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Abstract

We investigate the impact of a time-varying in�ation target and changing monetary

and �scal policy stances on the dynamics of in�ation in a DSGE model. Under an

active monetary and passive �scal policy regime, in�ation closely follows the path of

the in�ation target and a stronger reaction of monetary policy to in�ation decreases

the equilibrium response of in�ation to non-policy shocks. In sharp contrast, under

an active �scal and passive monetary policy regime, in�ation moves in an opposite

direction from the in�ation target and a stronger reaction of monetary policy to in�ation

increases the equilibrium response of in�ation to non-policy shocks. Moreover, a weaker

response of �scal policy to debt decreases the response of in�ation to non-policy shocks.

These results are due to variation in the value of public debt that lead to wealth

e¤ects on households. Finally, under a passive monetary and passive �scal policy

regime, because of equilibrium indeterminacy, theory provides no clear answer on the

behavior of in�ation. We characterize these results analytically in a simple model and

numerically in a richer quantitative model.
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1 Introduction

Using a micro-founded model, we address two classic questions in monetary economics and

policy in this paper. First, can a time-varying in�ation target decisively in�uence the path

of actual in�ation? In other words, does monetary policy properly control the dynamics

and path of in�ation? Second, what are the e¤ects of changes in monetary and �scal policy

stances on the equilibrium response of in�ation to various shocks impinging on the economy?

For example, what happens to the equilibrium behavior of in�ation when the monetary policy

stance changes to a more aggressive response to in�ation? Does the �scal policy stance with

respect to public debt matter for in�ation dynamics? If yes, then how does a variation in

the �scal policy stance a¤ect in�ation?

These issues, while long of great interest in monetary economics, have received a renewed

interest recently in the literature.1 A prominent illustration is provided by the research that

aims to provide an explanation for the low frequency movement of in�ation in the U.S.,

especially, the rise of in�ation in the 1970s and the subsequent fall in the 1980s. Proposed

explanations typically rely on changes in the dynamics of the in�ation target and/or changes

in policy stances.2

For example, Ireland (2007) and Cogley, Primiceri, and Sargent (2010) propose a rise in

a persistent time-varying in�ation target as an explanation for the rise of in�ation in the

1970s: Clarida, Gali, and Gertler (2000), Lubik and Schorfheide (2004), and Bhattarai, Lee,

and Park (2012) argue that a weak monetary policy stance with respect to in�ation, or a

passive monetary policy regime, in the pre-Volcker period implied indeterminacy of equilibria,

which in turn, led to a rise of in�ation due to self-ful�lling beliefs.3 These papers provide

evidence that post-Volcker, in�ation stabilization was successful because of an aggressive

monetary policy stance with respect to in�ation, that is, an active monetary policy regime.

Finally, Sims (2011) and Bianchi and Ilut (2012) argue that a weak response of taxes to debt,

or an active �scal policy regime, led to an increase in in�ation in the 1970s as a response to

increases in government spending. These authors argue that after the 1970s; the �scal policy

stance changed to one that implied a passive policy regime, that is, taxes responded strongly

1For a recent survey of the literature on monetary and �scal policy interactions, see Canzoneri, Cumby,
and Diba (2011).

2There are also some well-known papers that provide a learning-based explanation for the rise and fall of
U.S. in�ation. See for example, Primiceri (2006) and Sargent, Williams, and Zha (2006). Moreover, some
papers have attributed the rise and fall of U.S. in�ation mostly to time-varying volatility of shocks. See for
example, Sims and Zha (2006).

3We use the language of Leeper (1991) in characterizing policies as active and passive. Under an active
monetary policy regime, nominal interest rates react strongly to in�ation while under an active �scal policy
regime, taxes respond weakly to debt outstanding. What exactly constitutes active and passive monetary
and �scal policy is model-speci�c. Later, we precisely state the bounds on policy parameters that lead to a
particular policy regime combination in our model.

2



to debt. This choked o¤ the possibility of rising in�ation in response to �scal shocks.

Motivated by these theoretical and empirical considerations, we provide a complete and

analytical characterization, to the best of our knowledge for the �rst time in the literature,

of these questions in a standard dynamic stochastic general equilibrium (DSGE) model. At

�rst, we use a relatively simple model that enables us to derive sharp and clear closed-form

results. The baseline model that we solve in closed-form is a standard sticky price model that

features simple monetary and �scal policy rules, lump-sum taxes, and one-period nominal

government bonds. We focus on the correlation between actual in�ation and the in�ation

target and conduct comparative static exercises related to the impact on in�ation of changing

monetary and �scal policy stances. We �nd that the results of these experiments depend

critically on the prevailing monetary and �scal policy regimes.

In particular, we analyze three di¤erent policy regimes. First, an active monetary and

passive �scal policy regime, where a high response of interest rates to in�ation is coupled with

a high response of taxes to outstanding public debt. This is the most common policy regime

considered in the literature where a unique bounded equilibrium exists. In this regime,

in�ation closely follows the path of the in�ation target. In fact, stronger the systematic

reaction of monetary policy to in�ation, more closely will actual in�ation follow the in�ation

target. Moreover, a stronger reaction of monetary policy to in�ation decreases the response

of in�ation to the various non-policy shocks impinging on the economy. Finally, as is well-

known, in this case, �scal policy plays no role in price level determination.4

These results are standard since in this regime, monetary policy controls in�ation dynam-

ics. An unanticipated decrease in the in�ation target, which is equivalent to an unanticipated

increase in the nominal interest rate, decreases expected in�ation in this regime, since the

systematic response of interest rate to in�ation is more than one-for-one. Then, due to

the increase in the ex-ante real interest rate, the output gap and thereby, actual in�ation,

decrease. Moreover, stronger the systematic response of interest rates to in�ation, greater

is the e¤ect on the ex-ante real interest rate, which decreases the e¤ect on in�ation when

non-policy shocks hit the economy.

Second, we analyze an active �scal and passive monetary policy regime, where a low

response of interest rates to in�ation is coupled with a low response of taxes to outstanding

public debt.5 A unique bounded equilibrium exists with this combination of monetary and

�scal policies as well. In this regime, in sharp contrast to the previous regime, in�ation

moves in an opposite direction from the in�ation target on impact.6 In fact, stronger the

4We focus on a model with lump-sum taxes and transfers only.
5For early treatments of this policy regime in simple models, see Leeper (1991), Sims (1994), and Woodford

(1995).
6We analytically characterize the impact responses while computing the entire path of responses numeri-
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systematic reaction of monetary policy to in�ation, greater will be the divergence between

the in�ation target and actual in�ation. In addition, and again in sharp contrast to the active

monetary and passive �scal regime, in this regime, a stronger reaction of monetary policy

to in�ation increases the response of in�ation to the various non-policy shocks impinging on

the economy.7 Moreover, now, the �scal policy stance matters for the dynamics of in�ation.

We show that a weaker response of taxes to debt leads to a weaker response of in�ation to

non-policy shocks.

These results arise because of the wealth e¤ect on households of interest rate and tax

changes.8 Under the previous regime, because the systematic response of interest rates to

in�ation was greater than one, expected in�ation decreases in response to an unanticipated

increase in interest rates. In this regime, however, interest rate increases increase the value

of outstanding government debt. Since tax response to government debt is low, this increase

in interest rate leads to a positive wealth e¤ect on households, the government bond holders.

The positive wealth e¤ect then leads to increased spending and thereby, higher in�ation.

Moreover, greater the systematic response of interest rates to in�ation, as long as this re-

sponse is less than one-for-one, it only serves to make this positive wealth e¤ect stronger.

Then, the equilibrium response of in�ation will be even higher. Finally, given the crucial role

of government debt dynamics on equilibrium determination, it is natural that �scal policy

stance now matters for the dynamics of in�ation. In particular, a weaker response of taxes

to debt implies that the wealth e¤ect due to tax changes is lower. Thus, in�ation responds

by less when non-policy shocks hit the economy.

Third, we explore a passive monetary and passive �scal policy regime, where a low re-

sponse of interest rates to in�ation is coupled with a high response of taxes to outstanding

government debt. In this regime, there is equilibrium indeterminacy and theory provides

no clear answer on the behavior of in�ation. Generally, in this regime, both fundamental

and sunspot shocks play a role in price level determination. Moreover, the potential for

self-ful�lling beliefs implies that the e¤ects of monetary and �scal policy on in�ation can be

very di¤erent from the cases where there is equilibrium determinacy.

While at �rst we provide closed-form solutions for a simple model, in the second part of

the paper, we also conduct a quantitative experiment with a richer DSGEmodel that includes

a variety of shocks and frictions. In particular, we use a medium-scale DSGE model along

the lines of Smets and Wouters (2007), Del Negro, Schorfheide, Smets, and Wouters (2007),

cally.
7This result is somewhat similar to that of Loyo (1999), who considered only a �exible price economy

and showed that a strong response of interest rates to in�ation can lead to a hyperin�ationary spiral under
a passive monetary and active �scal policy regime. Here, we work with a determinate equilibrium and a
sticky-price model.

8Changes in lump-sum taxes thus a¤ect consumption in this economy due to the wealth e¤ect.
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Figure 1: In�ation vs. smoothed in�ation target under di¤erent policy regimes in an esti-
mated model using U.S. data. Source: Bhattarai, Lee, and Park (2012).

and Justiniano, Primiceri, and Tambalotti (2010). The model features stochastic growth,

sticky prices and wages with partial dynamic indexation, habit formation, endogenous capital

accumulation, and variable capacity utilization. Moreover, the economy is subject to a wide

range of shocks, such as neutral and investment speci�c technology shocks, preference shock,

government spending shock, price and wage markup shocks, and policy shocks.9 We show

that for a wide range of realistic parameter values, our analytical results continue to apply

in such a model.

Our results have implications for both the empirical and theoretical literature in mone-

tary economics. First, consider the recent practice, in papers that estimate monetary DSGE

models, of using a time-varying in�ation target process to explain the low frequency move-

ment in actual in�ation. For example, in a recent comprehensive study of various monetary

policy reaction functions, Curdia, Ferrero, Ng, and Tambalotti (2011) show that using a time-

varying and slow-moving in�ation target improves the �t of the model since it helps capture

the low frequency variation in in�ation. Our results show that this strategy works only if one

imposes an active monetary and passive �scal policy regime while estimating the model.10

Indeed, using an estimated DSGE model and a pre-Volcker and a post-Volcker subsample

analysis, in Bhattarai, Lee, and Park (2012), we show that the correlation between in�ation

and the smoothed in�ation target shock backed out after the estimation varies signi�cantly

9We keep the �scal block of the model relatively simple even in this case by considering only lump-sum
taxes and one-period nominal government bonds.
10Curdia, Ferrero, Ng, and Tambalotti (2011) use U.S. data from 1987 : III to 2009 : III, a period during

which an active monetary and passive �scal policy regime is certainly a reasonable description of policy.
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depending on which policy regime one imposes during estimation.11 Figure 1, reproduced

from that paper, makes the point especially clear. It shows for example that while under

an active monetary and passive �scal policy regime, the long-run correlation between the

in�ation target and actual in�ation is high and positive, under a passive monetary and ac-

tive �scal policy regime, it is strongly negative. Moreover, under a passive monetary and

passive �scal policy regime, while theoretically the correlation between the in�ation target

and actual in�ation is not pinned down by theory, the �gure shows that empirically, the

correlation is close to zero.

Second, our theoretical results show that the e¤ects of an aggressive monetary policy

stance, or a �hawkish�central bank, on in�ation depends critically on the joint behavior of

monetary and �scal policy. In particular, we show that in a passive monetary and active

�scal policy regime, an aggressive reaction to in�ation by the central bank actually ends up

increasing the response and volatility of in�ation to non-policy shocks. Thus, any prescription

for monetary policy behavior has to take into account the prevailing �scal policy regime.12

2 Simple Model

We use a standard DSGE model with nominal rigidities that can be solved analytically.

We lay out the basic model features below while providing a complete description in the

appendix. The main actors and their decision problems are as follows.

2.1 Description

2.1.1 Households

Households, a continuum in the unit interval, face an in�nite horizon problem and maximize

expected discounted utility over consumption and leisure. The utility function is additively

separable over consumption and labor e¤ort.

2.1.2 Firms

Firms, a continuum in the unit interval, produce di¤erentiated goods using labor as input.

Firms have some monopoly power over setting prices, which are sticky in nominal terms.

