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Simulation of quantum carrier transport in nanodevices with non-equilibrium Green’s function

approach is computationally very challenging. One major part of the computational burden is the

calculation of self-energy matrices. The calculation in tight-binding schemes usually requires dealing

with matrices of the size of a unit cell in the leads. Since a unit cell always consists of several planes

(for example, in silicon nanowire, four atomic planes for [100] crystal orientation and six for [111]

and [112]), we show in this paper that a condensed Hamiltonian matrix can be constructed with

reduced dimension (�1=4 of the original size for [100] and �1=6 for [111] and [112] in the nearest

neighbor interaction) and thus greatly speeding up the calculation. Examples of silicon nanowires with

sp3d5s� basis set and the nearest neighbor interaction are given to show the accuracy and efficiency of

the proposed methods. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4732089]

I. INTRODUCTION

Non-equilibrium Green’s function (NEGF) approach1,2

has been widely adopted to simulate quantum transport in

nanoscale devices. However, the large computational cost of

this method limits its application to small problems. One

major part of computational cost is the inversion of the large

Hamiltonian matrix so as to obtain the Green’s function of

the device. Considerable effort has been made to reduce the

complexity, such as recursive Green’s function algorithm,3

mode space approaches,4,5 contact block reduction

method,6,7 and the recent R-matrix method.8,9 Another major

source of the cost is the open boundary treatment, which is

expressed explicitly through the self-energy matrices. In the

effective mass approximation,4,8 the self-energy matrices

can be obtained for the whole energy band once the eigenm-

odes of the leads are solved.10 Beyond the effective mass

approximation, such as the ab initio methods11 and the em-

pirical tight-binding approaches,9 however, the self-energy

matrices must be evaluated for each energy point individu-

ally, further increasing the computational burden. The tight

binding models will be the focus of this work, as they are

well-suited for nanodevice modeling due to limited-range

interactions and reasonably sized basis sets.12

Traditionally, there are roughly two kinds of approaches

for self-energy evaluation,13 one is through iterative evalua-

tion of the surface Green’s function,14 the other is by solving

the Bloch modes of the leads.15–17 The underlining assump-

tion of both approaches is that the leads are characterized

by a periodic potential and thus a principle layer18,19 (usually

a unit cell in tight-binding schemes) can be defined with

translational invariance along the leads. The former approach

usually requires many inversions of a Hamiltonian matrix of

the size of the unit cell. The latter one, instead, requires solv-

ing a generalized eigenvalue problem (GEVP) for a matrix

of the size twice that of the unit cell.

Several improvements that speed up the calculation

have been developed over the past years. The widely used

decimation algorithm18 greatly improves the convergence of

the iterative method by reducing the iteration steps from N to

logðNÞ. The shift-and-invert method transforms the GEVP to

a normal eigenvalue problem (NEVP).20 The Krylov sub-

space method reduces the cost of the GEVP approach by

computing only a portion of the eigenmodes that have contri-

bution to the transmission.21 However, the calculation is still

very slow when the size of the unit cell matrix becomes very

large. We also notice that by imposing absorbing boundary

conditions into the leads, the open system is transformed to a

closed system and the surface Green’s function (and then the

self energy) can be constructed for any energy by spectral

representation.22 But this should be designed very carefully

in order to eliminate possible reflections (less reflection with

more absorbing layers, but with more computational cost).

However, if we take a closer look at the structure of the

unit cell, it is easy to find that there are some redundancies

when these traditional methods are applied to tight-binding

schemes. Take silicon (or germanium), for example, the

[100] crystal direction nanowire consists of four atomic

planes in the unit cell and the [111] (or [112]) direction con-

sists of six planes, as shown in Fig. 1. Moreover, take the

nearest neighbor tight binding scheme,23 for example, we do

not need the surface Green’s function of the size of the unit

cell, but actually the size of an atomic plane is needed. De-

spite the method in Ref. 24, which transforms the GEVP to a

NEVP of reduced size, it calculates the whole surface

Green’s function of the size of the unit cell and at the same

a)Electronic mail: huangjun@eee.hku.hk.
b)Electronic mail: w-chew@uiuc.edu.
c)Electronic mail: ymwu@eee.hku.hk.
d)Electronic mail: jianglj@hku.hk.
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time involves inverting a matrix of the size of the unit cell

that incurs additional cost. In fact, due to the short-range

interactions, it is possible to compress the Hamiltonian ma-

trix of a unit cell to that of an atomic plane. Then, after some

slight modifications, the decimation method and the eigen-

value methods can be employed to calculate the surface

Green’s function (and then the self energy). The gain is

obvious, as we are now dealing with a much smaller matrix

(approximately by a factor of 1/4 for [100] and 1/6 for [111]

and [112]).

