-Rate Scaling Law

For beam n with received SINR γ̂max, n, the instanta-
neous data rate can be calculated by the Shannon formula
ln (1 + γ̂max, n) in the unit of nat/s/Hz. Moreover, since there
are N beams in total, the achievable sum-rate is given by

R =

N∑
n=1

E {ln (1 + γ̂max, n)} (12)

=

N∑
n=1

∫ +∞

0

ln (1 + γ)Kf
Γk, n

(γ)FK−1
Γk, n

(γ) dγ (13)
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= KN

∫ +∞

0

ln (1 + γ)f
Γk, n

(γ)FK−1
Γk, n

(γ) dγ, (14)

where (11) was exploited to reach (13). Due to the complicated
expressions of f

Γk, n
and F

Γk, n
in (8) and (9) respectively, the

integration in (14) has no closed-form expression and has to be
evaluated numerically. In order to gain insights into the sum-
rate, we instead derive the limiting distribution of γ̂max, n as
K → ∞. However, notice that the limiting distribution cannot
be obtained by directly applying K → ∞ in (10) since, for
any FΓk, n

(γ) < 1, (10) reduces to 0 as K → ∞ and hence
(10) is a degenerate distribution. In the following lemma, the
asymptotic theory of extreme order statistics is exploited to
attain a non-degenerate limiting distribution for γ̂max, n such
that the sum-rate scaling law is obtained.

Lemma 2: For the received SINR γk, n of user k with
respect to beam n, with CDF FΓk, n

(γ) and PDF fΓk, n
(γ)

given by (8) and (9) respectively, as the number of users
K → ∞, the limiting distribution of the maximum SINR in
(2) is of the Gumbel distribution. That is,

lim
K→∞

FΓmax, n(γ) = H3, 0

(
γ − a

b

)
, (15)

where H3, 0 (γ) = exp (−e−γ), and the normalizing parame-
ters a and b are given by

a =
ρ lnK

c+ ρα lnK
+O (ln lnK) , (16)

where the notation f(x) = O (g(x)) is defined as
limx→∞ |f(x)/g(x)| < ∞, and

b =
c2 (c+ ρβ lnK)

(c+ ρα lnK)2
[
N
ρ (c+ ρβ lnK) + c(N − 1)β)

] , (17)

respectively. In (16) and (17), the constant c � N+ρ(N−1)β.
Proof: See Appendix B.

Applying Lemma 2 to (12) yields:

R ≤
N∑

n=1

ln (1 + E{γ̂max, n}) (18)

= N ln (1 + a+ bΥ), (19)

where the Jensen’s inequality was exploited to derive (18)
from (12), the limiting distribution (15) was exploited to reach
(19) and Υ = 0.5772 · · · is the Euler’s constant. Moreover,
substituting (16) and (17) into (19) and examining it as K →
∞, the expression (19) reduces to a simple sum-rate scaling
law as given in the following theorem.

Theorem 1: When the total inter-beam interference α for
each beam is identical, and as K → ∞, the sum-rate of non-
orthogonal OBF scales as

R ∼ N ln

(
1 +

1

α

)
, (20)

where the notation f(K) ∼ g(K) is defined as
limK→∞ f(K)/g(K) = 1.

Special Case: The preceding analysis can be applied to
orthogonal OBF without inter-beam interference, i.e., where
δ0 = 0. In particular, putting α = 0, β = 1, and N = Nt into
(16), (17), and (19) results in the following formula for the

sum-rate as K → ∞
R′ ∼ Nt ln lnK, (21)

which is exactly the sum-rate scaling law under orthogonal
transmission [4]. Furthermore, comparing (20) with (21), it is
observed that, as K → ∞, for non-orthogonal OBF, multi-
user diversity gain vanishes and the sum-rate is dominated
by N and α while, for orthogonal OBF, multi-user diversity
gain always benefits the sum-rate since there is no inter-beam
interference.

The theorem above reveals that the sum-rate of non-
orthogonal OBF increases proportionally to the number of
transmit beams N , but it is offset by the total inter-beam inter-
ference α. That is, for fixed Nt and N , non-orthogonal OBF
is an interference-limited system. Clearly, in order to achieve
maximum R with fixed N and Nt, α must be kept as small
as possible. Practical non-orthogonal beamforming matrices
achieving the smallest α will be illustrated in Section V.