11The estimated model in Bhattarai, Lee, and Park (2012), while richer than the analytical model we work
with in this paper, is relatively small-scale. For example, it does not feature sticky wages and endogenous
capital accumulation, features that are present in the quantitative model we use in this paper.
12Loyo (1999) uses a similar result from a �exible price model to interpret the experience of Brazil in the

1970s and 1980s: Relatedly, Sims (2004) shows in a very di¤erent set-up, also a �exible price model, that a
central bank might lose control of in�ation if it is not adequately backed up by the treasury.
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Price stickiness is modelled using the Calvo formulation where every period, �rms face a

constant probability of not adjusting prices.

2.1.3 Government

The government is subject to a �ow budget constraint and conducts monetary and �scal

policies using endogenous feedback rules. For simplicity, we assume that the government

issues only one-period nominal debt and levies lump-sum taxes. The government controls

the one-period nominal interest rate Rt. Monetary policy is modelled using an interest rate

rule that features a systematic response of the nominal interest rate to the deviation of

in�ation �t from a time-varying target ��t . The feedback parameter on in�ation deviation is

given by �. Fiscal policy is modelled using a tax rule that features a systematic response of

the tax revenues � t to the level of outstanding government debt bt�1. The feedback parameter

on debt is given by  .

2.2 Approximate Model

We �rst solve the problem of households and �rms given the monetary and �scal policy

rules and derive the equilibrium conditions. We then use approximation methods to solve

the model: we obtain a �rst-order approximation to the equilibrium conditions around the

non-stochastic steady state.13 We provide the detailed derivations in the appendix. The

resulting model can be summarized by the following linearized equations:

~Yt = Et ~Yt+1 �
�
R̂t � Et�̂t+1

�
+ r̂�t (1)

�̂t = � ~Yt + �Et�̂t+1 (2)

R̂t = � (�̂t � �̂�t ) (3)

�̂ t =  b̂t�1 (4)

b̂t = ��1b̂t�1 � ��1�b�̂t � ��1�̂ t +�bR̂t (5)

r̂�t = �rr̂
�
t�1 + "r;t (6)

�̂�t = ���̂
�
t�1 + "�;t: (7)

Here, ~Yt � Ŷt � Ŷ n
t is the output gap. That is, it is the di¤erence between actual output

13In the equations below, we use X̂t to denote the log deviation of a variable Xt from its steady state �X
(X̂t = lnXt � ln �X), except for two �scal variables, b̂t and �̂ t. Following Woodford (2003), we let them
represent respectively the deviation of the maturity value of government debt and of government tax revenues
(net of transfers) from their steady-state levels, measured as a precentage of steady-state output: b̂t = bt��b

�Y

and �̂ t = �t���
�Y
:
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Ŷt and the natural level of output Ŷ n
t , the output that would prevail under �exible prices.

Moreover, r̂�t is a composite shock that is a linear combination of the structural shocks in the

model such as technology and preference shocks. It is often referred to as the natural rate of

interest because it is the real interest rate that would prevail under �exible prices. Equation

(6) shows that we assume that it follows an exogenous AR (1) process with 0 < �r < 1. The

innovation "r;t has zero mean and variance �2r: Equation (7) shows that we assume that the

in�ation target follows an exogenous AR(1) process with 0 < �� < 1. The innovation "�;t
has zero mean and variance �2�. Ireland (2007) models that the Federal Reserve adjusts the

in�ation target in response to the economy�s supply shocks but �nds that the response is not

statistically signi�cant. In light of this result, we make the exogeneity assumption on �̂�t .

Cogley and Sbordone (2008) and Cogley, Primiceri and Sargent (2010) also use an exogenous

AR process to model the in�ation target.14

Equation (1), the dynamic �IS�equation, expresses how the output gap today is deter-

mined by the expected output gap tomorrow and the ex ante real interest rate. Equation

(2), the dynamic �AS�equation, describes how in�ation today is determined as a function

of discounted expected in�ation tomorrow and the output gap today. Here, � is the dis-

count factor of the household and � , which determines the slope of the AS equation, is a

composite parameter of the structural parameters. Equation (3) is the monetary policy rule

which governs the response of the nominal interest rate to the deviation of in�ation from

the in�ation target while Equation (4) is the �scal policy rule which governs the response of

taxes to the real maturity value of the outstanding debt. Finally, Equation (5) is the �ow

budget constraint of the government.

As is well-known, in the approximate model, the existence and uniqueness of equilibrium

depends crucially on the prevailing monetary and �scal policy regime. The equilibrium of the

economy will be determinate either if monetary policy is active while �scal policy is passive

(the AMPF regime) or if monetary policy is passive while �scal policy is active (the PMAF

regime). The equilibrium is indeterminate and multiple equilibria exist if both monetary

and �scal policies are passive (the PMPF regime). In our model, monetary policy is active

if � > 1 and �scal policy is active if  < 1 � �: Table 1 summarizes these policy regime

14The assumption that �̂�t is stationary implies that the monetary authority does not permanently keep
the in�ation target at the same level but in the long-run drives the in�ation target back to the non-stochastic
steady state level. We introduce this assumption for two reasons. First, the stationarity assumption allows
us to work with a standard framework. To assume that the in�ation target has a unit root results in
time-varying coe¢ cients of the Phillips curve as in Cogley and Sbordone (2008) or leads to a non-standard
monetary policy rule for with which the Taylor principle should be modi�ed. Therefore, to present our point
clearly within a familiar framework, we assume that the in�ation target is very persistent but stationary.
Second, we will generally restrict �� to values close to 1, thereby e¤ectively ensuring that �̂

�
t captures the

persistent behavior of the in�ation target set by the central bank. Cogley, Primiceri, and Sargent (2010) use
the same assumption.
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Table 1: Monetary/Fiscal Policy Regimes and Equilibrium Properties
Active Money Passive Money
(� > 1) (� < 1)

Active Fiscal No Equilibrium Unique Equilibrium
( < 1� �)
Passive Fiscal Unique Equilibrium Multiple Equilibria
( > 1� �)

combinations and the associated equilibrium outcomes.

2.3 Results

We analytically characterize the solution of the model either when a determinate equilibrium

exists or when there are multiple equilibria. We then derive several results regarding the

dynamics of in�ation. Speci�cally, we study how the path of in�ation depends on the path

of the in�ation target and how the response of in�ation changes when monetary and �scal

policy stances change within a policy regime combination. All the details of the derivations

and the proofs of the various propositions are in the appendix.

2.3.1 Active Monetary and Passive Fiscal Policy

Under an active monetary and passive �scal policy regime, we can express the solution for

in�ation as:

�̂t = �(�) �̂
�
t + � (�) r̂

�
t ; (8)

where � (�) and � (�) are functions of the monetary policy response parameter �.15 Note

that in this case, as Equation (8) makes clear, the dynamics of in�ation do not depend on the

dynamics of government debt and �scal policy. Therefore, debt b̂t�1 is not a state variable

that determines in�ation and the �scal policy response parameter  does not a¤ect in�ation.

Moreover, this implies that in�ation is solely a function of the two exogenous processes,

�̂�t and r̂�t ; since other than the budget constraint, the rest of the model is completely

forward-looking:

We next characterize several properties of the solution. We �rst start with the response

of in�ation to changes in the in�ation target.

15Obviously, � (�) and � (�) in Equation (8) are a function of other structural parameters as well. Here
on after, we write the coe¢ cients in a solution for in�ation as a function of policy parameters only so as to
highlight their role in determining in�ation dynamics.
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Proposition 1 (Direction of in�ation response) When monetary policy is active and
�scal policy is passive (AMPF), in�ation moves in the same direction as the in�ation target

�that is,

� (�) � 0:

The equality holds when prices are completely sticky (� = 0). Moreover, in�ation responds

more (or less) than one-for-one to changes in the in�ation target if prices are su¢ ciently

�exible (or sticky):

1 < � (�) , for � >
(1� ��) (1� ���)

��
;

0 � � (�) � 1, for 0 � � � (1� ��) (1� ���)

��
:

In this regime, since in�ation moves in the same direction as the in�ation target, we see

clearly that monetary policy controls the dynamics of in�ation. Consider a positive shock to

�̂�t : From Equation (3), this leads to a decrease in the nominal interest rate R̂t: Since in this

regime the central bank systematically changes nominal interest rates more than one-for-one

to changes in in�ation (� > 1), a decrease in R̂t brings expected in�ation up. This implies

that the ex-ante real interest rate R̂t �Et�̂t+1 goes down. From, Equation (1), this leads to

an increase in the output gap ~Yt and then from Equation (2), it leads to an increase in actual

in�ation �̂t: Thus, �̂t and �̂
�
t are positively correlated.

Moreover, as is natural, the response of in�ation to the in�ation target shock depends on

the extent of price stickiness in the economy: greater the degree of price stickiness, smaller is

the response of in�ation. As a limiting result, the proposition also shows that in�ation does

not respond to the in�ation target at all when prices are completely sticky because the price

level would not respond at all to any shocks. In contrast, when prices are su¢ ciently �exible,

in�ation responds more than one-for-one to changes in the in�ation target. This is possible

because due to two factors. First, from Equation (3), we see that on impact, a unit increase

in �̂�t decreases R̂t by more than a unit (since � > 1).16 At a given level of �̂t; from Equation

(1), ~Yt increases and in equilibrium, if � is large enough, which implies that in�ation is quite

sensitive to changes in the output gap, then Equation (2) shows that the increase in �̂t can

be by more than a unit.

Now let us consider a comparative static exercise with respect to the monetary policy

parameter �, which is a measure of the monetary policy stance.

Proposition 2 (Magnitude of in�ation response and monetary policy stance) When

16To emphasize, this is in a partial equilibrium sense.

10



monetary policy is active and �scal policy is passive (AMPF), the response of in�ation to

changes in the in�ation target is decreasing (or increasing) in � if prices are su¢ ciently

�exible (or sticky):

@� (�)

@�
< 0, for � >

(1� ��) (1� ���)

��
;

@� (�)

@�
> 0, for 0 � � � (1� ��) (1� ���)

��
:

In combination with Proposition 1, we now have the intuitive result that �̂t will move

more closely with �̂�t as � increases � for all values of �. Again, in this sense, monetary

policy controls in�ation successfully in this regime. Thus, if the central bank�s objective is to

stabilize the �in�ation gap,��̂t��̂�t , it needs to have a large value for �, or respond strongly to
the in�ation gap. As � is higher, in this active monetary regime, expected in�ation increases

by less for a given increase in �̂�t , thereby dampening down the response of in�ation.

To make the results even more transparent, we show in Figure 2 the impulse response

of in�ation to an exogenous change in the in�ation target, varying the degree of monetary

policy stance.17 Figure 2 clearly shows that in�ation dynamics closely mimic those of the

in�ation target. The completely forward-looking nature of the model with the �scal variables

being redundant makes the in�ation dynamics particularly simple. Note that if the in�ation

target moves persistently, so does in�ation. In addition, we can see that in�ation responds

more than one-for-one to changes in the in�ation target because � (�) > 1 at our benchmark

parameterization.18 Not surprisingly, however, in�ation is closer to the target rate as the

monetary authority responds more strongly to the in�ation gap.

We next analyze the response of in�ation to the non-policy shock r̂�t :

Proposition 3 (Direction of in�ation response) When monetary policy is active and
�scal policy is passive (AMPF), in�ation moves in the same directions in response to the

non-policy shock, r̂�t �that is,

� (�) > 0:

The proposition thus establishes that when monetary policy is active, in�ation moves in

the same direction as the natural rate of interest r̂�t : In particular, we show in the appendix

that demand-type shocks such as preference shocks increase r̂�t , while supply-type shocks

such as technology shocks lower r̂�t . Hence, the proposition tells us that in�ation increases in

17For this and the other �gures in the analytical model section, we assign some standard values to model
parameters: � = 0:99; � = 0:75; �b = 0:4; �r = 0:9; and �� = 0:995.
18The lower bound of � for � (�) > 1, found in Proposition 1, is very small when �� has a vlaue close to

one. At the benchmark parameterization, the lower bound is less than 0:0001, which is not restrictive at all.
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Figure 2: The response of in�ation to a one percentage point increase in the in�ation target
under the AMPF regime.

response to favorable demand shocks and decreases in response to favorable supply shocks.

This is a conventional result under the AMPF regime. Equation (1) implies that a positive

r̂�t increases output gap for a given level of expected output gap and the real interest rate.

Then from Equation (2) it is clear that this in turn increases in�ation and expected in�ation

in equilibrium.

We next assess how this response depends on the monetary policy stance.