In Sec. II, the condensation of the Hamiltonian matrix

(in the nearest neighbor tight-binding schemes) for the semi-

infinite leads is derived in detail, followed by the applica-

tions of the decimation approach and the eigenvalue

approach, respectively. Some numerical examples are pro-

vided in Sec. III to show the accuracy and the efficiency. In

Sec. IV, we give a brief summary and also some possible

extensions. In Appendix, we show that the methods in this

paper can be generalized to second-near (and third-near)

neighbor interaction schemes.

II. DESCRIPTION OF THE METHODS

A. Condensation of the Hamiltonian matrix

A typical two-probe system as illustrated in Fig. 2 is

considered here, where the system Hamiltonian is divided

into HL, HD, and HR. We focus on the self energy calcula-

tion for the right lead as the left lead can be done similarly.

The Green’s function matrix gR for the right lead at energy

point E is defined as

ðEI�HRÞgR ¼ I; (1)

where I is the identity matrix. We have assumed orthogonal

basis; non-orthogonal basis case can be done by replacing EI

with overlap matrix ES.

Take the nearest neighbor interaction scheme, for exam-

ple (the generalization to second-near or third-near neighbor

interaction schemes is discussed in Appendix), the matrix

HR can be written in a block tridiagonal form and gR is usu-

ally a full matrix,

HR ¼

H1;1 H1;2 0 � � �
H

†

1;2 H2;2 H2;3 � � �

0 H
†

2;3 H3;3 � � �

..

. ..
. ..

. . .
.

0
BBBBB@

1
CCCCCA;

gR ¼

g1;1 g1;2 g1;3 � � �
g2;1 g2;2 g2;3 � � �
g3;1 g3;2 g3;3 � � �

..

. ..
. ..

. . .
.

0
BBBB@

1
CCCCA; (2)

where Hp;q with p ¼ q denotes the on-site Hamiltonian for

atomic plane p and Hp;q with p 6¼ q denotes the coupling

Hamiltonian between atomic plane p and q, H
†

p;q is the Her-

mitian conjugate of Hp;q. We have made use of H1;0 ¼ 0

since the semi-infinite lead terminates at plane 1.

According to Eqs. (1) and (2), the Green’s function gp;q

for q ¼ 1 should satisfy the following equation,

EI1;1 �H1;1 �H1;2 0 � � �
�H

†

1;2 EI2;2 �H2;2 �H2;3 � � �

0 �H
†

2;3 EI3;3 �H3;3 � � �

..

. ..
. ..

. . .
.

0
BBBBB@

1
CCCCCA

�

g1;1

g2;1

g3;1

..

.

0
BBBB@

1
CCCCA ¼

I1;1

0

0

..

.

0
BBBB@

1
CCCCA: (3)

Assuming that a unit cell in the lead consists of P atomic

planes, the Hamiltonian then repeats every P atomic planes,

i.e.,

HnPþp;nPþq¼Hp;q; ðp¼1;2;���;P; q¼p; pþ1; n¼1;2;���Þ:
(4)

Utilizing this fact, Eq. (3) can be rewritten in the following

format with matrix partitioning,

FIG. 1. Cross section and profile of a unit cell for sili-

con nanowires along the [100] direction (a and b) and

the [111] direction (c and d). The unit cell consists of

four and six atomic planes, respectively. Different

planes are denoted with different colors.

FIG. 2. Schematic representation of a two-probe system. The system con-

sists of a device part with Hamiltonian HD and two semi-infinite leads with

Hamiltonian HL and HR. The system is divided into many atomic planes and

the right lead is described with atomic plane Hamiltonian Hp;p (p ¼ 1; 2;…)

as illustrated.
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EI1;1 �H1;1 B 0 0 0 � � �
B

†

C D 0 0 � � �
0 D

†

EI1;1 �H1;1 B 0 � � �
0 0 B

†

C D � � �
..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBB@

1
CCCCCA�

g1;1

g2�P;1

gPþ1;1

gðPþ2Þ�2P;1

g2Pþ1;1

..

