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Abstract—For an acyclic directed network with multiple
pairs of sources and sinks and a group of edge-disjoint
paths connecting each pair of source and sink, it is known
that the number of mergings among different groups of
edge-disjoint paths is closely related to network encoding
complexity. Using this connection, we derive exact values
of and bounds on two functions relevant to encoding
complexity for such networks.

I. INTRODUCTION
Let G(V,E) denote an acyclic directed graph, where

V denotes the set of all the vertices (or points) in G and
E denotes the set of all the edges in G. In this paper, a
path in G is treated as a set of concatenated edges. For
k paths β1, β2, . . . , βk in G(V,E), we say these paths
merge [3] at an edge e ∈ E if
1) e ∈

⋂k
i=1 βi,

2) there are at least two distinct edges f, g ∈ E such
that f, g are immediately ahead of e on some βi, βj ,
i �= j, respectively.

We call the maximal subpath that starts with e and is
shared by all βi’s merged subpath (or simply merging)
by all βi’s at e; see Figure 1 for a quick example.
For any two vertices u, v ∈ V , we call any set consist-

ing of the maximum number of pairwise edge-disjoint
directed paths from u to v a set of MengerÊs paths
from u to v. By Menger’s theorem [6], the cardinality
of Menger’s paths from u to v is equal to the min-cut
between u and v.
Assume that G(V,E) has l sources S1, S2, . . . , Sl

and l distinct sinks R1, R2, . . . , Rl. For i = 1, 2, . . . , l,
let ci denote the min-cut between Si and Ri, and let
αi = {αi,1, αi,2, . . . , αi,ci} denote a set of Menger’s
paths from Si to Ri. We are interested in the number of
mergings among paths from different αi’s, denoted by
|G|M(α1, α2, . . . , αl). In this paper, we count the num-
ber of mergings without multiplicity: all the mergings at
the same edge will be counted as one merging.
The motivation for considerations of the number of

mergings is more or less obvious in transportation
networks: mergings among different groups of trans-
portation paths can cause congestions, which may ei-
ther decrease the whole network throughput or incur
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Fig. 1. Paths β1, β2 merge at edge A → B and at merged subpath
(or merging) A → B → C → D, and paths β1, β2, β3 merge at edge
B → C and at merged subpath (or merging) B → C.

unnecessary cost. The connection between the number
of mergings and the encoding complexity in computer
networks, however, is a bit more subtle, which can be
best illustrated by the following three examples in net-
work coding theory. Here, we remark that all computer
networks considered in this paper have unit capacity on
each link, and by encoding complexity, we refer to the
number of encoding operations needed (as opposed to
the time needed to perform encoding operations).
The first example is the “butterfly network” [5], as

depicted in Figure 2(a). For the purpose of transmitting
messages a, b simultaneously from the sender S to the
receivers R1, R2, network encoding has to be done
at node C. Another way to interpret the necessity of
network coding at C (for the simultaneous transmission
to R1 and R2) is as follows: If the transmission to
R2 is ignored, Menger’s paths S → A → R1 and
S → B → C → D → R1 can be used to transmit
messages a, b from S to R1; if the transmission to
R1 is ignored, Menger’s paths S → B → R2 and
S → A → C → D → R2 to transmit messages a, b
from S to R2. For the simultaneous transmission to R1
and R2, merging by these two groups of Menger’s paths
at C → D becomes a “bottleneck”, therefore network
coding at C is required to avoid possible congestions.
The second example is a variant of the classic butterfly

network (see Example 17.2 of [13]; cf. the two-way
channel in Page 519 of [1]) with two senders and two
receivers, where the sender S1 is attached to the receiver
R2 to form a group and the sender S2 is attached to
the receiver R1 to form the other group. As depicted in
Figure 2(b), the two groups wish to exchange messages
a and b through the network. Similarly as in the first
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example, the edge A→ B is where the Menger’s paths
S1 → A → B → R1 and S2 → A → B → R2 merge
with each other, which is a bottleneck for the simulta-
neous transmission of messages a, b. The simultaneous
transmission is achievable if upon receiving the messages
a and b, network encoding is performed at the node A
and the newly derived message a + b is sent over the
channel AB.
The third example is concerned with two sessions of

unicast in a network [7]. As shown in Figure 2(c), the
sender S1 is to transmit message a to the receiver R1
using Menger’s path S1 → A→ B → E → F → C →
D → R1. And the sender S2 is to transmit message
b to the receiver R2 using two Menger’s paths S2 →
A → B → C → D → R2 and S2 → E → F → R2.
Since mergings A → B, C → D and E → F become
bottlenecks for simultaneous transmission of messages
a and b, network coding at these bottlenecks, as shown
in Figure 2(c), is performed to ensure the simultaneous
message transmission.
Generally speaking, for a network with multiple