Proposition 4 (Magnitude of in�ation response and monetary policy stance) When
monetary policy is active and �scal policy is passive (AMPF), in�ation responds less to non-

policy shocks as the monetary authority becomes more aggressive� that is, � decreases as �

increases:
@� (�)

@�
< 0:

We therefore show that greater the systematic response of monetary policy to in�ation,

lower will be the response of in�ation to non-policy shocks. As � increases, under active mon-

etary policy, expected in�ation gets damped down more. Since this decreases the response

of the ex ante real interest rate, in�ation will increase by a lower amount in equilibrium.

Finally, because of the forward-looking nature of the model variables, it is straightforward

to establish a result regarding the variance of in�ation in response to non-policy shocks.

12



Proposition 5 (Unconditional variance) When monetary policy is active and �scal pol-
icy is passive (AMPF), the unconditional variance of in�ation decreases in �:

@V ARNP (�̂t)

@�
< 0,

where V ARNP (�) denotes the unconditional (long-run) variance associated with non-policy
shocks only (i.e. the in�uence of policy shifts by the government is shut down: "�;t = 0).

The proposition thus establishes that the long-run variance of in�ation in this policy

regime decreases when the monetary authority reacts systematically strongly to in�ation.

The two previous propositions have essentially the same implication: As the central bank

responds more strongly to the in�ation gap, the volatility of in�ation due to non-policy

shocks decreases.

Again, we illustrate these results in Figure 3. It shows the response of in�ation to non-

policy shocks under three di¤erent values of � and clearly illustrates our analytical �ndings.

In addition, we can see that the response of in�ation decays at a much faster rate here than

in Figure 2. The reason for this is straightforward. As should be clear from Equation (8), the

response of in�ation to a shock to each of the exogenous processes �aside from the size of

the response �is entirely dictated by the response of the respective exogenous process itself.

Therefore, to the extent that the in�ation target is more persistent than other exogenous

variables (�� > �r), in�ation should return to its steady state level more slowly in response

to in�ation target shocks.

Our results raise an interesting point. Empirical studies in the recent DSGE literature

such as Cogley, Primiceri and Sargent (2010) have found that the low-frequency components

of the in�ation rate are explained almost entirely by a time-varying in�ation target. Our

analytical analysis however suggests that �xing �� to a large value is necessary for this well-

established �nding. The �nding is not obtained without such a tight restriction in modeling

and estimation. Figure 4 compares the response of in�ation to the in�ation target shock with

the response to the non-policy shock. For a more direct comparison, we have normalized the

initial responses to one. We can clearly see that the in�ation target �relative to other shocks

�dominates in�ation dynamics, especially in the long run. As discussed above, however,

this result is entirely due to the fact that we �x �� at a higher value than �r. If we instead

treated all shocks symmetrically (i.e. �� = �r), the model would not distinguish between the

two shocks with respect to in�ation dynamics, as can be seen from Figure 4.

We now move on to analyzing another policy regime combination that leads to a determi-

nate equilibrium. As we will see, the results related to the correlation between the in�ation

target and the comparative statics on monetary policy response parameters will be in stark

13
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Figure 3: The response of in�ation to a one percentage point increase in the non-policy shock
under the AMPF regime.
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contrast in this case compared to the active monetary and passive �scal policy regime.

2.3.2 Passive Monetary and Active Fiscal Policy

Under a passive monetary and active �scal policy regime, we can express the solution for

in�ation as:

�̂t = 
(�;  ) b̂t�1 � � (�;  ) �̂�t + � (�;  ) r̂�t ; (9)

where 
 (�;  ) ; � (�;  ) ; and � (�;  ) are functions of both the monetary policy response

parameter � and the �scal policy response parameter  .19 Note that in this policy regime, as

Equation (9) makes clear, the dynamics of in�ation depend on public debt outstanding b̂t�1
as well. This implies that there is an endogenous state variable in this case, which in turn

imparts endogenous dynamics to the model. These are extremely important di¤erences from

the case we analyzed in the previous section where monetary policy was active and �scal

policy was passive.

We next characterize several properties of the solution.

Proposition 6 (Direction of in�ation response) When �scal policy is �su¢ ciently�ac-
tive and monetary policy is passive (PMAF), in�ation moves in the opposite direction in

response to a change in the in�ation target �that is,

� (�;  ) � 0 for

�1 <  < � 
�� and 0 � � < 1; (10)

where 0 < � 
�� � 1� � is a reduced-form parameter. The equality holds when � = 0.

This result, which is in stark contrast to Proposition 1 under the AMPF regime, arises

because now changes in the value of government debt in�uences in�ation dynamics. Consider

a negative shock to the in�ation target. From Equation (3), this increases the nominal

interest rate on impact. An increase in the nominal interest rate results in an increase of the

outstanding value of government debt. In this active �scal policy regime, since taxes do not

adjust by enough, the increase in the value of government debt leads to a positive wealth

e¤ect on households who hold government debt. This positive wealth e¤ect then leads to

higher spending, which pushes up in�ation. Proposition 6 is therefore, the key result behind

the negative relationship between in�ation and the in�ation target under the PMAF regime

shown in Figure 1. The wealth e¤ect on households due to changes in the value of government

19The complete solution, including the solution for debt, is provided in the appendix.
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debt and taxes, which in turn a¤ects households�spending, is the main mechanism behind

our results in this section.

Now let us consider a comparative static exercise with respect to the monetary policy

parameter �.

Proposition 7 (Magnitude of in�ation response and monetary policy stance) When
�scal policy is �su¢ ciently�active and monetary policy is passive (PMAF), in�ation deviates

even further from the in�ation target when the monetary authority is more aggressive �that

is, � increases in � in the domain of [0; 1):

@� (�;  )

@�
> 0 for

�1 <  < � 
��� and 0 � � < 1;

where 0 < � 
��� � 1� � is a reduced-form parameter.

In sharp contrast to our result under the AMPF policy regime, here, as the reaction

of monetary policy to in�ation increases, so does the equilibrium impact on in�ation of the

in�ation target shock. The mechanism is as follows. When the reaction of monetary policy to

in�ation increases, then for a given decrease in the in�ation target, the interest rate increase

will be higher. This means that the outstanding value of government debt increases by more,

which in turn, increases the size of the wealth e¤ect discussed above. This then implies a

greater e¤ect on spending, and thereby, on in�ation. Thus, unless the monetary authority

decides to respond to in�ation by enough such that monetary policy moves from a passive

regime to an active regime and at the same time �scal policy moves from an active regime

to a passive regime, a stronger response of monetary policy to in�ation ends up stabilizing

in�ation by less.

In this regime, since �scal policy also matters for in�ation dynamics, we next establish a

result related to the �scal policy stance.

Proposition 8 (Magnitude of in�ation response and �scal policy stance) When mon-
etary policy is passive and �scal policy is active (PMAF), in�ation deviates even further from

the in�ation target as the �scal authority becomes more active � that is, � increases as  

decreases in the domain of (�1; 1� �):

@� (�;  )

@ 
< 0 for

�1 <  < 1� � and 0 � � < 1:
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Figure 5: The response of in�ation to a one percentage decrease in the in�ation target under
the PMAF regime.

Here, as �scal policy becomes more active, we see that in�ation will respond more strongly,

and in the opposite direction, to changes in the in�ation target. This result arises because as

 decreases, taxes respond less strongly to debt as given by Equation (4). Then the wealth

e¤ect due to interest rate changes described above becomes ampli�ed. This increased wealth

e¤ect in turn leads to greater spending and thereby a stronger response of in�ation.

As an illustration, we show in Figure 5 the responses of in�ation to a one percent increase

in the in�ation target shock under varying degrees of monetary and �scal policy stances to

in�ation and debt. The �gure highlights our theoretical results above. In addition, it shows

that although our theoretical �ndings are focused on the impact response of in�ation, the

same economic intuition can be extended to longer horizons. Indeed, it clearly shows that

the deviation of in�ation from the target continues to be greater in periods following the

shock, as monetary and �scal policies become more active. The reason is that when � is

higher (and/or  is lower), the interest rate will be persistently higher after a negative shock

to the in�ation target to the extent that the in�ation target is persistent. This in turn

leads to persistently higher value of public debt. This then leads to a persistently positive

wealth e¤ect, which in turn, leads to a persistently higher in�ation. What is more, when

monetary and/or �scal policy is more active, in�ation depends more strongly on government

indebtedness � that is, as shown below in a proposition, 
 (�;  ) is increasing in � and

decreasing in  . This property obviously magni�es the mechanism through which higher

debt in�uences the dynamics of in�ation.
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We now move on to analyzing the response of in�ation to the non-policy shock.

Proposition 9 (Direction of in�ation response) When monetary policy is passive and
�scal policy is active (PMAF), in�ation moves in the same directions in response to the

non-policy shock, r̂�t �that is,

� (�;  ) � 0 for

�1 <  < 1� � and 0 � � < 1: (11)

The equality holds when � = 0.

This proposition under the PMAF policy regime is the same as Proposition 3 under the

AMPF policy regime. That is, in�ation moves in the same direction as the natural rate of

interest. Thus in�ation increases in response to a positive demand shock while it decreases

in response to a positive supply shock. This is because even under the PMAF policy regime,

the e¤ect of the non-policy shock on the economy is still to increase the output gap given the

expectations as implied by Equation (1), and in turn, in�ation as implied by Equation (2).

The comparative statics of in�ation responses with respect to the monetary policy stance

however, is dramatically di¤erent in the PMAF regime compared to the AMPF regime, as

we establish next.

Proposition 10 (Magnitude of in�ation response and monetary policy stance) When
monetary policy is passive and �scal policy is active (PMAF), in�ation responds more to non-

policy shocks as the monetary authority becomes more aggressive� that is, � increases as �

increases in the domain of [0; 1):

@� (�;  )

@�
> 0 for

�1 <  < 1� � and 0 � � < 1:

Thus, the stronger the systematic response of monetary policy to in�ation, the greater

will be the response of in�ation to the non-policy shocks in equilibrium. Why is this the

case? When a positive r̂�t shock hits the economy, it raises in�ation. Now with a higher �,

interest rates will rise by more in response to this increase in in�ation, as given by Equation

(3). Under the AMPF policy regime, this increase in interest rates would bring expected

in�ation down. In this PMAF regime, however, the greater increase in interest rates raises

the outstanding value of government debt by a greater amount. As we have explained before,

this leads to a greater wealth e¤ect on the households, which increases in�ation by a larger

amount.
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Figure 6: The response of in�ation to a one percentage increase in the non-policy shock
under the PMAF regime.

We next conduct a similar comparative static exercise with respect to the stance of �scal

policy.

Proposition 11 (Magnitude of in�ation response and �scal policy stance) When mon-
etary policy is passive and �scal policy is active (PMAF), in�ation responds less in response

to non-policy shocks as the �scal authority becomes more active� that is, � decreases as  

decreases in the domain of (�1; 1� �):

@� (�;  )

@ 
> 0 for

�1 <  < 1� � and 0 � � < 1:

This proposition shows that the weaker is the response of taxes to debt, the lower is the

response of in�ation to the non-policy shock. When a positive r̂�t hits the economy, as we

discussed above, it leads to higher in�ation. This lowers the outstanding value of government

debt. From the �scal policy rule (4) this implies that taxes will decrease. Now the lower is  ,

the smaller is the decrease in taxes. Even though taxes are lump-sum in our model, when the

regime is PMAF, tax changes lead to a wealth e¤ect on households. With a smaller decrease

in taxes, the wealth e¤ect is smaller, which in turn leads to a smaller change in spending and

thereby in�ation.

Figure 6 illustrates our results on in�ation response to non-policy shocks under varying
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degrees of monetary and �scal policy reactions to in�ation and debt respectively. The �gure

highlights our analytical results above on the impact response of in�ation. Higher � or a

higher  leads to a greater initial impact of in�ation. In addition to the initial impact, the

dynamic responses of in�ation reveal an interesting pattern that is di¤erent from the case

under AMPF. While the initial response of in�ation is positive in response to the shock

r̂�t and it remains positive for a number of periods, after some time, in�ation goes below

steady state. The intuition for this result is again related to the dynamics of government

debt. Initially, the increase in in�ation lowers the outstanding value of government debt. In

this regime, this decrease in the value of government debt leads to a negative wealth e¤ect on

households. This negative wealth e¤ect leads to a decrease in spending by households, which

in turn, eventually leads to in�ation decreasing and going below steady state. Moreover, note

that while analyzing the dynamic response of in�ation under di¤erent values of �; one sees

that the paths intersect after a certain number of periods. This feature arises because when

in�ation goes below steady state, it leads to a decrease in nominal interest rates, as given

by Equation (3). This decrease in interest rate leads to a negative wealth e¤ect. Higher the

value of �; greater is this negative wealth e¤ect. Thus, once in�ation goes below steady state,

due to the negative wealth e¤ect that depresses spending, there is a tendency for in�ation to

continue below steady for a while. This e¤ect is more pronounced when � is higher, which

in turn, implies that the paths for di¤erent levels of � will cross.