.

0
BBBBBBB@

1
CCCCCCCA
¼

I1;1

0

0

0

..

.

0
BBBB@

1
CCCCA;

(5)

where we have defined new blocks,

B ¼ ð�H1;2; 0; � � � ; 0Þ; D ¼

0

..

.

0

�HP;Pþ1

0
BB@

1
CCA; (6)

C¼

EI2;2�H2;2 �H2;3 � � � 0

�H
†

2;3 EI3;3�H3;3 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � EIP;P�HP;P

0
BBB@

1
CCCA; (7)

g2�P;1 ¼

g2;1

g3;1

..

.

gP;1

0
BBB@

1
CCCA; gðPþ2Þ�2P;1 ¼

gPþ2;1

gPþ3;1

..

.

g2P;1

0
BBB@

1
CCCA: (8)

Eliminating g2�P;1, gðPþ2Þ�2P;1, …, in Eq. (5) results in,

EI1;1 � Ns �P 0 � � �
�P

†

EI1;1 � N �P � � �
0 �P

†

EI1;1 � N � � �
..
. ..

. ..
. . .

.

0
BBBBB@

1
CCCCCA

g1;1

gPþ1;1

g2Pþ1;1

..

.

0
BBBB@

1
CCCCA ¼

I1;1

0

0

..

.

0
BBBB@

1
CCCCA; (9)

where,

Ns ¼ H1;1 þ BC�1B
†

; (10)

N ¼ H1;1 þ BC�1B
† þ D

†

C�1D; (11)

P ¼ BC�1D: (12)

From Eq. (9), we can identify a condensed Hamiltonian that

only consists of planes p ¼ nPþ 1 (n ¼ 0; 1; � � �), i.e.,

Hcnd ¼

Ns P 0 � � �
P

†

N P � � �
0 P

†

N � � �
..
. ..

. ..
. . .

.

0
BB@

1
CCA; (13)

where the blocks are of the size �ðN=PÞ � ðN=PÞ with N
being the matrix dimension of a unit cell. Note that the con-

densed on-site Hamiltonian Ns of plane 1 differs from con-

densed on-site Hamiltonian N of plane p ¼ nPþ 1 (n ¼
1; 2;…), as Ns only includes the influences of right side

planes (plane 2 to P) while N includes the influences of both

sides (plane ðn� 1ÞPþ 2 to nP and plane nPþ 2 to

ðnþ 1ÞP). The condensed coupling Hamiltonian P connects

plane p ¼ nPþ 1 to plane p ¼ ðnþ 1ÞPþ 1 directly.

The problem now is to evaluate the expressions of Ns,

N, and P as shown in Eqs. (10)–(12). This requires inversion

of matrix C of the size � P�1
P N

� �
� P�1

P N
� �

, which can be

done efficiently since it is highly sparse. Alternatively, we

can avoid the full inversion by noticing that the matrix B or

D consists of only one non-zero block and thus several

blocks in C�1 are actually needed. In fact, by denoting C�1

as

C�1 ¼

~C2;2
~C2;3 � � � ~C2;P

~C3;2
~C3;3 � � � ~C3;P

..

. ..
. . .

. ..
.

~CP;2
~CP;3 � � � ~CP;P

0
BBB@

1
CCCA; (14)

due to Eq. (6), we find that only ~C2;2, ~C2;P, and ~CP;P are rele-

vant. Furthermore, these blocks can be calculated efficiently

with forward and backward recursions since C is block tri-

diagonal. The details are as follows:

ALGORITHM 0 (Recursive Condensation of the Hamil-

tonian Matrix):