groups of Menger’s paths, each of which is used to
transmit a set of messages to a particular sink, network
encoding is needed at mergings by different groups of
Menger’s paths. As a result, the number of mergings
is the number of network encoding operations required
in the network. So, we are interested in the number of
mergings among different groups of Menger’s paths in
such networks.
For the case when all sources in G are identical, we

defineM∗(G) as the minimum of |G|M(α1, α2, . . . , αl)
over all possible Menger’s path sets α1, α2, . . . , αl, and
M∗(c1, c2, . . . , cl) as the supremum of M∗(G) over
all possible G (with min-cuts c1, c2, . . . , cl defined as
above). It is clear that M∗(G) is the least number of
network encoding operations required for a given G, and
M∗(c1, c2, . . . , cl) is the largest such number among all
such G. For multicast networks (generalizations of the
first example),M∗ is in fact an upper bound on network
coding complexity. As forM∗, the authors of [2] used
the idea of “subtree decomposition” to first prove that

M∗(2, 2, . . . , 2︸ ︷︷ ︸
l

) = l − 1.

It was first shown in [4] that M∗(c1, c2) is finite for
all c1, c2 (see Theorem 22 in [4]), and subsequently
M∗(c1, c2, . . . , cl) is finite for all c1, c2, . . . , cl. Some
exact values of and bounds onM∗ with special param-
eters are derived using a “line graph” approach in [12].
For the case when all sources in G are distinct,M(G)

is defined as the minimum of |G|M(α1, α2, . . . , αl)
over all possible Menger’s path sets αi’s, and
M(c1, c2, . . . , cl) is defined as the supremum of M(G)
over all possible G. Again, the encoding idea for the
second example can be easily generalized to networks,
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Fig. 2. (a) Network coding on the butterfly network (b) Network
coding on a variant of the butterfly network (c) Network coding on
two sessions of unicast

where each receiver is attached to all senders except its
associated one. It is clear that the number of mergings is
a tight upper bound for the number of network encoding
operations required. For networks with several unicast
sessions, the authors of [7] gave an upper bound on
the encoding complexity in a network with two unicast
sessions. It is easy to see that for networks with multiple
unicast sessions (straightforward generalizations of the
third example),M with appropriate parameters can serve
as an upper bound on network encoding complexity.
It was first conjectured that M(c1, c2, . . . , cl) is finite
in [8]. More specifically the authors proved that (see
Lemma 10 in [8]) if M(c1, c2) is finite for all c1, c2,
thenM(c1, c2, . . . , cl) is finite as well. Here, we remark
that we have rephrased the work in [2], [4], [8], since all
of them are done using different languages from ours.
In [3], we have shown that for any c1, c2, . . . , cl,

M∗(c1, c2, . . . , cl), M(c1, c2, . . . , cl) are both finite,
and we further studied the behaviors ofM∗,M as func-
tions of the min-cuts. One novel aspect of our approach
is that paths, rather than vertices and edges, are treated
as “elementary” objects, which can be transformed to
different paths through reroutings. The effectiveness of
this approach is evidenced by our work [10], where exact
values of bounds onM∗ andM for certain parameters
are derived.
The contribution of this paper can be summarized as

follows:
• novel methods are used to derive the exact values of
someM∗ with two parameters (see Theorem III.1)
and the exact values of someM with more than two
parameters (see Theorems III.2, III.3, III.4, III.5).

• through a nontrivial refinement of the arguments in
[10], we get tighter upper bounds on M∗ and M
(see Theorems IV.1, IV.2) and scaling law (see
Theorems IV.3).

• we obtain inequality relationships betweenM∗ and
M (see Theorem V.1, V.2), and betweenM∗ with
two parameters and multiple parameters (see The-
orem V.3), which may serve as a first step to
understand the connections between single-source
and multiple-source networks, and between two-
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sink and multiple-sink networks, respectively.
• our constructive proofs reveal the topological struc-
ture of some worst case networks (in terms of the
number of network encoding operations), which
may shed some light on the implementation of
efficient network coding strategies.

• the problems in this paper are of mathematical in-
terest as well, which is evidenced by Theorem III.3,
a dual result to the classical Turan’s theorem [9].