B. Average Scheduling Delay

For delay-sensitive traffic, the delay is usually analyzed
in terms of the waiting time of packets in the input/output
queues at the network layer, on average and over all users.
However, in order to provide delay guarantee for all users, we
have to study the delay for the most unfortunate user in the
network. Therefore, in [1], the scheduling delay is defined as
the minimum number of channel uses that guarantees each
of the users is served at least one packet. This definition
reflects the worst-case delay among the users, which roughly
determines the time scale required for the system to behave
fairly in a homogeneous network [1]. The guarantee of the
worst-case delay for all users is increasingly important in
commercial wireless systems.

Based on [1], the scheduling delay D1,K in this paper
is defined as the minimum number of channel uses that
guarantees each of the K users is served at least once. For
round-robin scheduling, it is clear that D1,K = K . For
opportunistic single-user scheduling, the average scheduling
delay scales as K lnK , while for the orthogonal OBF, it
scales as K lnK/Nt [1]. Based on the probabilistic arguments
similar to [22, Theorem 3], the following theorem shows
the average scheduling delay of non-orthogonal OBF with
N > Nt transmit beams.

Theorem 2: For the non-orthogonal OBF with N > Nt

transmit beams, as K → ∞, the average scheduling delay
is given by

E{D1,K} =
K

N
lnK + ω

(
K

N

)
, (22)

where the notation f(K) = ω (g(K)) is defined as
limK→∞ |f(K)/g(K)| = ∞.

Proof: For the non-orthogonal OBF with N beams, let the
event E denote a successful service that each of the K users is
served at least once after D channel uses. Moreover, let Nk,
where k = 1, · · · , K , refer to the actual number of service for
user k, that is,

∑K
k=1 Nk = DN . Then, the probability that

the event E occurs is given by

Pr{E} = Pr {N1 > 0, N2 > 0, · · · , NK > 0}
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= 1− Pr

{
K⋃

k=1

Nk = 0

}
≥ 1−K Pr {Nk = 0}

= 1−K

(
1− N

K

)D

. (23)

On the other hand, we have

Pr{E} = Pr {N1 > 0, N2 > 0, · · · , NK > 0}

≤
K∏

k=1

Pr {Nk > 0}

=

[
1−

(
1− N

K

)D
]K

≤ exp

[
−K

(
1− N

K

)D
]
, (24)

where in (24) we used the inequality 1−x ≤ exp(−x) for x <
1 [19, Eq.(4.5.7)]. Combining (23) with (24) yields Pr{E} →
1 if K

(
1− N

K

)D → 0. To this end, when K → ∞, we write

K

(
1− N

K

)D

= K exp

[
D ln

(
1− N

K

)]
∼ exp

[
−N

K

(
D − K

N
lnK

)
×

(
1 +O

(
N

K

))]
. (25)

Therefore, K
(
1− N

K

)D → 0 is equivalent to
N
K

(
D − K

N lnK
) → ∞, which yields the intended (22).

This theorem implies that, for the non-orthogonal OBF with
N transmit beams, the minimum average scheduling delay
over the users scales as K

N lnK . In other words, the average
scheduling delay improves with increasing N and, hence, non-
orthogonal OBF with N > Nt beams yields shorter scheduling
delay than that of the orthogonal counterpart with N = Nt

beams. Furthermore, when N = Nt or N = 1, (22) reduces
to the existing results mentioned above.

C. Maximum Number of Supported Transmit Beams and Ac-
cess Probability

In principle, there could be infinite number of transmit
beams if no constraint is imposed on the received SINR
of served users. In practice, however, if one user is to be
successfully served, a minimum SINR or equivalently, error
probability requirement has to be satisfied at the receiver
side [27]. On the other hand, an outage probability threshold
regarding the minimum SINR is demanded by the BS [28].