1. ~HP;P ¼ ðEIP;P �HP;PÞ�1

2. For p ¼ P� 1;P� 2; � � � ; 2 (in this order), do {

3. ~Hp;p ¼ ðEIp;p �Hp;p �Hp;pþ1
~Hpþ1;pþ1H

†

p;pþ1Þ
�1

4. ~Hp;P ¼ ~Hp;pHp;pþ1
~Hpþ1;P}

5. ~C2;2 ¼ ~H2;2; ~C2;P ¼ ~H2;P

6. For p ¼ 3; � � � ;P (in this order), do {

7. ~Cp;p ¼ ~Hp;p þ ~Hp;pðHp;p�1
~Cp�1;p�1H

†

p;p�1Þ ~Hp;p}

8. Obtain Ns ¼ H1;1 þH1;2
~C2;2H

†

1;2

9. Obtain N ¼ Ns þH
†

P;Pþ1
~CP;PHP;Pþ1

10. Obtain P ¼ H1;2
~C2;PHP;Pþ1

With this condensed Hamiltonian (13) of reduced size,

we are now ready to calculate the self energy either by the

iterative approach or the eigenvalue approach as described

separately in the following.

B. Iterative approach

As seen from matrix (13), the translational invariance is

broken by the first block. Nevertheless, we can still apply the

decimation method18 to the chain in Eq. (9). The implemen-

tation is summarized into ALGORITHM I (for details, see

supplementary material25). We want to emphasize that,

although the decimation can be directly applied to the origi-

nal chain in Eq. (3), our implementation is systematic and

much simpler, as now all the layers (except the first one) in

Eq. (13) are made identical no matter how many different

atomic planes there are in a unit cell.
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C. Eigenvalue approach

The eigenvalue approach,16,17 however, cannot be

directly applied to the chain in Eq. (13). Fortunately, we

found that it can still be applied to the chain starting from

layer 2, and the extra treatment of layer 1 can be done with-

out too much effort.

First, we define a new semi-infinite chain that starts

from layer 2 of Eq. (13). By using Bloch wave condition

WpþP ¼ kWp; (15)

where k ¼ eikd with k real (complex) for propagating (evan-

escent) modes, we have the following equation for Bloch

waves,

�k�1P
†

Wp þ ðEI1;1 � NÞWp � kPWp ¼ 0: (16)

This equation can be solved by transforming to a GEVP of

size 2N1 (N1 is the size of N), i.e.,

0 I1;1

�T
† �D

� �
Wp

WpþP

� �
¼ k

I1;1 0

0 T

� �
Wp

WpþP

� �
; (17)

where the blocks are

D ¼ EI1;1 � N; T ¼ �P: (18)

Second, we define a new Green’s function g0 for this new

semi-infinite chain, the blocks g0p;q for q ¼ 1 should satisfy

the following:

ðEI1;1 � NÞg01;1 ¼ I1;1 þPg0Pþ1;1; (19)

ðEI1;1 � NÞg0Pþ1;1 ¼ P
†

g01;1 þPg
0

2Pþ1;1; (20)

� � �
Then g01;1 can be expanded through Bloch modes of the

chain,

g01;1 ¼ UþCþ; (21)

where matrix Uþ (of size N1 �M) consists of M right-going

normalized Bloch vectors constructed from the first N1 ele-

ments of the solution of Eq. (17), and matrix Cþ (of size

M � N1) consists of N1 vectors of corresponding expansion

coefficients, i.e.,

Uþ ¼ ðuþ1 ; uþ2 ; � � � ; uþMÞ; (22)

Cþ ¼ ðcþ1 ; cþ2 ; � � � ; cþN1
Þ: (23)

Since the waves go outward from the d source, we can

express g0Pþ1;1 as,

g0Pþ1;1 ¼ UþKþCþ; (24)

where the propagator Kþ is a M �M diagonal matrix with

elements

Kþmm ¼ kþm : (25)

By defining pseudo-inverse ~U
þ

of Uþ, i.e.,

~U
þ

Uþ ¼ I; (26)

and using Eq. (24), g0Pþ1;1 can be related to g01;1 through the

following way

g0Pþ1;1 ¼ UþKþ ~U
þ

UþCþ ¼ UþKþ ~U
þ

g01;1 ¼ Fg01;1; (27)

where we have defined a new propagator

F ¼ UþKþ ~U
þ
: (28)

Similarly, the following holds

g
0

2Pþ1;1 ¼ Fg0Pþ1;1: (29)

Putting Eqs. (27) and (29) into Eqs. (19) and (20), we have

ðEI1;1 � N�PFÞg01;1 ¼ I1;1; (30)