Figure 7 shows results for the in�ation response to non-policy shocks under varying de-

grees of monetary policy reaction to in�ation and for di¤erent levels of persistence of the

non-policy shocks. As is to be expected, the greater the persistence of the shock, the more

persistent will be the response of in�ation. Moreover, the pattern of in�ation initially re-

maining above steady state and then eventually going below steady state is robust to various

levels of persistence of the shock.

The results on the dynamic responses of in�ation have an important implication for the

relationship between the monetary policy stance and the volatility of in�ation �a primary

policy objective of central banks. Due to endogenous dynamics under this policy regime, we

are unable to provide closed form expressions for the variance of in�ation. We thus resort to

numerical illustrations. As Figure 6 illustrates, under PMAF, while the response of in�ation

deviation is not greater for every time period when � is higher, it is certainly the case for

most periods �especially the initial period. To the extent that initial responses of in�ation to

shocks dominate in the second moment of in�ation dynamics, the volatility of in�ation will

be larger when monetary policy reaction is stronger.20 Figure 8 illustrates this result. Under

20Initial responses are disproportionately important for the variance of the in�ation rate because the
squared size of the initial response to a shock is substantially bigger than those of the responses in the
following periods as can be seen clear in Figure 7. This argument is reminiscent of the di¤erence in outcomes
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Figure 7: The response of in�ation to a one percentage point increase in the non-policy shock
with di¤erent degrees of persistence under the PMAF regime.

AMPF, a more hawkish monetary policy leads to a smaller standard deviation of in�ation

as proved earlier. Under PMAF, however, a stronger monetary policy reaction to in�ation

instead leads to a higher volatility of in�ation.

We next provide some properties of the solution related to the response of in�ation to

public debt outstanding. Note again that this feature of the solution is unique to the passive

monetary and active �scal policy regime (PMAF).

Proposition 12 (Direction of in�ation response) When �scal policy is active and mon-
etary policy is passive (PMAF), in�ation moves in the same direction in response to a change

in public debt outstanding �that is,


 (�;  ) > 0 for

�1 <  < 1� � and 0 � � < 1:

Thus, in�ation is a¤ected positively by changes in public debt outstanding in this regime.

This result is again a direct derivative of the wealth e¤ect on households that is a crucial

mechanism under active �scal policy. A higher level of public debt outstanding will increase

the extent of wealth e¤ect of changes in the value of public debt. This then changes spending

when monetary policy is analyzed under commitment and under discretion, also known as the stabilization
bias.
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Figure 8: Standard deviation of in�ation (in percent) across di¤erent values of � conditional
on the non-policy shocks under the PMAF regime. The standard deviation of the non-policy
shock is normalized to one percent.

and thereby, in�ation by a greater extent. We now conduct comparative static exercises with

respect to the monetary policy and �scal policy parameters.

Proposition 13 (Magnitude of in�ation response and monetary policy stance) When
�scal policy is �su¢ ciently� active and monetary policy is passive (PMAF), in�ation re-

sponds more to a change in public debt outstanding when the monetary authority is more

aggressive� that is, 
 increases as � increases in the domain of [0; 1):

@
 (�;  )

@�
> 0 for

�1 <  < � 
� and 0 � � < 1;

where � � is a positive reduced-form parameter that lies between 0 and 1 � � (i.e. 0 < � 
� �

1� �).

Proposition 14 (Magnitude of in�ation response and �scal policy stance) When �s-
cal policy is active and monetary policy is passive (PMAF), in�ation responds more to a

change in public debt outstanding when the �scal authority is more active� that is, 
 de-
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creases as  decreases in the domain of (�1; 1� �):

@
 (�;  )

@ 
< 0 for

�1 <  < 1� � and 0 � � < 1:

The �rst of the propositions above thus shows that a greater systematic response of

interest rates to in�ation lead to a greater response of in�ation to public debt outstanding.

Again, this result arises because with a stronger response of interest rates to in�ation, the

wealth e¤ect on households of changes in the value of outstanding government debt gets

ampli�ed. The result of the second proposition arises also because the wealth e¤ect gets

magni�ed when taxes respond less to public debt outstanding.

Finally, we consider the case where there is equilibrium indeterminacy as both monetary

and �scal policies are passive.

2.3.3 Passive Monetary and Passive Fiscal Policy

Under a passive monetary and passive �scal policy regime (PMPF), multiple equilibria exist.

We can express the solution for in�ation as:

�̂t =

�
e2�̂t�1 + �

�

�b� ���1

e1 � ��

�
�̂�t�1 �

�
���1

e1 � �r

�
r̂�t�1 + 


�
b̂t�1 � e2b̂t�2

��
| {z }

Et�1�̂t

+
h
m� mr

i " "�;t

"r;t

#
+ �t;

where �t is a sunspot shock.
21 By decomposing the expectational error �̂t � Et�1�̂t into the

innovations to the fundamental shocks, "�;t and "r;t, and the sunspot shock, �t, we maintain

that the sunspot shock is independent of the fundamental shocks to the economy. Note that

parameters m� and mr are not uniquely determined in this solution.

It is easy to see that the relationship between �̂t and �̂
�
t and the e¤ect of r̂

�
t on �̂t is

ambiguous. For example, �̂t and �̂
�
t may be positively or negatively related. If agents form

self-ful�lling expectations that a shock to �̂�t decreases in�ation signi�cantly (m� << 0),

then the self-ful�lling expectations can dominate and in�ation can respond negatively to

a shock to �̂�t . But, in general, the question of how �̂t responds to �̂
�
t can be answered

only empirically. The answer will depend the numerical values of non-structural as well as

21For the complete description of the notation, see the appendix.
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structural parameters. In their estimated model, Bhattarai, Lee, and Park (2012) �nd that

the in�ation target is not a signi�cant driving force of in�ation dynamics under the PMPF

regime, as depicted in Figure 1.

3 Quantitative Model

In this section, we assess whether the results found analytically with the simple model in the

previous sections also hold in a quantitative model. We use a standard medium-scale DSGE

model that features a rich set of frictions and shocks along the lines of Smets and Wouters

(2007), Del Negro, Schorfheide, Smets, and Wouters (2007), and Justiniano, Primiceri, and

Tambalotti (2010). We lay out the basic model features below while providing a complete

description in the appendix. The main actors and their decision problems are as follows.

3.1 Description

3.1.1 Households

Households, a continuum in the unit interval, face an in�nite horizon problem and maximize

expected discounted utility over consumption and leisure. The utility function is additively

separable over consumption and labor e¤ort. There is time-varying external habit formation

in consumption and a discount factor shock. Households own capital that they rent to

�rms. The model features variable capital utilization rate, which is chosen optimally by

households. Households also make capital accumulation decision, and in doing so, take into

account capital adjustment costs. There is a investment shock in the capital accumulation

equation that leads to a variation in the e¢ ciency with which the consumption good is

converted into capital.

Each household is a monopolistic supplier of di¤erentiated labor. The elasticity of substi-

tution over the di¤erentiated labor varieties is time-varying. A large number of competitive

employment agencies combine the di¤erentiated labor services into a homogeneous labor in-

put that is sold to �rms. Each household enjoys some monopoly power over setting wages,

which are sticky in nominal terms. Wage stickiness is modelled following Calvo (1983). There

is a constant probability of not adjusting wages every period, with wages that do not adjust

partially indexed to past in�ation.

3.1.2 Firms

Firms, a continuum in the unit interval, produce di¤erentiated goods using the homogenous

labor input and capital. The elasticity of substitution over the di¤erentiated goods varieties
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is time-varying. There is a �xed cost in production, which ensures zero pro�ts in steady-

state. The production function, which takes a Cobb-Douglas form, is subject to an aggregate

neutral technology shock. Each �rms enjoys some monopoly power over setting prices, which

are sticky in nominal terms. Price stickiness is modelled following Calvo (1983). There is

a constant probability of not adjusting prices every period, with prices that do not adjust

partially indexed to past in�ation.

3.1.3 Government

The government is subject to a �ow budget constraint and conducts monetary and �scal

policies using endogenous feedback rules. For simplicity, we assume that the government

issues only one-period nominal debt and levies lump-sum taxes. The government controls

the one-period nominal interest rate. Monetary policy is modeled using an interest rate rule

that features interest rate smoothing and a systematic response of the nominal interest rate

to the deviation of in�ation from a time-varying target and the deviation of output from the

natural level of output.22 Monetary policy shock is the non-systematic component of this

policy rule. Fiscal policy is modelled using a tax rule that features a systematic response

of the tax revenues to the level of outstanding government debt. Government spending-to-

output ratio evolves exogenously as a time-varying fraction of output.

3.2 Approximate Model

We �rst solve the problem of households and �rms given the monetary and �scal policy rules

and derive the equilibrium conditions. We then use approximation methods to solve the

model. First, the model features a stochastic balanced growth path since the neutral tech-

nology shock contains a unit root. Therefore, we de-trend variables on the balanced growth

path by the level of the technology shock and write down all the equilibrium conditions of the

transformed model. Second, we compute the non-stochastic steady state of this transformed

model. Third, we obtain a �rst-order approximation of the equilibrium conditions around

this steady state. We then solve the approximated model using standard methods. The

approximated equations are provided in the appendix.

As in the simple model, the existence and uniqueness of equilibrium depends crucially

on the prevailing monetary and �scal policy regime. The equilibrium of the economy will

be determinate either if monetary policy is active while �scal policy is passive (the AMPF

regime) or if monetary policy is passive while �scal policy is active (the PMAF regime).

22The natural level of output is the output that would prevail under �exible wages and prices and in the
absence of time-variation in the elasticity of substitution over the di¤erent varieties of labor and goods.
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An equilibrium is indeterminate and multiple equilibria exist if both monetary and �scal

policies are passive (the PMPF regime). In this richer model, we are unable to analytically

characterize the exact parameter boundaries that lead to active and passive policies. We

therefore determine the boundaries numerically.

3.3 Results

The results from this quantitative model are consistent with our analytical results, as we

discuss below in detail.23 We will present results with respect to the in�ation target shock and

six non-policy shocks: neutral technology shock, government spending, investment speci�c

technology shock, price markup shock, wage markup shock, and a preference shock.

3.3.1 Parameter Values

Our model, other than a slightly di¤erent speci�cation of monetary policy rule and an inclu-

sion of a �scal block, is the same as in Del Negro, Schorfheide, Smets, and Wouters (2007),

and Justiniano, Primiceri, and Tambalotti (2010).24 For our numerical exercises, we use the

posterior median estimates of Justiniano, Primiceri, and Tambalotti (2010) for all the para-

meters related to preferences and technology. For all three policy regimes, we also use the

same value as their posterior median estimates for the monetary policy feedback parameter

on output gap. For the tax smoothing parameter in the �scal policy rule we use the posterior

estimate of Bhattarai, Lee, and Park (2012) while for the steady state level of the maturity

value of debt-to-output, we use the sample average from U.S. data. We then conduct several

comparative static exercises with respect to the policy feedback parameters on in�ation and

debt outstanding to show that the numerical results from this model are consistent with our

analytical results from the simple model. All the parameter values that we use are provided

in the appendix.

3.3.2 In�ation Target Shock

Panels (a)-(d) of Figure 9 show for the three policy regimes the impulse response of in�ation

to an exogenous change in the in�ation target, varying the degree of monetary policy stance.

They clearly illustrate one of the main results of our paper: under AMPF, actual in�ation

moves in the same direction as the in�ation target and that higher the systematic response

of monetary policy to in�ation, lower is the gap between in�ation and the in�ation target,

23There are a two cases of di¤erences with respect to the intial impact on in�ation, for which we provide
detailed explanations.
24The main di¤erences in the monetary policy rule speci�cation is that we include a time-varying in�ation

target while excluding the growth rate of the output gap.
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while under PMAF, in sharp contrast, actual in�ation moves in an opposite direction from the

in�ation target and higher is the systematic response of monetary policy to in�ation, higher

is the gap between in�ation and the in�ation target. Moreover, under PMPF, depending on

the value of the parameter M�
� ; which governs how self-ful�lling beliefs are formed under

indeterminacy, in�ation could either move in the same direction as the in�ation target or in

an opposite direction. Finally, under PMAF, panel (e) of Figure 9 shows that lower is the

response of taxes to debt, greater is the gap between in�ation and the in�ation target.