Many proofs are shortened or omitted in this manu-
script due to the space limit; we refer to [11] for more
illustrative examples and detailed proofs.
In this paper, say G is a (c1, c2, . . . , cl)-graph if every

edge in G belongs to some αi-path; or, in loose terms,
all αi’s “cover” the whole G. For a (c1, c2, . . . , cl)-
graph, the number of mergings is equal to the number
of vertices with in-degree at least 2. It is clear that
to computeM(c1, c2, . . . , cl) (M∗(c1, c2, . . . , cl)), it is
enough to consider all the (c1, c2, . . . , cl)-graphs with
distinct (identical) sources. For a (c1, c2, . . . , cl)-graph
G, we say αi is reroutable if there exists a different
set of Menger’s paths α′i from Si to Ri, and we say
G is reroutable, if some αi is reroutable. Note that for
a non-reroutable G, the choice of αi’s is unique, so we
often write |G|M(α1, α2, . . . , αl) as |G|M for notational
simplicity.

II. AA-SEQUENCES
Consider a non-reroutable (m,n)-graph G with two

sources S1, S2 (either distinct or identical), two dis-
tinct sinks R1, R2, a set of Menger’s paths φ =
{φ1, φ2, . . . , φm} from S1 to R1, and a set of Menger’s
paths ψ = {ψ1, ψ2, . . . , ψn} from S2 to R2.
For the case when S1 and S2 are distinct, consider

the following procedure on G. For each i, starting
from S1, go along path φi until we reach a merged
subpath (or more precisely, the terminal vertex of a
merged subpath), we then go against the associated ψ-
path (corresponding to the merged subpath just visited)
until we reach another merged subpath, we then go along
the associated φ-path, . . . Continue this procedure (of
alternately going along φ-paths or going against ψ-paths
until we reach a merged subpath) in the same manner
as above, then the fact that G is non-reroutable and
acyclic guarantees that eventually we will reach R1 or
S2. By sequentially listing all the terminal vertices of
merged subpaths visited, such a procedure produces a
φi-AA-sequence [10]. Apparently, there are m φ-AA-
sequences. ψ-AA-sequences can be defined in a similar
procedure as above except that we have to start from
R2 and go against ψ-path first. Apparently, there are n
ψ-AA-sequences.
The length of an AA-sequence π, denoted by L(π), is

defined to be the number of terminal vertices of merged
subpaths visited during the procedure. Since each such

terminal vertex in an AA-sequence is associated with a
path pair, equivalently, the length of an AA-sequence
can be also defined as the number of the associated path
pairs.
For the case when S1 and S2 are identical, by Propo-

sition 3.6 in [3], we restrict our attention to the case
when m = n. For the purpose of computingM∗(n, n),
by the proof of Proposition 3.6 in [3], we can assume
that paths φi and ψi share a starting subpath (a maximal
shared subpath by φi and ψi starting from the source)
for i = 1, 2, . . . ,m. Then, ψ-AA-sequences and their
lengths can be similarly defined as in the case when
S1 and S2 are distinct, except that we have to replace
“merged subpath” by “merged subpath or starting sub-
path”. (Here, let us note that the procedure of defining φ-
AA-sequences does NOT carry over.) It can be checked
that the existence of m starting subpaths implies that
any ψ-AA-sequence is of positive length and will always
terminate at R1.
Regarding the lengths of AA-sequences, we have the

following lemmas.

Lemma II.1 ([10]). For a non-reroutable graph G, the
shortest φ-AA-sequence (ψ-AA-sequence) is of length at
most 1.

And it can be readily verified that

Lemma II.2. For a non-reroutable graph G, any path
pair occurs at most once in any given AA-sequence.

It turns out that the number of mergings is related to
the lengths of AA-sequences.

Lemma II.3. For a non-reroutable (m,n)-graph G with
distinct sources,

|G|M =
1

2

∑
π

L(π);

for a non-reroutable (n, n)-graph G with identical
sources and n starting subpaths,

|G|M =
1

2

(∑
π

L(π)− n

)
,

where the two summations above are over all possible
AA-sequences π.

III. EXACT VALUES

ForM∗ orM with two parameters, it has been known
that M(1, n) = n, M(2, n) = 3n − 1, M(3, 3) = 13,
M∗(2, 2) = 1, M∗(3, 3) = 4 (see [3], [10]). Computer
simulations [10] suggest thatM∗(4, 4) = 9, the follow-
ing theorem establishes this result with a rigorous proof.