ðEI1;1 � N�PFÞFg01;1 ¼ P
†

g01;1: (31)

From above two we can solve for the surface Green’s func-

tion g01;1, which is

g01;1 ¼ FP
†�1: (32)

In the case when P
†

is not invertable, we solve for self

energy directly, i.e.,

R
0 ¼ Pg01;1P

† ¼ PF: (33)

Finally, the surface Green’s function for the original chain

(including layer 1 of Eq. (13)) is obtained as,

g1;1 ¼ ðEI1;1 � Ns � R
0 Þ�1; (34)

and the self energy is constructed using,

R ¼ H0;1g1;1H
†

0;1: (35)

We implemented the above approach (the approach is self-

consistent since we can verify that Eqs. (21), (24), and (29)

satisfy Eqs. (19) and (20) by direct substitution) in the fol-

lowing way,

ALGORITHM II (Eigenvalue method):

0. Do ALGORITHM 0.

1. Let A ¼ 0 I1;1

�T
† �D

� �
and B ¼ I1;1 0

0 T

� �
.

2. Instead of solving a generalized eigenvalue problem

AW ¼ kBW, we resort to a normal eigenvalue problem by

constructing ~A ¼ ðA� rBÞ�1
B, where r is a shift. Note

that the 2� 2 block matrix ðA� rBÞ can be inverted effi-

ciently by using the Schur complement block.20

3. Solve the normal eigenvalue problem ~AW ¼ ~kW, obtain

the eigenpairs ð~k;WÞ.
4. Obtain the eigenpairs of the original problem:

ðk ¼ ~k
�1 þ r;WÞ.

5. Retrieve all the eigenpairs corresponding to the right-

going propagating modes with jkj ¼ 1; Retrieve a part of

the eigenpairs corresponding to the right-going evanes-

cent modes with � < jkj < 1, where � can be truncated to
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include only slowly decaying evanescent modes. Con-

struct an N1 �M matrix Uþ and an M �M diagonal ma-

trix Kþ from these eigenpairs.

6. Obtain pseudo-inverse ~U
þ

of Uþ by factorizing Uþ ¼
QR and solving R ~U

þ ¼ Q
†

.

7. Construct F according to Eq. (28). Solve ðEI1;1 � Ns �
PFÞY ¼ H

†

0;1 for Y. Note that this is the only step where

layer 1 (Ns) comes in.

8. Obtain the self energy R ¼ H0;1Y.

D. Computational cost

To reduce the Hamiltonian to Eq. (13), as shown in

ALGORITHM 0, we need P� 1 inversions of the small mat-

rices of the size �ðN=PÞ. The cost is ðP� 1Þ� OððN=PÞ3Þ,
which is very cheap.

Once will have Eq. (13), the computational cost of

ALGORITHM I is ðM þ 1Þ � OððN=PÞ3Þ if the process con-

verges in M steps (usually 20 to 50 steps, depending on the

value of the introduced infinitesimal positive quantity g).

This is a tremendous reduction compared with the original

decimation method,18 where the complexity is ðM þ 1Þ �
OðN3Þ (here, we assume that the inversions are carried out

for matrices of the size of a unit cell). The computational

cost of ALGORITHM II is Oðð2N=PÞ3Þ þOððN=PÞ3Þ, where

the first term is due to step 3, and the second term due to

steps 2, 6, and 7. This is also a significant improvement over

the original eigenvalue approach,15–17 the cost of which is

about Oðð2NÞ3Þ þ OðN3Þ. Note that P ¼ 4 for [100] orienta-

tion and P ¼ 6 for [111] and [112].

III. RESULTS AND DISCUSSION

The testing examples are rectangular silicon nanowires.

The representation of the Hamiltonian matrix is through

sp3d5s� tight binding scheme with nearest neighbor interac-

tion (10 orbits per atom without spin-orbit coupling and 20

orbits per atom with spin-orbit coupling).23 The dangling sp3

hybridized bonds at the surfaces are passivated using

hydrogen-like atoms.26 This tight binding scheme has been

widely employed to study nanowire transistors.