Assuming the thresholds of received SINR and outage
probability are γth and Pth, respectively, in view of (8) and
(10), the maximum number of transmit beams is the largest N
satisfying FK

Γk, n
(γth) < Pth. After performing some algebraic

manipulations, we obtain

N ≤ βγth − (1− αγth) ln
(− 1

K lnPth

)(
β + 1

ρ

)
γth︸ ︷︷ ︸

Nmax

. (26)

Moreover, once N is determined, the access probability of a
given user among the total number of users K is expressed
as [29]

Paccess =
N

K

(
1− FK

Γk, n
(γth)

)
≥ N

K
(1− Pth) . (27)

In practice, Pth is usually very small, for instance 0.01. Thus,
(27) implies that the access probability of each user increases
linearly with the number of transmit beams N .

Notice that, the maximum number of supported transmit
beams Nmax in (26) depends not only on the users’ require-
ments (γth and Pth) but also on the total number of users K .
Clearly, larger K leads to larger Nmax, which means more
flexible choices of N . As mentioned above, for fixed Nt,
orthogonal OBF aims to maximize sum-rate and it always
generates N = Nt beams regardless of the QoS requirements
of users. However, for non-orthogonal OBF, the number of
transmit beams N can be configured to satisfy QoS require-
ments of users and decrease the scheduling delay, which shows
the flexibility of non-orthogonal OBF over the conventional
orthogonal scheme. This will be further illustrated in Fig. 7
of Section VI.

V. PRACTICAL NON-ORTHOGONAL BEAMFORMING

SCHEMES

In this section, two practical non-orthogonal beamforming
schemes are illustrated. First, an optimality criterion on non-
orthogonal beamforming is established. Then, two practical
beamforming matrices are elaborated and they are demon-
strated to achieve the optimality criterion. The first scheme
is based on the optimal Grassmannian frame and applies only
to certain values of N . The second scheme relies upon the
Fourier matrix and applies to any N .

A. Optimality Criterion on Non-orthogonal Beamforming

In general, the Nt×N non-orthogonal beamforming matrix
with δl, n = δ0, where 1 ≤ l ≤ N and l �= n, is equivalent
to the optimal Grassmannian frame in the complex space CNt

[17]. The optimal Grassmannian frame is equiangular tight
frame and its frame correlation achieves the lower bound
provided by the Rankin inequality and, thus, δ0 =

√
N−Nt

Nt(N−1)

[17]. Accordingly, for fixed N , the minimum total inter-beam
interference is given by

αmin = (N − 1)×
(√

N −Nt

Nt(N − 1)

)2

=
N

Nt
− 1. (28)

Applying (28) to Theorem 1 yields the following corollary.
Corollary 1: For fixed Nt and N , when the inter-beam

interference reaches the minimum N
Nt

− 1, the sum-rate of
non-orthogonal OBF scales as

R ∼ N ln

(
N

N −Nt

)
. (29)

Based on Corollary 1, it can be shown that the sum-rate
monotonically decreases with increasing N for fixed Nt, but
it increases with Nt for fixed N . More precisely, when Nt is
fixed, the first-order derivative of R in (29) with respect to
N is given by dR

dN = ln
(

N
N−Nt

)
− Nt

N−Nt
< 0, where we
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exploited the property that lnx < x− 1 whenever x > 1 [19,
Eq.(4.5.4)]. On the other hand, when N is fixed and N > Nt,
we have dR

dNt
= N

N−Nt
> 0. An intuitive explanation of the

monotonicity of R with respect to N and Nt is as follows.
In the complex space CNt , for fixed Nt, increasing N yields
larger cross-correlation among N vectors. Nevertheless, if N
is fixed, increasing Nt reduces the cross-correlation among N
vectors.

In the following, we illustrate two non-orthogonal beam-
forming matrices which achieve the minimum total inter-beam
interference in (28).

B. Grassmannian-Based Construction

Although the optimal Grassmannian frame achieves the
minimum total inter-beam interference in (28), a general
explicit construction of the optimal Grassmannian frame with
N > Nt + 1 is almost impossible and it is usually obtained
by exhaustive searching [23]. Fortunately, for wireless systems
where the number of transmit antennas Nt is usually small for
practical implementation purposes, an explicit construction of
the optimal Grassmannian frame with, for example, Nt = 2,
3, 4, 5, 6, can be obtained by the following lemma.