Theorem III.1.
M∗(4, 4) = 9.
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Proof: We can construct a non-reroutable (4, 4)-
graph with 9 mergings. To prove the upper bound direc-
tion, consider a non-reroutable (4, 4)-graph G has one
source S, two sinks R1, R2. Let φ = {φ1, φ2, φ3, φ4}
and ψ = {ψ1, ψ2, ψ3, ψ4} denote the set of Menger’s
paths from S to R1 and R2, respectively. We assume
that φi and ψi share a starting subpath for i = 1, 2, 3, 4,
and furthermore, ψ1, φ4 do not merge with any other
paths, and every other φ-path or ψ-path merges at least
once.
By Lemma II.1, the shortest ψ-AA-sequence is of

length 1; and by Lemma II.2, the longest ψ-AA-sequence
is of length at most 9, and any other ψ-AA-sequence is
of length at most 7. We then deduce, by Lemma II.3,
that

|G|M ≤ (9 + 7 + 7 + 1− 4)/2 = 10.

By contradiction, we can conclude that |G|M cannot be
10, whose proof is omitted.
The following theorem gives the exact value for M

with three special-valued parameters.

Theorem III.2.

M(1, 2, n) =

{
4n if n = 2, 3,
4n+ 1 if n = 1 or n ≥ 4.

The following theorem is, in a sense, a “dual” version
of the classical Turan’s theorem [9], and can be proven
using similar ideas.

Theorem III.3.

M(1, 1, . . . , 1︸ ︷︷ ︸
k

) =

⌊
k2

4

⌋
.

Proof: For the “≥” direction, by Proposition 2.12
of [3], we deduce that

M(1, 1, . . . , 1︸ ︷︷ ︸
k

) ≥
∑

i≤�k/2�,j≥�k/2�+1

M(1, 1) =

⌊
k2

4

⌋
.

To prove the “≤” direction, consider a non-reroutable
(1, 1, . . . , 1︸ ︷︷ ︸

k

)-graph G with distinct sources and sets

of Menger’s paths {β1}, {β2}, . . . , {βk}. It is easy to
check that due to non-reroutability of G, any two β-
paths can merge with each other at most once. Without
loss of generality, assume that βk only merges with
β1, β2, . . . , βj ; and any other path βi, i �= k, merges
at most j times. Again, due to non-reroutability of G,
there are no non-βk-involved mergings among paths
β1, β2, . . . , βj , where we say a merging at edge e is βk-
involved if e belongs to βk. It then follows that any non-
βk-involved merging in G must be associated with one
of paths from βj+1, . . . , βk−1, each of which merges at
most j times. We then conclude that

|G|M ≤ j + (k − j − 1)j = (k − j)j ≤

⌊
k2

4

⌋
.

We have also proven the following theorem.

Theorem III.4.

M(1, . . . , 1︸ ︷︷ ︸
k

, 2) =

{
3k − 1 if k ≤ 6,

�k
2

4 �+ k + 2 if k > 6.

Theorem III.5.

M(1, 1, . . . , 1︸ ︷︷ ︸
k

, n) = nk +

⌊
k2

4

⌋
for n ≥

3k − 1

4
.

IV. BOUNDS
It has been established in [10] that

(n−1)2 ≤ M∗(n, n) ≤ (n−1)2(n+1)/2,

2mn−m−n+1 ≤ M(m,n) ≤ mn(m+n−2)/2+1.

The following two theorems give tighter upper bounds on
M∗(n, n) andM(m,n), respectively. Here, we remind
the reader that, by Proposition 3.6 in [3],M∗(m,n) =
M∗(n, n) for any m ≥ n.

Theorem IV.1.

M∗(n, n) ≤
⌈n
2

⌉
(n2 − 4n+ 5).

Proof: Consider any (n, n)-graph G with one
source S, sinks R1, R2, a set of Menger’s paths φ =
{φ1, φ2, . . . , φn} from S to R1, a set of Menger’s paths
ψ = {ψ1, ψ2, . . . , ψn} from S to R2. We assume that,
for 1 ≤ i ≤ n, paths φi and ψi share a starting
subpath, and paths φn and ψ1 do not merge with any
other paths, directly flowing to the sinks (then, neces-
sarily, each ψ-AA-sequence is of positive length, and by
Lemma II.1, the shortest ψ-AA-sequence is of length 1).
We say that the path pair (φi, ψj) is matched if i = j,
otherwise, unmatched. Apparently, each starting subpath
corresponds to a matched path pair; and among the set of
all path pairs, each of which corresponds some merging
in G, there are at most (n − 2) matched and at most
(n2 − 3n+ 3) unmatched.
We then consider the following two cases (note that

they may not be mutually exclusive):
Case 1: there exists a shortest ψ-AA-sequence asso-

ciated with a matched path pair. By Lemma II.2 and the
fact that each starting subpath corresponds to a matched
path pair, there are at most

⌊
n−1
2

⌋
mergings corre-

sponding to this path pair, at most
⌊
n−2
2

⌋
corresponding

to any other matched, and at most
⌊
n−1
2

⌋
mergings

corresponding to any unmatched. So, the number of
mergings is upper bounded by⌊
n− 1