First, to validate our methods, we have calculated the

transmission spectrum of an unbiased perfect silicon nano-

wire with Green’s function approach.1,2 The self energies

involved were obtained by ALGORITHM I and II, respec-

tively. The results are shown in Fig. 3, also shown are the

E� k dispersion and density of states (DOS) calculated for

an infinite periodic nanowire. It is clearly seen that the trans-

mission is an integer over the whole band and it steps up or

down when a transmission channel is opened or closed. The

transition points of the transmission match perfectly with the

positions of the one dimensional DOS peaks (van Hove sin-

gularities), indicating that our transmission calculation is

reliable, and in turn, validating our self energy calculations.

Note that to explain the transmission in valance band, it is

better to trace through the E� k diagram since there are

additional DOS peaks which do not correspond to the van

Hove singularities and the number of transmission channel

remains unchanged when one goes through these peaks. Sim-

ilar phenomena can be observed for a [111] oriented silicon

nanowire (see supplementary material25).

Next, to show the efficiency, we list the run times of

our algorithms along with those of the existing methods in

Table I. For the iterative methods (methods 1, 2, and 3), we

choose g ¼ 10�9 eV so that the iterative processes converge

in a certain number of steps. It is seen that ALGORITHM I

can greatly speed up the simulation compared with the fast-

est iterative one, i.e., method 2. It should be mentioned that

in this work, we implement method 2 by inverting the matri-

ces of the unit cell. In particular, for [100] and [111] direc-

tions, we gain an acceleration factor of about 40 to 80. Note

that for these two cases, we have implemented sparse matrix

operations in method 2 as the matrices involved have many

zero blocks. While among the eigenvalue approaches (meth-

ods 4, 5, and 6), ALGORITHM II is the best and it slightly

outperforms the fastest existing one, i.e., method 5. Note that

we have implemented sparse matrix operations in method 5

so that the matrix inversion involved is very efficient. To

FIG. 3. Top: E� k relation, bottom:

transmission spectrum and DOS, for an

ideal [100] oriented silicon nanowire

with cross-section �2 nm� 2 nm. Left:

for valance band, and spin-orbit coupling

is included in the calculation, right: for

conduction band, and spin-orbit coupling

is not included in the calculation. No

external bias is applied. The transmis-

sions calculated by the two methods in

this paper lie almost on top of each

other.
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include spin-orbit interaction, which is important for hole

transport, the computational cost is significantly increased.

The reason is two fold, one is that the number of orbits dou-

bles, the other is the introduction of complex operations (in

the eigenvalue approaches) as a result of complex Hamilto-

nian elements. Generally speaking, ALGORITHMS I and II

are comparable in terms of speed when spin-orbit coupling is

included; ALGORITHM II shows advantage when spin-orbit

coupling is not included due to the real arithmetic, which is

not the case in ALGORITHM I since a small imaginary part

is introduced to ensure convergence.

IV. CONCLUSIONS

In order to efficiently simulate quantum transport in

nanodevices within NEGF formalism, we have proposed two

algorithms for the fast evaluation of self-energy matrices in

tight binding schemes. The efficiency of the algorithms is

based on constructing a condensed Hamiltonian with reduced

size for the semi-infinite leads. The condensation success-

fully takes advantage of the crystal structures together with

the short-range interactions of tight binding schemes. The

reliability of our methods has been demonstrated by studying

the transmission of an ideal silicon nanowire in the nearest

neighbor interaction scheme. Extensive numerical examples

and comparisons have shown that our methods can speed up

the decimation approach by 7 to 80 times and can also out-

perform the advanced eigenvalue approach by several times.

Our methods are particularly useful when the unit cell in

the leads is made very long due to the presence of doping

atoms. This situation is very common in nano-electronics

nowadays as the doping density (per nanometer) in the leads

is usually very low as a result of the ultra-small cross sec-

tions. Furthermore, our methods can be applied to ab initio
models as long as the interaction range is short compared

with the unit cell length.
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APPENDIX: GENERALIZATION TO THE SECOND
AND THIRD-NEAR NEIGHBOR (2NN AND 3NN)
INTERACTION SCHEMES

The methods proposed in this paper are demonstrated

through the nearest neighbor interaction scheme. In the next,

we will show that they can be generalized to 2NN and 3NN

interaction schemes. Take 2NN interaction, for example

(3NN can be done in the same spirit), the Hamiltonian matrix

in terms of atomic planes takes the form,

HR ¼

H1;1 H1;2 H1;3 0 0 0 � � �
H

†

1;2 H2;2 H2;3 H2;4 0 0 � � �
H

†

1;3 H
†

2;3 H3;3 H3;4 H3;5 0 � � �
0 H

†

2;4 H
†

3;4 H4;4 H4;5 H4;6 � � �
0 0 H

†

3;5 H
†

4;5 H5;5 H5;6 � � �
0 0 0 H

†

4;6 H
†

5;6 H6;6 � � �
..
. ..