3.3.3 Non-policy Shocks

Figure 10 shows under AMPF the impulse response of in�ation to six non-policy shocks,

varying the degree of monetary policy stance. It is clear that in�ation responds less on

impact to a non-policy shock when the systematic response of monetary policy to in�ation is

higher for all cases, except for the investment speci�c technology shock. Even for this shock

however, after 5 periods or so, the response is lower for a greater ��: In our simple model,

where we abstract from investment, this shock is not present. In this quantitative model,

the initial response of in�ation is higher for a greater �� because this shock directly and

signi�cantly a¤ects the capital rental cost for �rms. Thus, when �� is greater, it can be the

case that the rise in marginal cost due to a positive investment speci�c shock outweighs the

usual in�ation stabilization e¤ect, thereby leading to a greater response of in�ation. This

result however, depends on all the other parameters of the model, in particular, the extent

of wage stickiness in the economy. This is because wage stickiness determines the dynamics

of wages, an important component of marginal cost. In fact in the appendix, in an alternate

parameterization, we show a case where in�ation responds less on impact to this shock with a

greater ��; which makes it completely consistent with our analytical results. In this alternate

parameterization, we decrease the extent of wage stickiness compared to the baseline case

presented here, which magni�es the in�ation stabilization e¤ect of monetary policy on wage

costs and, thereby, damps down the increase in in�ation following an investment speci�c

shock.

Figure 11 shows under PMAF the impulse response of in�ation to six non-policy shocks,

varying the degree of monetary policy stance. It is clear that for all cases and in sharp contrast

to AMPF, in�ation responds more on impact to a non-policy shock when the systematic

response of monetary policy to in�ation is higher.

Figure 12 shows under PMAF the impulse response of in�ation to six non-policy shocks,

varying the degree of �scal policy stance It is clear that in�ation responds less on impact to

a non-policy shock when the systematic response of �scal policy to debt is lower for all cases,

except for the neutral technology shock. This result is di¤erent from our analytical results in
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Figure 9: The response of in�ation to a one percentage decrease in the in�ation target.
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Figure 10: The response of in�ation to a one standard deviation increase in the non-policy
shock under AMPF.
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Figure 11: The response of in�ation to a one standard deviation increase in the non-policy
shock under PMAF.
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the simple model. The reason is that this quantitative model features stochastic growth and

the technology shock is therefore a shock to the growth rate as opposed to a shock to the

level of technology, which was the case in the simple model. Thus, due to this, the shock can

signi�cantly a¤ect the dynamics of in�ation as it plays a prominent role in the government

budget constraint.

To preserve space, we do not present impulses responses under PMPF as the results clearly

depend on the calibration of M�
� : We now move on to presenting results on the volatility of

in�ation. This is especially pertinent because arguably, focusing on the volatility of in�ation

is a more sensible metric for in�ation dynamics in this quantitative model which features

various adjustment costs and internal propagation mechanisms. Figure 13 shows under the

three policy regimes the standard deviation of in�ation, varying the degree of monetary policy

stance. Here we present the standard deviation of in�ation when all six non-policy shocks

hit the economy. Panels (a) and (b) clearly depict one of the main results of our paper: in

response to non-policy shocks under AMPF, in�ation volatility decreases as monetary policy

responds strongly to in�ation, while in sharp contrast, under PMAF, in�ation volatility

increases.25 In this particular parameterization, panel (c) shows that under PMPF, in�ation

volatility increases when monetary policy responds strongly to in�ation.

4 Conclusion

In this paper we characterize the dynamics of in�ation under di¤erent monetary and �scal

regime combinations in a standard DSGE model. First, using a simple set-up that allows for

closed-form solutions, we show that answers to some classic questions on in�ation dynamics

depend crucially on the prevailing policy regime. Second, we show that our insights continue

to hold in a richer quantitative model.

Our results show that under an active monetary and passive �scal policy regime, in�ation

closely follows the path of the in�ation target and a stronger reaction of monetary policy

to in�ation decreases the response of in�ation to shocks. This is the usual case studied in

the literature and the results are standard since in this regime, monetary policy has control

over in�ation. In sharp contrast, under an active �scal and passive monetary policy regime,

in�ation moves in an opposite direction from the in�ation target and a stronger reaction of

25Note that in�ation is extremely volatile under PMAF. This is mostly because of the e¤ect of government
spending shocks in this regime. Government spending shocks have a direct impact on the government budget
constraint and thereby, require extremely volatile movements in in�ation for debt stabilization. Moreover,
note that since we use parameter values from a model estimated under AMPF, in�ation volatility under
PMAF is perhaps unreasonably high. Therefore, the main point of this exercise is simply to show how the
volatility of in�ation depends on the monetary policy reaction function parameter within a policy regime,
rather than a direct comparison of the volatility of in�ation across policy regimes.
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Figure 12: The response of in�ation to a one standard deviation increase in the non-policy
shock under PMAF.
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Figure 13: Standard deviation of in�ation across di¤erent values of �� conditional on the
non-policy shocks.

monetary policy to in�ation increases the response of in�ation to shocks. These e¤ects arise

crucially because of the prevalence of a wealth e¤ect in response to interest rate movements

that change the value of government debt. In particular, an increase in interest rate, because

of a positive wealth e¤ect, increases spending, and thereby in�ation. Moreover, in this

case, a weaker response of �scal policy to debt decreases the response of in�ation to shocks.

Finally, under a passive monetary and passive �scal policy regime, because of equilibrium

indeterminacy, theory provides no clear answer on the behavior of in�ation, which can only

be ascertained by estimating the model.
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Appendix

A Simple Model

A.1 Households

Identical households choose sequences of fCt; Bt; Nt; Dt+1g to solve:

maxE0

1X
t=0

�tdt

�
logCt �

N1+'
t

1 + '

�

subject to

PtCt +Bt + Et [Qt;t+1Dt+1] = Rt�1Bt�1 +Dt +WtNt +�t � Pt� t;

where Ct is consumption, Nt is labor hours, Pt is the price level, Bt is the amount of one-

period risk-less nominal government bond, Rt is the gross nominal interest rate, Wt is the

nominal wage rate, �t is pro�ts of intermediate �rms, and � t is government taxes net of

transfers. The parameter, ' � 0, denotes the inverse of the Frisch elasticity of labor supply,
while dt represents an intertemporal preference shock. In addition to the government bond,

households trade at time t one-period state-contingent nominal securities Dt+1at price Qt;t+1.

A.2 Firms

Perfectly competitive �rms produce the �nal good, Yt, by assembling intermediate goods,

Yt(i), through a Dixit and Stiglitz (1977) technology Yt =
�R 1

0
Yt(i)

��1
� di

� �
��1
, where � > 1

denotes the elasticity of substitution between intermediate goods. The corresponding price

index for the �nal consumption good is Pt =
�R 1

0
Pt(i)

1��di
� 1
1��
, where Pt(i) is the price of

the intermediate good i. The optimal demand for Yt(i) is given by Yt(i) = (Pt(i)=Pt)
�� Yt.

Monopolistically competitive �rms produce intermediate goods using the production func-

tion, Yt(i) = atNt(i), whereNt(i) denotes the labor hours employed by �rm i and at represents

exogenous economy-wide productivity. Prices are sticky as in Calvo. A �rm adjusts its price,

Pt(i), with probability 1�� each period, to maximize the present discounted value of future
pro�ts:

Et

1X
k=0

�kQt;t+k

�
Pt(i)�

Wt+k

At+k

�
Yt+k(i):
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A.3 Government

Each period, the government collects lump-sum tax revenues � t and issues one-period nominal

bonds Bt to �nance its consumption Gt, and interest payments. Accordingly, the �ow budget

constraint is given by:
Bt

Pt
= Rt�1

Bt�1

Pt
+Gt � � t:

For simplicity, we assume Gt = 0, which is inconsequential for our theoretical results. The

�ow budget constraint can be rewritten as:

R�1t bt = bt�1
1

�t
� � t;

where bt � Rt
Bt
Pt
denotes the real maturity value of government debt.

The monetary and �scal policies are described by simple rules. The monetary authority

responds to deviations of the in�ation rate from its time-varying target rate, ��t , by setting

the nominal interest rate according to:

Rt

�R
=

�
�t
��t

��
;

where �R is the steady-state value of Rt. Similarly, the �scal authority sets the tax revenues

according to:
� t
��
=

�
bt�1
�b

� 
;

where �� and �b are respectively the steady state value of � t and bt.

A.4 Approximate Model

We log-linearize the equilibrium conditions around non-stochastic steady state values:
�
��; �Y ; �R; �b; ��

	
.

Since the log-linearized model is completely standard, we omit a detailed derivation. The

approximate model is characterized by the following equations:

Ŷt = EtŶt+1 �
�
R̂t � Et�̂t+1

�
� Et[�d̂t+1];

�̂t = �
�
Ŷt � Ŷ n

t

�
+ �Et�̂t+1;

R̂t = � (�̂t � �̂�t ) ;

�̂ t =  b̂t�1;

b̂t = ��1b̂t�1 � ��1�b�̂t � ��1�̂ t +�bR̂t:
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In the equations above, we use X̂t to denote the log deviation of a variable Xt from its

steady state �X (X̂t = lnXt � ln �X), except for two �scal variables, b̂t and �̂ t. Following
Woodford (2003), we let them represent respectively the deviation of the maturity value of

government debt and of government tax revenues (net of transfers) from their steady-state

levels, measured as a percentage of steady-state output: b̂t = bt��b
�Y
and �̂ t = � t���

�Y
. In our

simple model, (the log-deviation of) the natural level of output and the slope of the Phillips

curve are respectively given as Ŷ n
t = ât and � =

(1��)(1���)
�

.

The model can be reduced to a dynamic system of
n
�̂t; b̂t; ~Yt

o
:

~Yt = Et ~Yt+1 � � (�̂t � �̂�t ) + Et�̂t+1 + r̂�t ;

�̂t = � ~Yt + �Et�̂t+1; (12)

b̂t = ��1(1�  )b̂t�1 � �b
�
��1 � �

�
�̂t � �b��̂�t ;

where ~Yt � Ŷt� Ŷ n
t represents the output gap and r̂

�
t is a linear combination of all non-policy

shocks (of both supply and demand types). It is often referred to as the natural rate of

interest because it is the real interest rate that would prevail under �exible prices. In our

simple model, it is speci�cally given as:

r̂�t = Et [�ât+1]� Et[�d̂t+1]:

Note that demand-type shocks raise r̂�t , while supply-type shocks lower r̂
�
t .

B Solution of the Simple Model

In this section, we solve for the equilibrium time paths of
n
�̂t; b̂t; ~Yt

o
given exogenous vari-

ables summarized by the policy and non-policy shocks, f�̂�t ; r̂�t g. To this end, we assume the
exogenous random variables follow AR(1) processes:

�̂�t = ���̂
�
t�1 + "�;t;

r̂�t = �rr̂
�
t�1 + "r;t:
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We �rst write (12) in state space form:0B@ 1 1 0

0 � 0

0 0 1

1CAEt

0B@ ~Yt+1

�̂t+1

b̂t

1CA =

0B@ 1 � 0

�� 1 0

0 ��b
�
��1 � �

�
��1(1�  )

1CA
0B@ ~Yt

�̂t

b̂t�1

1CA

+

0B@ �� �1
0 0

��b� 0

1CA �̂�t

r�t

!
(13)

We then pre-multiply

0B@ 1 1 0

0 � 0

0 0 1

1CA
�1

to both sides of the equation (13):

Et

0B@ ~Yt+1

�̂t+1

b̂t

1CA =

0B@ ���1 + 1 �� ��1 0

����1 ��1 0

0 ��b
�
��1 � �

�
��1(1�  )

1CA
| {z }

=M

0B@ ~Yt

�̂t

b̂t�1

1CA+
0B@ �� �1

0 0

��b� 0

1CA �̂�t

r̂�t

!