Lemma 3: (König [24]) Let p be a prime number and l a
positive integer such that Nt = pl+1 and N = N2

t −Nt+1.
Then, there exist integers 0 ≤ d1 < · · · < dNt < N with
all numbers 1, · · · , N − 1 occurring as residues of mod(di−
dq, N) where i �= q and 1 ≤ i, q ≤ Nt, such that {bn}Nn=1

with bn given by (30) forms an optimal Grassmannian frame:

bn =
1√
Nt

[
ej2πnd1/N ej2πnd2/N · · · ej2πndNt/N

]T
.

(30)
As an application of Lemma 3, consider Nt = 4. In this

case, we have N = 13. Then through simple searching we
obtain d1 = 0, d2 = 1, d3 = 3, and d4 = 9, and substituting
them into (30) yields the beamforming matrix BG. Moreover,
the cross-correlation between any two columns of BG is√
3/4 and, thus, the total inter-beam interference for any beam

is αmin = 9/4. Similarly, the non-orthogonal beamforming
matrix for other values of Nt can be designed off-line, with
the total inter-beam interference easily computed.

Note that, Lemma 3 is not applicable for any number of
transmit antennas, for instance, when Nt = 7. Furthermore,
the optimal Grassmannian frame does not exist for arbitrary
Nt and N [17]. Therefore, in the next sub-section, we propose
another non-orthogonal beamforming which is based on the
Fourier matrix. The proposed design is applicable for arbitrary
Nt and N , and it is proven to obtain the minimum total inter-
beam interference.

C. Fourier-Based Construction

For any N , it is well known that the Fourier matrix
F , whose (p, q)th entry is ωpq with ω = exp(−j2π/N)
and p, q = 0, 1, · · · , N − 1, is an orthonormal basis in
a N -dimensional complex space. Its projection onto a Nt-
dimensional complex space forms a tight frame whose ele-
ments have the broadest scattering [25]. This projection simply
retains any Nt rows of F . More specifically, assuming r1, r2,
· · · , rNt rows of F are selected, where 0 ≤ r1, r2, · · · , rNt ≤

N − 1, we denote the resultant Nt ×N beamforming matrix
as BF = 1√

Nt
FNt , where FNt is the truncated version of

F with its r1, r2, · · · , rNt rows. The magnitude square of
cross-correlation between lth and nth beamforming vectors is
given by

δ2l, n =
1

N2
t

∣∣∣∣∣∣∣
∑

p∈{r1, ··· , rNt}
ω−plωpn

∣∣∣∣∣∣∣
2

=
1

Nt
+

1

N2
t

∑
p, q∈{r1, ··· , rNt}

p�=q

ω(p−q)(l+n). (31)

Clearly, (31) implies that the correlation coefficient δl, n de-
pends upon the indices of selected rows from F . In total, there
are

(
N
Nt

)
= N !

Nt! (N−Nt)!
alternatives to select Nt rows out of F .

Therefore, the next question is which rows should be selected
so as to obtain the minimum total inter-beam interference?
The following theorem answers this question.

Theorem 3: For the N×N Fourier matrix, its any Nt rows
can be selected as the beamforming matrix and each beam
suffers the minimum total inter-beam interference N

Nt
− 1.

Proof: According to (31), for beam n, the total inter-beam
interference from the other N − 1 beams is given by

δn =

N−1∑
l=0

[ 1

Nt
+

1

N2
t

∑
p,q∈{r1,··· ,rNt}

p�=q

ω(p−q) (l+n)
]
− 1 (32)

=
N

Nt
+

1

N2
t

∑
p, q∈{r1, ··· , rNt}

p�=q

ωn(p−q)
N−1∑
l=0

ωl(p−q) − 1

=
N

Nt
− 1, (33)

where the constant 1 in the second term of the right-hand
side of (32) denotes the square of the auto-correlation per-
taining to the nth column of BF , and we used the fact that∑N−1

l=0 ωl(p−q) = 0 whenever p �= q to reach (33), since ω is
the N th root of unity [26, Eq.(5.8.2)]. Comparing (33) with
(28), it is evident that the truncated Fourier matrix with any
Nt rows achieves the minimum total inter-beam interference,
which completes the proof.