. ..
. ..

. ..
. ..

. . .
.

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (A1)

which can be rewritten in a block tridiagonal form like that

in Eq. (2),

HR ¼

�H1;1
�H1;2 0 � � �

�H
†

1;2
�H2;2

�H2;3 � � �
0 �H

†

2;3
�H3;3 � � �

..

. ..
. ..

. . .
.

0
BBBB@

1
CCCCA; (A2)

where the blocks are

�H1;1 ¼
H1;1 H1;2

H
†

1;2 H2;2

 !
; �H22 ¼

H3;3 H3;4

H
†

3;4 H4;4

 !
;

�H33 ¼
H5;5 H5;6

H
†

5;6 H6;6

 !
; �H12 ¼

H1;3 0

H2;3 H2;4

� �
;

�H23 ¼
H3;5 0

H4;5 H4;6

� �
:

(A3)

Now, the method in Sec. II A can be applied to Eq. (A2) to

condense the Hamiltonian matrix into a small one which

consists only the planes p ¼ nPþ 1 and p ¼ nPþ 2, where

n ¼ 0; 1; 2;…. Thus, we gain a size reduction factor of

TABLE I. List of run times (in seconds) for self energy evaluation in one

energy point for silicon nanowires with cross section �2 nm� 2 nm. Calcu-

lations are carried out for three crystal directions ([110], [100], and [111])

and for two basis sets (without and with spin-orbital coupling). Six methods

are implemented (in MATLAB). The quantities in the brackets are the speed

degradation factors compared with the fastest method. The simulations are

performed on an Intel Xeon processor (restricted to four cores, 2.66 GHz).

Orientation [110] [100] [111]

Number of planes p.u.c 2 4 6

Number of atoms p.u.c 88 128 208

Matrix size p.u.c 880 1280 2080

1. Iterative methoda 1816 (386�) 819.4 (394�) 239.9 (79.2�)

2. Decimation (Ref. 18) 34.3 (7.3�) 86.6 (41.6�) 169.2 (55.8�)

3. ALGORITHM I 4.71 2.08 3.03

4. NEVP method (Ref. 20) 5.04 (5.5�) 11.1 (21.8�) 38.9 (45.2�)

5. Advanced NEVP (Ref. 24) 1.52 (1.7�) 1.77 (3.5�) 3.43 (4.0�)

6. ALGORITHM II 0.92 0.51 0.86

Matrix size p.u.c 1760 2560 4160

1. Iterative methodb 13475 (409�) 5468 (390�) 1590 (83.4�)

2. Decimation (Ref. 18) 262.6 (8.0�) 722.0 (51.5�) 1473 (77.2�)

3. ALGORITHM I 32.91 14.02 19.07

4. NEVP method (Ref. 20) 108.6 (7.1�) 314.2 (40.9�) 1302 (92.4�)

5. Advanced NEVP (Ref. 24) 22.36 (1.5�) 18.63 (2.4�) 36.47 (2.6�)

6. ALGORITHM II 15.26 7.69 14.09

aThis is done by repetitive use of relations, g
ðnÞ
p;p ¼

�
E�Ip;p �Hp;p

�Hp;pþ1g
ðnÞ
pþ1;pþ1H

†

p;pþ1

��1

, for p ¼ P;P� 1;…; 1, and g
ðnÞ
Pþ1;Pþ1 ¼ g

ðn�1Þ
1;1 .

bAs described in footnote (a) above.
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�1=2 for [100] orientation and �1=3 for [111] and [112].

With the condensed Hamiltonian matrix, the self energy

matrix can be evaluated with the methods described in Secs.

II B and II C.
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