The coe¢ cient matrix, M , can be decomposed as M = V DV �1, where D is a diagonal

matrix whose elements are the eigenvalues of M . The system then can be written as:

Et

0B@ ~Yt+1

�̂t+1

b̂t

1CA = V

0B@ e1 0 0

0 e2 0

0 0 e3

1CAV �1

0B@ ~Yt

�̂t

b̂t�1

1CA+
0B@ �� �1

0 0

��b� 0

1CA �̂�t

r̂�t

!
;

where

e1 =
1

2�

�
� + �+ 1 +

q
(� + �+ 1)2 � 4� (1 + ��)

�
e2 = ��1(1�  )

e3 =
1

2�

�
� + �+ 1�

q
(� + �+ 1)2 � 4� (1 + ��)

�

V =

0B@ v11 v12 v13

v21 v22 v23

1 1 1

1CA and V �1 =

0B@ q11 q12 0

q21 q22 1

q31 q32 0

1CA :

The elements of V and V �1 are nonlinear functions of the model parameters. For later use,
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we note that:

v23 =

2 (1�  )�
�
� + �+ 1�

q
(� + �+ 1)2 � 4� (1 + ���)

�
2�b (1� ��)

:

Finally, letting Xt �
�
x1;t x2;t x3;t

�T
� V �1

�
~Yt �̂t b̂t�1

�T
, we rewrite the system

as:

EtXt+1 =

0B@ e1 0 0

0 e2 0

0 0 e3

1CAXt +

0B@ ��q11 �q11
��
�
q21 +�b

�
�q21

��q31 �q31

1CA �̂�t

r̂�t

!
: (14)

Each element of Xt is given by:

x1;t = q11 ~Yt + q12�̂t;

x2;t = q21 ~Yt + q22�̂t + b̂t�1;

x3;t = q31 ~Yt + q32�̂t:

B.1 Active Monetary and Passive Fiscal Policy

Under AMPF, e1 and e3 are outside the unit circle, while e2 is inside the circle. We thus

use the �rst and third rows of the system (14) to draw linear restrictions between model

variables. Substituting out the future values of x1;t and x3;t recursively, we obtain:

x1;t =
1

e1

1X
k=0

�
1

e1

�k
Etz

�
1;t+k; (15)

x3;t =
1

e3

1X
k=0

�
1

e3

�k
Etz

�
3;t+k; (16)

where

z�1;t = �q11�̂
�
t + q11r̂

�
t ;

z�3;t = �q31�̂
�
t + q31r̂

�
t :

These equations imply:

Etz
�
1;t+k = �q11�

k
��̂

�
t + q11�

k
r r̂
�
t

Etz
�
3;t+k = �q31�

k
��̂

�
t + q31�

k
r r̂
�
t
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Plugging these equations into (15) and (16), we obtain:

x1;t =
1

e1

1X
k=0

�
1

e1

�k
Etz

�
1;t+k = �q11

1

e1 � ��
�̂�t + q11

1

e1 � �r
r̂�t ;

x3;t =
1

e3

1X
k=0

�
1

e3

�k
Etz

�
3;t+k = �q31

1

e3 � ��
�̂�t + q31

1

e3 � �r
r̂�t ;

which leads to:

~Yt = �
q12
q11

�̂t + �
1

e1 � ��
�̂�t +

1

e1 � �r
r̂�t

~Yt = �
q32
q31

�̂t + �
1

e3 � ��
�̂�t +

1

e3 � �r
r̂�t

Since the above system has two equations and two endogenous variables, we can easily solve

for �̂t and ~Yt. Moreover, �̂t and ~Yt do not depend on b̂t�1. We use the method of undetermined

coe¢ cients and obtain:

�̂t = �(�) �̂
�
t + � (�) r̂

�
t

~Yt = �
Y (�) �̂�t + �

Y (�) r̂�t

where

� (�) � ��

� (�� ��) + (1� ��) (1� ���)

� (�) � �

� (�� �r) + (1� �r) (1� ��r)

�Y (�) � � (1� ���)

� (�� ��) + (1� ��) (1� ���)

�Y (�) � (1� ��r)

� (�� �r) + (1� �r) (1� ��r)
:

B.2 Passive Monetary and Active Fiscal Policy

We consider the case in which �� 2 [0; 1) and  2
�
�1; � 

�
where � � 1 � � is the upper

bound for active �scal policy. We then can show that e1 > 1, e2 > 1 and e3 2 (0; 1) in that
parameter space. Consequently the �rst two rows in (14) provide linear restrictions. From
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the rows, we obtain:

x1;t =
1

e1

1X
k=0

�
1

e1

�k
Etz

�
1;t+k; (17)

x2;t =
1

e2

1X
k=0

�
1

e2

�k
Etz

�
2;t+k; (18)

where

z�1;t = �q11�̂
�
t + q11r̂

�
t ;

z�2;t = �
�
q21 +�b

�
�̂�t + q21r̂

�
t :

The equations above imply:

Etz
�
1;t+k = �q11�

k
��̂

�
t + q11�

k
r r̂
�
t

Etz
�
2;t+k = �

�
q21 +�b

�
�k��̂

�
t + q21�

k
r r̂
�
t

Plugging these equations into (15) and (16), we obtain:

x1;t =
1

e1

1X
k=0

�
1

e1

�k
Etz

�
1;t+k = �q11

1

e1 � ��
�̂�t + q11

1

e1 � �r
r̂�t (19)

x2;t =
1

e2

1X
k=0

�
1

e2

�k
Etz

�
2;t+k = �

�
q21 +�b

� 1

e2 � ��
�̂�t + q21

1

e2 � �r
r̂�t (20)

Equation (19) implies:

~Yt = �
q12
q11

�̂t + �
1

e1 � ��
�̂�t +

1

e1 � �r
r̂�t (21)

We plug (21) into (20) to get:

q21

�
�q12
q11

�̂t + �
1

e1 � ��
�̂�t +

1

e1 � �r
r�t

�
+ q22�̂t + b̂t�1 = �

�
q21 +�b

� 1

e2 � ��
�̂�t + q21

1

e2 � �r
r̂�t

Solving for �̂t, we obtain �̂t as a function of state variables,
n
b̂t�1; �̂

�
t ; r

�
t

o
:

�̂t = 
b̂t�1 � 
�
��
q21 +�b

� 1

e2 � ��
� q21

1

e1 � ��

�
�̂�t + 
q21

�
1

e1 � �r
� 1

e2 � �r

�
r�t (22)
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where


 =
q11

q12q21 � q11q22

q21 =
�b� (1� ��)

 2 + (� + �� 1) � � (1� ��)
:

For further analysis, it is useful to express the coe¢ cients on the state variables in terms of

model parameters. To this end, we use the results in the following lemmas.

Lemma 1: 
 = �(e2�e3)
�b(1���) > 0.

Proof of Lemma 1: Note that

q13q21 � q11q23
det (V �1)

= v23;

q11q22 � q12q21
det (V �1)

= v33:

Therefore,

0� q21 � q11 = �q11 = det
�
V �1�� v23;

q11q22 � q12q21 = det
�
V �1�� v33 = det

�
V �1�� 1:

It follows that


 =
q11

q12q21 � q11q22
= v23

=

2 (1�  )�
�
� + �+ 1�

q
(� + �+ 1)2 � 4� (1 + ��)

�
2�b (1� ��)

=
2 (1�  )� 2�e3
2�b (1� ��)

=
� (e2 � e3)
�b (1� ��)

> 0:

Lemma 2: 
q21 (e1 � e2) = ����1:
Proof of Lemma 2: We have


q21 (e1 � e2) =
� (e2 � e3)
�b (1� ��)

�b� (1� ��)

 2 + (� + �� 1) � � (1� ��)
(e1 � e2)

= ��
(e2 � e3) (e1 � e2)

 2 + (� + �� 1) � � (1� ��)
= ��

e1e2 � e22 � e1e3 + e2e3

 2 + (� + �� 1) � � (1� ��)

= ��
e2 (e1 + e3 � e2)� e1e3

 2 + (� + �� 1) � � (1� ��)
= ��

(1� )(�+�+ )
�2

� e1e3

 2 + (� + �� 1) � � (1� ��)
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= ��

(1� )(�+�+ )
�2

� 1+��
�

 2 + (� + �� 1) � � (1� ��)
= ��

1
�2
[(1�  ) (� + �+  )� � � ���]

 2 + (� + �� 1) � � (1� ��)

= ���1
�
�
 2 + (� + �� 1) � � (1� ��)

�
 2 + (� + �� 1) � � (1� ��)

= ����1:

Using the results from these two lemmas, we can simplify (22) as:

�̂t = 
(�;  ) b̂t�1 � � (�;  ) �̂�t + � (�;  ) r̂�t (23)

where


 (�;  ) � � (e2 � e3)
�b (1� ��)

;

� (�;  ) � ���(�;  ) ; where �(�;  ) � 
�b (e1 � ��)� ���1

(e1 � ��) (e2 � ��)
;

� (�;  ) � ���1

(e1 � �r) (e2 � �r)
:

It then follows that the low of motion for b̂t is given as:

b̂t = e3b̂t�1 � �b�
�
1�

�
��1 � �

�
�
�
�̂�t � �b

�
��1 � �

�
�r̂�t :

B.3 Passive Monetary and Passive Fiscal Policy

Finally, we consider the case in which �� 2 [0; 1) and  2
�
� ;1

�
. Then, only one root (e1)

is explosive and there will exist multiple solutions to the model.

Solution for x1;t is the same as in AMPF or PMAF

~Yt = �
q12
q11

�̂t + �
1

e1 � ��
�̂�t +

1

e1 � �r
r̂�t

Plug the equation above into the equation for x2;t:

x2;t = �
1



�̂t + �

q21
e1 � ��

�̂�t +
q21

e1 � �r
r̂�t + b̂t�1

Note that

Etx2;t+1 = �
1



Et�̂t+1 + �

q21
e1 � ��

Et�̂
�
t+1 +

q21
e1 � �r

Etr̂
�
t+1 + b̂t

= � 1


Et�̂t+1 + �

q21
e1 � ��

���̂
�
t +

q21
e1 � �r

�rr̂
�
t + b̂t;
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and therefore we can plug this into the di¤erence equation for x2;t as

Et�̂t+1 = e2�̂t + �

�

�b� ���1

e1 � ��

�
�̂�t �

�
���1

e1 � �r

�
r̂�t + 


�
b̂t � e2b̂t�1

�
:

Now a solution to this equation can be characterized as

�̂t+1 =

�
e2�̂t + �

�

�b� ���1

e1 � ��

�
�̂�t �

�
���1

e1 � �r

�
r̂�t + 


�
b̂t � e2b̂t�1

��
| {z }

Et�̂t+1

+
h
m� mr

i " "�;t+1

"r;t+1

#
+ �t+1;

where "t+1 is a vector of fundamental shocks and �t+1 is a sunspot shock.

C Proofs

Proof of Proposition 1 Showing � (�) � 0 is straight forward since � � 0; � > ��;

(1� ��) > 0; and (1� ���) > 0. In addition, it is straight forward to show:

� (�) > 1, for � >
(1� ��) (1� ���)

��
:

Proof of Proposition 2 Take the partial derivative:

@� (�)

@�
=

�� [��� � (1� ��) (1� ���)]

[� (�� ��) + (1� ��) (1� ���)]
2 :

The denominator is always positive. Therefore, the sign of the numerator will determine the

sign of the derivative. We thus have:

@� (�)

@�
> 0, for 0 � � <

(1� ��) (1� ���)

��
@� (�)

@�
< 0, for � >

(1� ��) (1� ���)

��
:

Proof of Proposition 3 Showing � (�) � 0 is straight forward since � � 0; � > �r;

(1� �r) > 0; and (1� ��r) > 0.

Proof of Proposition 4 It is trivial.

45



Proof of Proposition 5 This result follows directly from Propositions 3 and 4.