Since the Fourier scheme achieves the minimum total inter-
beam interference as the Grassmannian scheme when they
have the same Nt and N , based on Theorem 1, both schemes
achieve the same sum-rate as K → ∞. This will be further
illustrated in Fig. 8 in the next section.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, numerical results based on the above anal-
yses and Monte-Carlo simulation results are presented. All
transmissions are over Rayleigh fading channels with zero
mean and unit variance.

As justified from (3) to (7), the received SINR in (3)
is well-approximated by (7) and then its closed-form dis-
tribution functions follow in (8) and (9). The accuracy of
this approximation is also demonstrated in Fig. 2, where the
simulated PDF of the received SINR in (3) is compared with
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Fig. 2. PDF of the received SINR of user k on beam n with Fourier
beamforming.

the analytical PDF in (9), based on the Fourier beamforming
with Nt = 3 and SNR = 5dB. From the upper panel, which
corresponds to the orthogonal OBF with N = Nt = 3, it is
seen that the numerical results of (9) coincide perfectly with
the simulation results, since the PDF in (9) with α = 0 and
β = 1 is the exact PDF of the received SINR under orthogonal
transmission. Furthermore, the lower panel of Fig. 2 shows
that, for the non-orthogonal OBF with Nt = 3 and N = 5,
the numerical results of (9) are almost indistinguishable from
the simulation results.

The sum-rate of orthogonal and non-orthogonal transmis-
sions is illustrated in Fig. 3, where the orthogonal OBF is
implemented with N = Nt = 3 and the non-orthogonal
scheme operates with N = 5 and Nt = 3. For the or-
thogonal case, it is observed that the numerical results of
the integration in (14) coincides perfectly with the simulation
results. Moreover, it is seen that the analytical expression (19)
is very tight with (14), in which the tiny difference is due
to the Jensen’s loss introduced in (18). On the other hand,
for the non-orthogonal transmission, the numerical results
based on (14) are only slightly smaller (about 6%) than the
simulation results, due to the approximation introduced in (7).
The analytical expression (19) is still very tight with (14).
Furthermore, as expected, Fig. 3 shows that non-orthogonal
OBF underperforms the orthogonal case in terms of sum-rate,
as inter-beam interference exists. However, non-orthogonal
transmission benefits the scheduling delay, which is shown in
Fig. 4. Figure 4 illustrates the simulation results of the average
scheduling delay versus the number of users for different
number of transmit beams N = 3, 4, 5, and 6 with Nt = 3.
It is observed that, for fixed K , the orthogonal case with
N = Nt = 3 has the longest scheduling delay, while the
scheduling delay decreases with N . Moreover, as N increases,
the scheduling-delay improvement from each of additional
beam becomes smaller and smaller. These observations co-
incide with Theorem 2.

Figure 5 illustrates the tradeoff between sum-rate and
scheduling delay, when considering Nt = 3 and K = 50,
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100, and 200. When K is fixed, the number of transmit beams
varies from N = Nt = 3 (corresponding to the orthogonal
scenario) to N = 4, 5, 6, and 7 (corresponding to non-
orthogonal scenarios). It is observed that, for fixed K , the
orthogonal case with N = Nt yields the largest sum-rate but
with the longest scheduling delay. Moreover, we can see that
the scheduling delay decreases with increasing N at the cost
of sum-rate. On the other hand, Fig. 6 shows the ratio of sum-
rate to scheduling delay versus the number of beams N . It is
seen that, for fixed number of users K , the ratio monotonically
increases with N , which means that increasing N reduces the
scheduling delay significantly more than the sum-rate.

Figure 7 shows the maximum number of supported trans-
mitted beams, i.e., Nmax in (26), versus the threshold of the
received SINR (γth), with Nt = 4 and outage probability
Pth = 0.01. It is observed that, for non-orthogonal OBF
with fixed number of users, Nmax increases as the threshold
of the received SINR decreases, but the orthogonal case
always transmits N = Nt beams regardless of the users’s
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SINR requirements. Furthermore, for a fixed threshold of
the received SINR, more users allows more transmit beams.
Clearly, non-orthogonal OBF can be configured with different
number of transmit beams to satisfy different received SINR
requirements of users, which provides a flexibility over con-
ventional orthogonal scheme.