2

⌋
+(n−3)

⌊
n− 2

2

⌋
+(n2−3n+3)

⌊
n− 1

2

⌋
. (1)

Case 2: there exists a shortest ψ-AA-sequence associ-
ated with an unmatched path pair. Similarly as in Case
1, there are at most

⌊
n
2

⌋
mergings corresponding to this
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path pair, at most
⌊
n−1
2

⌋
mergings corresponding to any

other unmatched, and at most
⌊
n−2
2

⌋
mergings corre-

sponding to any matched. So, the number of mergings
is upper bounded by⌊n
2

⌋
+(n− 2)

⌊
n− 2

2

⌋
+(n2− 3n+2)

⌊
n− 1

2

⌋
. (2)

ThenM∗(n, n) ≤ max{(1), (2)}. Straightforward com-
putations then lead to the theorem.
Following the same spirit, we can prove the following

theorem.

Theorem IV.2.

M(m,n) ≤ (m+ n− 1) + (mn− 2)

⌊
m+ n− 2

2

⌋
.

It has been shown in [3] that for any k, there exists
Ck such that M(k, n) ≤ Ckn for all n, where Ck can
be rather loose. The following result refines the above
result for the case k = 3.

Theorem IV.3.

M(3, n) ≤ 14n.

V. INEQUALITIES
We will establish some inequalities in this section.

Theorem V.1.

M(n, n) ≥ 2M∗(n, n) + n.

Proof: For j = 1, 2, we assume that a non-
reroutable (n, n)-graph G(j) has one source S(j), two
sinks R(j)1 , R

(j)
2 with M∗(n, n) mergings. Let φ(j) =

{φ
(j)
1 , φ

(j)
2 , . . . , φ

(j)
n } denote the set of Menger’s paths

from S(j) to R
(j)
1 and ψ(j) = {ψ

(j)
1 , ψ

(j)
2 , . . . , ψ

(j)
n }

denote the set of Menger’s paths from S(j) to R(j)2 . We
assume that, for 1 ≤ i ≤ n, paths φ(j)i and ψ(j)i share a
starting subpath.
Now, consider the following procedure of concatenat-

ing graphs G(1) and G(2) (see Figure 3 for an example
where we concatenate two (3, 3)-graphs):
1) reverse the direction of each edge in G(2) to obtain
a new graph Ĝ(2) (for 1 ≤ i ≤ n, path φ(2)i in G(2)

becomes path φ̂
(2)
i in Ĝ(2) and path ψ

(2)
i in G(2)

becomes path ψ̂(2)i in Ĝ(2));
2) split S(1) into n copies S

(1)
1 , S

(1)
2 , . . . , S

(1)
n in

G(1) such that paths φ
(1)
i and ψ

(1)
i have the

same starting point S(1)i ; split S(2) into n copies
S
(2)
1 , S

(2)
2 , . . . , S

(2)
n in Ĝ(2) such that paths φ̂(2)i and

ψ̂
(2)
i have the same ending point S(2)i ;

3) for 1 ≤ i ≤ n, identify S(1)i and S(2)i .
It can be verified that such procedure produces a

non-reroutable (n, n)-graph with two distinct sources
R
(2)
1 , R

(2)
2 , two sinks R

(1)
1 , R

(1)
2 , a set of Menger’s paths

S(2)

S(1)

R
(2)
1R

(2)
1

R
(2)
2R

(2)
2

R
(1)
1R

(1)
1

R
(1)
2R

(1)
2

Fig. 3. Concatenation of two (3, 3)-graphs

{φ̂
(2)
1 ◦ φ

(1)
1 , φ̂

(2)
2 ◦ φ

(1)
2 , . . . , φ̂

(2)
n ◦ φ

(1)
n } from R

(2)
1 to

R
(1)
1 and a set of Menger’s paths {ψ̂(2)1 ◦ ψ

(1)
1 , ψ̂

(2)
2 ◦

ψ
(1)
2 , . . . , ψ̂

(2)
n ◦ ψ

(1)
n } from R

(2)
2 to R

(1)
2 , where“◦”

means “concatenated with”. The theorem then immedi-
ately follows.

The following two theorems follow from more or less
the same “concatenation” approach.

Theorem V.2.

M(n, n) ≥M∗(n+1, n+1)+M∗(n−1, n−1)+(n−1).

Theorem V.3. For n1 ≤ n2 ≤ · · · ≤ nk,

M∗(n1, n2, . . . , nk) ≥

k−1∑
i=1

M∗(ni, ni).
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