Proof of Proposition 6 Since � � 0, it su¢ ces to show �(�;  ) is positive. Let us rewrite
�(�;  ) by substituting out 
:

� =
� (e2 � e3) (e1 � ��)� ���1 (1� ��)

(e1 � ��) (e2 � ��) (1� ��)

=
� (e2 � e3) (e1 � e2 + e2 � ��)� ���1 (1� ��)

(e1 � ��) (e2 � ��) (1� ��)

=
� (e2 � e3) (e1 � e2)� ���1 (1� ��) + � (e2 � e3) (e2 � ��)

(e1 � ��) (e2 � ��) (1� ��)

=
� 1
�

�
 2 + (� + �� 1) � � (1� ��)

�
� �

�
(1� ��) + � (e2 � e3) (e2 � ��)

(e1 � ��) (e2 � ��) (1� ��)

=
� 1
�

�
 2 + (� + �� 1) 

�
+ � (e2 � e3) (e2 � ��)

(e1 � ��) (e2 � ��) (1� ��)

Use  = 1� �e2:

� =
� 1
�

�
 2 + (� + �� 1) 

�
+ � (e2 � e3) (e2 � ��)

(e1 � ��) (e2 � ��) (1� ��)
(24)

=
� 1
�

�
(1� �e2)

2 + (� + �� 1) (1� �e2)
�
+ � (e2 � e3) (e2 � ��)

(e1 � ��) (e2 � ��) (1� ��)

=
�2 (e2 � e3) (e2 � ��)� (1� �e2)

2 � (� + �� 1) (1� �e2)

� (e1 � ��) (e2 � ��) (1� ��)

=
�2 (e22 � (e3 + ��)e2 + ��e3)�

�
�2e22 � 2�e2 + 1

�
� (� + �� 1) + (� + �� 1) �e2

� (e1 � ��) (e2 � ��) (1� ��)

=
�2 (��e3 � (e3 + ��)e2) + 2�e2 � (� + �) + (� + �� 1) �e2

� (e1 � ��) (e2 � ��) (1� ��)

=

�
�2 (1� e3) + � (1� ���) + ��

�
e2 + �2��e3 � (� + �)

� (e1 � ��) (e2 � ��) (1� ��)
:

The denominator is unambiguously positive for all parameter values under PMAF. Thus �

will be positive if and only if the numerator is also positive. Note that the numerator is a

linear and increasing function of e2 because the slope is positive. This implies that � > 0

for su¢ ciently large e2 �or su¢ ciently small  . It is straightforward to show that � > 0 if

and only if �1 <  < � 
��. � �� is a reduced-form parameter that crucially depends on the
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slope of the Phillips curve and satis�es

� 
�� � 1� (� + �)� �2��e3

� (1� e3) + (1� ���) + �
=
� + �� �2��e3
� (e1 � ��)

0 < � 
�� � 1� �

lim
�!1

� 
��
= 0

lim
�!0

� 
��
= 1� �:

Therefore, the interval of  that makes � positive � i.e. that makes the coe¢ cient on ��t
negative �always contains zero (i.e. always includes the benchmark FTPL case). In addition,

the interval covers the AF region (�1 <  < � ) almost entirely. The interval coincides

exactly with the entire AF region only when prices are fully sticky (i.e. when � = 0). In

intermediate cases, the upper bound for positive �, � ��, is positive, but is slightly below the

upper bound for AF, � .

Proof of Proposition 7 Let us �rst consider @�(�; )
@�

:

@�(�;  )

@�
=

(
@

@�
�b (e1 � ��)

2 (e2 � ��) +
@e1
@�

�b (e1 � ��) (e2 � ��)

�@e1
@�
(e2 � ��)

�

�b (e1 � ��)� ���1

� )
(e1 � ��)

2 (e2 � ��)
2

=

@

@�
�b (e1 � ��)

2 (e2 � ��)� @e3
@�
(e2 � ��)��

�1

(e1 � ��)
2 (e2 � ��)

2 =

@

@�
�b (e1 � ��)

2 � @e3
@�
���1

(e1 � ��)
2 (e2 � ��)

Now let us take the partial derivative of � (�;  ) with respect to �:

@� (�;  )

@�
� �(�;  ) + �

@�(�;  )

@�

=

�b (e1 � ��)� ���1

(e1 � ��) (e2 � ��)
+ �

@

@�
�b (e1 � ��)

2 � @e3
@�
���1

(e1 � ��)
2 (e2 � ��)

=

�(e2�e3)
(1���) (e1 � ��)

2 � (e1 � ��)��
�1 + �@


@�
�b (e1 � ��)

2 � �@e3
@�
���1

(e1 � ��)
2 (e2 � ��)
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Since the denominator is positive, @�(�; )
@�

> 0 if and only if the numerator is positive �that

is,

0 <
@� (�;  )

@�
()

0 <
� (e2 � e3)

(1� ��)
(e1 � ��)

2 � (e1 � ��)��
�1 + �

@


@�
�b (e1 � ��)

2 � �
@e3
@�

���1

() � (e2 � e3)

(1� ��)
+ �

@


@�
�b �

�@e3
@�
���1 + (e1 � ��)��

�1

(e1 � ��)
2

() � (e2 � e3)

(1� ��)
+ ��

�e2 � �e3 � (1� ��) @e3
@�

(1� ��)2
>
�@e3
@�
���1 + (e1 � ��)��

�1

(e1 � ��)
2

() � (e2 � e3)
1

(1� ��)2
>
�@e3
@�
���1 + (e1 � ��)��

�1

(e1 � ��)
2 +

��

(1� ��)

@e3
@�

() �e2 > �e3 + (1� ��)2
(
�@e3
@�
���1 + (e1 � ��)��

�1

(e1 � ��)
2 +

��

(1� ��)

@e3
@�

)

()  < 1�
"
�e3 + (1� ��)2

(
�@e3
@�
���1 + (e1 � ��)��

�1

(e1 � ��)
2 +

��

(1� ��)

@e3
@�

)#

()  < 1�
�
�e3 + (1� ��)2

�
���1

(e1 � ��)
+

����1

(e1 � e3)

�
���1

(e1 � ��)
2 +

�

(1� ��)

���
In sum,

@� (�;  )

@�
> 0()  < � 

���

where

� 
��� � 1�

�
�e3 + (1� ��)2

�
���1

(e1 � ��)
+

����1

(e1 � e3)

�
���1

(e1 � ��)
2 +

�

(1� ��)

���
lim
�!1

� 
���
= 0

lim
�!0

� 
���
= 1� �:

It is straightforward to show that � ��� is positive. First, suppose � ��� � � 
� or � ��� � � 

��.

We have already shown � � > 0 and � �� > 0 above. Thus, it must be that � ��� > 0. Suppose

instead � ��� � � 
� and � ��� � � 

��. In this case, if  < � 
���, then�(�;  ) > 0 and @
(�; )

@�
> 0.

But, we can show from (24) that @�(�; )
@�

> 0 at  = 0 if @
(�; )
@�

> 0, which implies @�(�; )
@�

> 0

at  = 0. Since  < � 
��� is the su¢ cient and necessary condition, it should always contain
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zero. Therefore, � ��� > 0.

Proof of Proposition 8 Take the partial derivative of � = �(e2�e3)(e1���)����1(1���)
(e1���)(e2���)(1���)

with

respect to e2:

@�

@e2
=
� (e1 � ��)

2 (e2 � ��) (1� ��)� (e1 � ��) (1� ��)
�
� (e2 � e3) (e1 � ��)� ���1 (1� ��)

�
[(e1 � ��) (e2 � ��) (1� ��)]2

=
(e1 � ��) (1� ��)

�
� (e1 � ��) (e2 � ��)� � (e2 � e3) (e1 � ��) + ���1 (1� ��)

�
[(e1 � ��) (e2 � ��) (1� ��)]2

=
(e1 � ��) (1� ��)

[(e1 � ��) (e2 � ��) (1� ��)]2
g

where

g = � (e1 � ��) (e2 � ��)� � (e2 � e3) (e1 � ��) + ���1 (1� ��) :

Since (e1���)(1���)
[(e1���)(e2���)(1���)]2

> 0, we focus on g, which can be written as:

g = �
�
�2� � (e1 + e3) �� + e1e3

�
+ ���1 (1� ��) :

Note that

e1 + e3 =
� + �+ 1

�

e1e3 =
��+ 1

�
:

Using these, rewrite g and regard g as a function of �� 2 (0; 1) given other parameters:

g (��) = ��2� � (� + �+ 1) �� + 1 + ��
�1:

Note that g (��) is a convex and quadratic function of ��; and

g (0) = 1 + ���1 > g(1) = �
�
��1 � 1

�
> 0:

Moreover,

g0 (0) < 0 and g0 (1) < 0:

Therefore, it must be that g > 0 for �� 2 (0; 1), � 2 (0; 1) and � 2 [0;1). Hence,

@�

@e2
=

(e1 � ��) (1� ��)

[(e1 � ��) (e2 � ��) (1� ��)]2
g > 0:
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This implies that
@�

@ 
< 0 and

@�

@ 
< 0,

because e2 is decreasing in  .

Proof of Proposition 9 It is straight forward.

Proof of Proposition 10 e2 > 1 and @e1
@�

< 0.

Proof of Proposition 11 e1 > 1 and @e2
@ 

< 0.

Proof of Proposition 12 
 (�;  ) � �(e2�e3)
�b(1���) > 0 because e2 > e3 and 1 > ��.

Proof of Proposition 13 Take the partial derivative of 
 (�;  ) with respect to �:

@


@�
=
�
�b

�e2 � �e3 � (1� ��) @e3
@�

(1� ��)2
=
�
�b

h(�)

(1� ��)2
;

where

h(�) � �e2 � �e3 � (1� ��)
@e3
@�

:

Since �
�b

1
(1���)2 is clearly positive,

@

@�
and of h(�) must have the same sign. Note that

h(�) > 0() �e2 > �e3 + (1� ��)
@e3
@�

() �e2 > �e3 + (1� ��)
@e3
@�

() �e2 > �e3 + (1� ��)
�

� + �+ 1� 2�e3

�
* @e3
@�

=
�

� + �+ 1� 2�e3
> 0

�
() �e2 > �e3 + (1� ��)

�

� (e1 � e3)

() �e2 >
�2e1e3 � �2e23 + (1� ��)�

� (e1 � e3)

() �e2 >
� + �� �2e23
� (e1 � e3)

()  < 1� � + �� �2e23
� (e1 � e3)| {z }
�� �

=
� (e1 � e3)�

�
� + �� �2e23

�
� (e1 � e3)
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It remains to show that � � is positive. Consider the numerator of � �, g (�) � � (e1 � e3)��
� + �� �2e23

�
. Given other parameters, g (�) has the smallest value at � = 1 because

g0 (�) < 0. Then

g (1) = � (e1 � e3)�
�
� + �� �2e23

�
= �

�
�+ 1

�
� 1
�
�
�
� + �� �2

�
= (1� �)2 > 0:

In addition, we can show that

lim
�!1

� 
�
= 0

lim
�!0

� 
�
= 1� �.

Proof of Proposition 14 It is straight forward as @e2
@ 

< 0.

Discussion on � 
�, � ��, � ��� and � � 1 � �: Although the upper bounds, � �, � �� and

� 
���, generally have di¤erent values, they converge to the same numbers as the slope of

NKPC goes to in�nity and zero. In particular, all of them equal � � 1 � � �the "true"

upper bound for AF �when � = 0. However, � �, � ��, � ��� and � would be indistinguishable

in practice because � �, � ��, � ��� 2 (0; � ] and � has a tiny value.
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D Quantitative Model

D.1 Households

There is a continuum of households in the unit interval. Each household specializes in the

supply of a particular type of labor. A household that supplies labor of type-j maximizes

the utility function:

E0

( 1X
t=0

�t�t

"
log
�
Cj
t � �Ct�1

�
�$

�
Hj
t

�1+'
1 + '

#)
;

where Hj
t denotes the hours of type-j labor services, Ct is aggregate consumption, and C

j
t

is consumption of household j. The parameters �; '; and � are, respectively, the discount

factor, the inverse of the (Frisch) elasticity of labor supply, and the degree of external habit

formation, while �t represents an intertemporal preference shock that follows:

�t = �
��
t�1 exp("�;t),

where "�;t � i.i.d. N (0; �2�).
Household j�s �ow budget constraint is:

PtC
j
t+PtI

j
t+B

j
t+Et

�
Qt;t+1V

j
t+1

�
= Wt(j)H

j
t+V

j
t +Rt�1B

j
t�1+R

k
t ut �K

j
t�1�Pta(ut) �K

j
t�1+�t�Tt;

where Pt is the price level, B
j
t is the amount of one-period risk-less nominal government bond

held by household j, Rt is the interest rate on the bond, Wt(j) is the nominal wage rate for

type-j labor, �t denotes pro�ts of intermediate �rms, and Tt denotes government taxes.26

In addition to the government bond, households trade at time t one-period state-contingent

nominal securities V j
t+1at price Qt;t+1, and hence fully insure against idiosyncratic risk.

Moreover, Ijt is investment, R
k
t is the rental rate of e¤ective capital ut �K

j
t�1 where ut is

the variable capacity utilization rate, and a(ut) is the cost of capital utilization. In steady-

state, u = 1 and a(1) = 0: Moreover, in the �rst-order approximation of the model, the only

parameter that matters for the dynamic solution of the model is the curvature � � a
00
(1)

a0 (1)
: The

capital accumulation equation is then given by:

�Kj
t = (1� d) �Kj

t�1 + �t

 
1� S

 
Ijt

Ijt�1

!!
Ijt ;

26The budget constraint re�ects our assumptions that each household owns an equal share of all interme-
diate �rms and receives the same amount of net lump-sum transfers from the government.
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where d is the depreciation rate and S(:) is the adjustment cost function. In steady-state,

S = S
0
= 0 and S

00
> 0: �t represents an investment shock that follows:

�t = �
��
t�1 exp("�;t),

where "�;t � i.i.d. N
�
0; �2�

�
.