Finally, according to the sum-rate scaling law in Theorem 1,
different non-orthogonal beamforming schemes result in the
same sum-rate as K → ∞, if their total inter-beam inter-
ference for each beam are identical. When K is finite, this
assertion is examined in Fig. 8, which depicts the simulation
results of sum-rate of Grassmannian and Fourier schemes. It
is observed that, when Nt = 2 and N = 3, the sum-rates of
both schemes coincide perfectly in the entire range of K under
consideration. When Nt = 3 and N = 7, both schemes obtain
almost the same sum-rates when K > 100. When Nt = 4
and N = 13, the sum-rate of Grassmannian beamforming is
higher than that of Fourier beamforming, however, their sum-
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rate difference becomes smaller and smaller as K increases.
Therefore, Grassmannian and Fourier beamforming results in
the same sum-rate as K → ∞, in accordance with Theorem 1.

VII. CONCLUSIONS

The system performance of non-orthogonal OBF with N >
Nt transmit beams were investigated in this paper. Our results
show that non-orthogonal OBF is an interference-limited sys-
tem. When the inter-beam interference attains the minimum
for fixed Nt and N , the sum-rate decreases monotonically
with the number of beams N , while the average scheduling
delay improves monotonically with increasing N . Further-
more, two practical non-orthogonal beamforming matrices
were proposed, and they were shown to achieve the minimum
inter-beam interference and thus obtain the same asymptotic
sum-rate. Due to the flexibility of the number of beams N
related to the users’ QoS requirements and the number of users
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K , non-orthogonal OBF achieves the tradeoff between sum-
rate and scheduling delay, and it is applicable to a wide range
of wireless networks, especially densely populated networks
with delay-sensitive traffic.

APPENDIX A
PROOF OF LEMMA 1

According to (4), Zl can be rewritten as Zl =

hH
k

(
bnb

⊥H
l, n + b⊥l, nb

H
n

)
hk. Let W � bnb

⊥H
l, n + b⊥l, nb

H
n =

bnb
⊥H
l, n +

(
bnb

⊥H
l, n

)H

, it is straightforward that W is

a Hermitian matrix with rank two. Since trace(W ) =

trace
(
bnb

⊥H
l, n

)
+trace

(
b⊥l, nb

H
n

)
= 0, we have trace(W ) =

λ1+λ2 = 0, where λ1 and λ2 denote the two real eigenvalues
of W . Thus, we obtain λ1 = −λ2. Furthermore, in the
following, it is shown that |λ1| = |λ2| = 1.

Assuming that xi is an eigen-vector of W with respect to
λi, where i = 1, 2, we have(

bnb
⊥H
l, n + b⊥l, nb

H
n

)
xi = λixi. (34)

Multiplying both sides of (34) with bHn and in view of the
facts that bHn bn = 1 and bHn b⊥l, n = 0, we get b⊥H

l, n xi =

λib
H
n xi. Similarly, multiplying both sides of (34) with b⊥H

l, n

yields bHn xi = λib
⊥H
l, n xi. Substituting the former into the

latter results in bHn xi = λ2
i b

H
n xi and, finally, taking account

of the fact that λi is a real number, we obtain that λi ∈ {±1},
where i = 1, 2.

Applying the spectral decomposition theorem over W , Zl

can be rewritten as

Zl = hkUDUHhH
k =

2∑
i=1

λi

∣∣∣hH
k ui

∣∣∣2︸ ︷︷ ︸
Ei

(35)

where U = [u1, · · · , uN ] is a unitary matrix and D is
a diagonal matrix with the first two diagonal elements as
λ1 and λ2 and other elements being zero. Since hk is a
complex Gaussian random vector, Ei, i = 1, 2 in (35), are two
independent exponentially-distributed variables. Therefore, no
matter (λ1 = 1, λ2 = −1) or (λ1 = −1, λ2 = 1) holds, Zl is
of Laplace distribution with zero mean and variance two.