Each household monopolistically provides di¤erentiated labor. There are competitive

employment agencies that assemble these di¤erentiated labor into a homogenous labor input

that is sold to intermediate goods �rms. The assembling technology is a Dixit and Stiglitz

(1977) production technology Ht =

 R 1
0
H
j
�l;t�1
�l;t

t dj

! �l;t
�l;t�1

, where �l;t denotes the time-varying

elasticity of substitution between di¤erentiated labor. The corresponding wage index for the

homogenous labor input is Wt =
�R 1

0
Wt(j)

1��l;tdj
� 1
1��l;t and the optimal demand for Hj

t is

given by Hj
t = (Wt(j)=Wt)

��l;t Ht: The elasticity of substitution �l;t follows:�
�l;t

�l;t � 1

�
=

� ��l
��l � 1

�1��
l
�
�l;t�1
�l;t � 1

��
l

exp("l;t � �l"l;t�1)

where "l;t � i.i.d. N (0; �2l ).
As in Calvo (1983), each household resets its nominal wage optimally with probability

1 � �w every period. Households that do not optimize adjust their wages according to the

simple partial dynamic indexation rule:

Wt(j) =Wt�1(j) [�t�1at�1]

w [���a]1�
w ;

where 
w measures the extent of indexation and �� is the steady-state value of the gross in�a-

tion rate �t � Pt=Pt�1. All optimizing households choose a common wage W �
t to maximize

the present discounted value of future utility:

Et

1X
k=0

�kw�
k

"
��t+k

�
Hj
t+k

�1+'
1 + '

+ �t+kW
�
t H

j
t+k

#
where �t+k is the marginal utility of nominal income.

D.2 Firms

The �nal good Yt, which is consumed by the government and households as well as used to

invest, is produced by perfectly competitive �rms assembling intermediate goods, Yt(i), with
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a Dixit and Stiglitz (1977) production technology Yt =
�R 1

0
Yt(i)

�p;t�1
�p;t di

� �p;t
�p;t�1

, where �p;t

denotes the elasticity of substitution between intermediate goods. The corresponding price

index for the �nal consumption good is Pt =
�R 1

0
Pt(i)

1��p;tdi
� 1
1��p;t , where Pt(i) is the price

of the intermediate good i. The optimal demand for Yt(i) is given by Yt(i) = (Pt(i)=Pt)
��p;t Yt.

The elasticity of substitution �p;t follows:�
�p;t

�p;t � 1

�
=

� ��p
��p � 1

�1��p � �p;t�1
�p;t � 1

��p
exp("p;t � �p"p;t�1)

where "p;t � i.i.d. N
�
0; �2p

�
.

Monopolistically competitive �rms produce intermediate goods using the production func-

tion:

Yt(i) = maxf(AtHt(i))
1��Kt(i)

� � AtF ; 0g;

where Ht(i) and Kt(i) denote the homogenous labor and capital employed by �rm i and

At represents exogenous economy-wide technological progress. The gross growth rate of

technology at � At=At�1 follows:

at = �a
1��aa

�a
t�1 exp("a;t);

where �a is the steady-state value of at and "a;t � i.i.d. N (0; �2a). F is a �xed cost of

production that ensure that pro�ts are zero in steady state.

As in Calvo (1983), a �rm resets its price optimally with probability 1 � �p every pe-

riod. Firms that do not optimize adjust their price according to the simple partial dynamic

indexation rule:

Pt(i) = Pt�1(i)�

p
t�1��

1�
p ;

where 
p measures the extent of indexation and �� is the steady-state value of the gross

in�ation rate �t � Pt=Pt�1. All optimizing �rms choose a common price P �t to maximize the

present discounted value of future pro�ts:

Et

1X
k=0

�kpQt;t+k

�
P �t Xt;kYt+k(i)�Wt+kHt+k(i)�Rk

t+kKt+k(i)
�
;

where

Xt;k �
(
(�t�t+1 � � ��t+k�1)
 ��(1�
)k; k � 1

1; k = 0
:
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D.3 Government

D.3.1 Budget Constraint

Each period, the government collects lump-sum tax revenues Tt and issues one-period nominal

bonds Bt to �nance its consumption Gt, and interest payments. Accordingly, the �ow budget

constraint is given by:
Bt

Pt
= Rt�1

Bt�1

Pt
+Gt � Tt:

The �ow budget constraint can be rewritten as:

R�1t bt = bt�1
1

�t

yt�1
yy

At�1
At

+ ~Gt � � t;

where bt � Rt
Bt
PtYt

denotes the real maturity value of government debt relative to output,
~Gt � Gt

Yt
; and � t � Tt

Yt
.

D.3.2 Monetary Policy

The central bank sets the nominal interest rate according to a Taylor-type rule:

Rt

�R
=

�
Rt�1
�R

��R "��t
��t

��� �Xt

X�
t

��Y #1��R
exp ("R;t) ;

which features interest rate smoothing and systematic responses to deviation of GDP from

its natural level X�
t and deviation of in�ation from a time-varying target ��t .

27 �R is the

steady-state value of Rt and the non-systematic monetary policy shock "R;t is assumed to

follow i.i.d. N (0; �2R). The in�ation target evolves exogenously as:

��t = ��
1���

�
��t�1

��� exp("�;t);
where "�;t � i.i.d. N (0; �2�).

D.3.3 Fiscal Policy

The �scal authority sets the tax revenues according to:

� t
��
=
�� t�1
��

��� "�bt�1
�b

�~ #1���
;

27The natural level of output is the output that would prevail under �exible wages and prices and in the
absence of time-variation in the elasticity of subsitution over di¤erentiated labor and goods varieties.
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which features tax smoothing and a systematic response to lagged debt. �� is the steady-state

value of � t while �b is the steady-state value of bt. Government spending follows an exogenous

process given by:

Gt =

�
1� 1

gt

�
Yt

where the government spending shock follows:

gt = �g
1��gg

�g
t�1 exp("g;t);

where "g;t � i.i.d. N
�
0; �2g

�
:

D.4 Equilibrium

Equilibrium is characterized by the prices and quantities that satisfy the households�and

�rms�optimality conditions, the government budget constraint, monetary and �scal policy

rules, and the clearing conditions for the product, labor, and asset markets:Z 1

0

Cj
t dj +Gt +

Z 1

0

Ijt dj + a(ut)

Z 1

0

�Kj
t�1dj = Yt;Z 1

0

Ht(i)di = HtZ 1

0

V j
t dj=0;Z 1

0

Bj
t dj=Bt:

Note that Cj
t = Ct; I

j
t = It; and �Kj

t�1 = �Kt�1 due to the complete market assumption and

the separability between consumption and leisure. The capital accumulation equation in the

aggregate is then given by:

�Kt = (1� d) �Kt�1 + �t

�
1� S

�
It
It�1

��
It:

and the aggregate resource constraint and the de�nition of GDP then take the form:

Ct + It +Gt + a(ut) �Kt�1 = Yt

Xt = Ct + It +Gt:
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D.5 Approximate Model

We �rst solve the problem of households and �rms given the monetary and �scal policy rules

and derive the equilibrium conditions. We then use approximation methods to solve the

model. First, the model features a stochastic balanced growth path since the neutral tech-

nology shock contains a unit root. Therefore, we de-trend variables on the balanced growth

path by the level of the technology shock and write down all the equilibrium conditions of the

transformed model. Second, we compute the non-stochastic steady state of this transformed

model. Third, we obtain a �rst-order approximation of the equilibrium conditions around

this steady state. We then solve the approximated model using standard methods.

For a variable Xt; let xt = Xt
At
: We denote by x̂t the log-deviation from steady state of

xt; except for �scal variables, which are in terms of deviation from steady state.

We also, de�ne some new variables: �t = �tPtAt; and �t;which is the lagrange multiplier

on the capital accumulation equation for the household�s optimization problem (that is,

it is the shadow value of installed capital), %p;t =
�p;t
�p;t�1 ; and %l;t =

�l;t
�l;t�1 . We omit a

detailed derivation and the equations characterizing the approximate equilibrium, after some

manipulations, are given by:

ŷt =
�y + F

�y

h
�k̂t + (1� �)Ĥt

i

�ût = ŵt + L̂t � k̂t

�̂t =
�

1 + �
p
Et�̂t+1 +


p
1 + �
p

�̂t�1 + �p [� (�ût) + (1� �)ŵt] + �p%̂p;t

�̂t = R̂t + Et

�
�̂t+1 � ât+1 � �̂t+1

�

�̂t =
���a

(�a� ��) (�a� �)
Etĉt+1 �

�a2 + �2�

(�a� ��) (�a� �)
ĉt +

��a

(�a� ��) (�a� �)
ĉt�1

+
���a�a � ��a

(�a� ��) (�a� �)
ât +

(�a� ����)

(�a� ��)
�̂t

�̂t = (1� d) ��a�1Et

�
�̂t+1 � ât+1

�
+
�
1� (1� d) ��a�1

�
Et

h
�̂t+1 � ât+1 + �ût+1

i
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�̂t = �̂t + �̂t � �a2S
00
(̂{t � {̂t�1 + ât) + ��a2S

00
Et [̂{t+1 � {̂t + ât+1]

k̂t = ût +
b�kt�1 � ât

b�kt = (1� d) �a�1
�b�kt�1 � ât

�
+
�
1� (1� d) �a�1

�
(�̂t + ût)

ŵt =
1

1 + �
ŵt�1 +

�

1 + �
Etŵt+1 � �w

h
ŵt �

�
'Lt + �̂t � �̂t

�i
+


w
1 + �

�̂t�1 �
1 + �
p
1 + �

�̂t +
�

1 + �
Et�̂t+1

+

w
1 + �

ât�1 �
1 + �
w � ��a

1 + �
ât + �w%̂l;t

R̂t = �RR̂t�1 + (1� �R)
�
�� (�t � ��t ) + �y (xt � x�t )

�
+ "R;t

x̂t = ŷt �
��k

�y
ût

1

�g
ŷt =

1

�g
ĝt +

�c

�y
ĉt +

�{

�y
{̂t +

��k

�y
ût
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where � = �a
�
� (1� d) ; �p =
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D.6 Parameterization

Table 2: Benchmark Parameterization
Parameter Value Description
� 0.17 Capital share
d 0.025 Depreciation rate of capital

p 0.24 Price indexation

w 0.11 Wage indexation
100 log �a 0.48 SS technology growth rate
� 0.78 Consumption habit
1=
�
1� ��p

�
0.23 SS price markup

1=
�
1� ��l

�
0.15 SS wage markup

log �H 0.38 SS log-hours
100(�� � 1) 0.71 SS quarterly in�ation
100(��1 � 1) 0.13 Discount factor
' 3.79 Inverse Frisch elasticity
�p 0.84 Calvo prices
�w 0.70 Calvo wages
� 5.30 Elasticity capital utilization costs
S
00

2.85 Investment adjustment costs
�R 0.82 Monetary rule smoothing
�� 0.80 Fiscal rule smoothing
�a 0.23 Neutral technology growth
�g 0.99 Government spending
�� 0.72 Investment
�p 0.94 Price markup
�l 0.97 Wage markup
�� 0.67 Intertemporal preference
�p 0.77 Price markup MA
�l 0.91 Wage markup MA
100�R 0.22 Monetary policy
100�a 0.88 Neutral technology growth
100�g 0.35 Government spending
100�� 6.03 Investment
100�p 0.14 Price markup
100�w 0.20 Wage markup
100�� 0.04 Intertemporal preference
b 0.40 SS public debt
�g 0.22 SS government spending
�y 0.07 Monetary rule output
�� [0; 3] Monetary rule in�ation
 [�0:1; 0:1] Fiscal rule public debt

Note: The benchmark values of the parameters other than �� , b, �� and  are the estimated median of

Justiniano, Primiceri and Tambalotti (2010). The value of �� is taken from Bhattarai, Lee and Park (2012)

and b is the sample average ratio of public debt to output in the U.S. For policy parameters �� and  , we

try di¤erent values for comparative statics.
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D.7 Dynamics under alternative parameterization
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Figure 14: The response of in�ation to a one standard deviation increase in the investment
speci�c shock under an alternate parameterization (�w = 0:3).
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