Furthermore, it is clear that the Laplace transform of
Z �

∑N
l=1, l �=n Zl is given by 1/(1 − s2)(N−1). Accord-

ingly, exploiting the inverse Laplace transform [20, vol.5,
Eq.(2.1.2.72)] and performing some algebraic manipulations,
we get the PDF of Z as shown in (6).

APPENDIX B
PROOF OF LEMMA 2

We exploit the von Mises criteria [21, Theorem 2.7.2] to
determine the limiting distribution of γ̂max, n. Accordingly,
two conditions need to be satisfied. The first one requires that
the PDF fΓk, n

(γ) in (8) is differentiable for all γ ∈ (0, 1/α),
where 1/α is the supremum of γk, n in (7). This is obviously
true. Furthermore, substituting (8) and (9) into the function
g(γ) = (1 − FΓk, n

(γ))/fΓk, n
(γ) and performing some alge-

braic manipulations, it can be shown that limγ→1/α
dg(γ)
dγ = 0,

which is the second condition. Consequently, the limiting

CDF of γ̂max, n is of the Gumbel distribution [21, p.54],
as shown in (15). Moreover, the normalizing parameter a
is the solution to the equation 1 − FΓk, n

(a) = 1/K [21,
Theroem 2.1.3]. Substituting (9) into the preceding equation
yields a transcendental equation:

exp

(
− Na

ρ(1− aα)

)(
1 +

a(1− δ20)

1− aα

)−(N−1)

=
1

K
. (36)

Now, taking the logarithm on both sides of (36), applying the
first-order Taylor approximation of ln(1 + x) with small x,
and performing further derivations, a can be given by (16).
Once a is determined, the value of b is given by b = g(a)
[21, Remark 2.7.1], which results in the desired (17).

REFERENCES

[1] M. Sharif and B. Hassibi, “Delay considerations for opportunistic
scheduling in broadcast fading channels,” IEEE Trans. Wireless Com-
mun., vol. 6, no. 9, pp. 3353–3363, Sep. 2007.

[2] G. Aniba and S. Aı̈ssa, “Adaptive scheduling for MIMO wireless
networks: cross-layer approach and application to HSDPA,” IEEE Trans.
Wireless Commun., vol. 6, no. 1, pp. 259–268, Jan. 2007.

[3] P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic beamforming
using dumb antennas,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1277–
1294, June 2002.

[4] M. Sharif and B. Hassibi, “On the capacity of MIMO broadcast channels
with partial side information,” IEEE Trans. Inf. Theory, vol. 52, no. 2,
pp. 506–522, Feb. 2005.

[5] M. Xia, W. Wen, and S.-C. Kim, “Opportunistic cophasing transmission
in MISO systems,” IEEE Trans. Commun., vol. 57, no. 12, pp. 3764–
3770, Dec. 2009.

[6] M. Agrawal and A. Puri, “Base station scheduling of requests with fixed
dealines,” in Proc. 2002 IEEE INFOCOM, pp. 487–496.

[7] B. T. Cadmus, B. Hohensee, A. C. Accardo, and D. Perez, “Platform
alarming through multiple agencies,” IEEE Trans. Industry Applications,
vol. 43, no. 1, pp. 172–179, Jan.-Feb. 2007.

[8] T. Heikkinen and A. Hottinen, “Delay-differentiated scheduling in a
fading channel,” IEEE Trans. Wireless Commun., vol. 7, no. 3, pp. 848–
856, Mar. 2008.

[9] D. Shah, D. N. C. Tse, and J. N. Tsitsiklis, “Hardness of low delay
network scheduling,” in Proc. 2010 IEEE Information Theory Workshop,
pp. 1–13.

[10] G. R. Gupta and N. B. Shroff, “Delay analysis and optimality of schedul-
ing policies for multihop wireless networks,” IEEE Trans. Networking,
vol. 19, no. 1, pp. 129–141, Jan. 2011.

[11] E. A. Jorswieck, A. Sezgin, and X. Zhang, “Throughput versus fairness:
channel-aware scheduling in multiple antenna downlink,” EURASIP J.
Wireless Commun. and Networking, vol. 2009, article ID: 271540, pp. 1–
13, 2009.
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