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Abstract—We consider an optimal selection problem for bid
and ask quotes subject to a value-at-Risk (VaR) constraint
when arrivals of the buy and sell orders are governed by a
Poisson process. The problem is formulated as a constrained
utility maximization problem over a finite time horizon. Using
a diffusion approximation to Poisson arrivals of market orders,
the dynamic programming principle can be applied here. We
propose an efficient procedure to solve this constrained utility
maximization problem based on a successive approximation
algorithm. Numerical examples with and without the VaR
constraint are used to illustrate the effect of the risk constraint
on the dealer’s choices. We also conduct numerical experiments
to analyze the impacts of the risk constraint on dealer’s
terminal profit.

Keywords-High-frequency trading; Limit Order Book; Dif-
fusion Approximation; HJB equations; VaR;

I. INTRODUCTION

Over the past years, high-frequency trading has been
progressively gained a foothold in financial markets. In high-
frequency trading, programs analyze market data to capture
trading opportunities that may open up for only a fraction
of a second to several hours. One set of high-frequency
trading strategies is that involve placing a limit order to sell
(or ask) or a buy limit order (or bid) in order to earn the
bid-ask spread. Due to the most effective developments in
information technology (IT), it is possible for the dealers
to post limit orders at the price they choose and ensure
the availability of high frequency data on the limit order
book. To maximize the terminal profit, the dealer faces an
inventory risk arising from uncertainty in the stock’s price
and a transactions risk due to Poisson arrival of market buy
and sell orders. To consider these two risk sources, Ho and
Stoll [1] developed a model to analyze the optimal prices for
a monopolistic dealer in a single stock. Their results show
that the optimal bid and ask quotes are around the “true”
price of the stock. In [2], Ho and Stoll also pointed out that
the bid and ask quotes are related to the reservation prices
of the dealers when dealers are under competition. Based
on these two papers, Avellaneda and Stoikov [3] studied the

optimal submission strategies by assuming the “true” price
of the stock is modeled as a Brownian motion.

Our work is diferent from those in the exising literature
in two major aspects. Firstly, we consider the presence of
a risk constraint to an optimal selection problem of bid
and ask quotes. From the lessions of a number of financial
turmoils in recent years such as the Asian financial crisis in
1997, the recent global financial crisis and the debt crisis
in Europe, we learn that maximizing profits is not the only
objective that needs to be taken into account for the market
participations. The consideration for risk control is of primal
importance. Indeed, the importance of risk measurement and
management has captured much attention among academic
researchers and market practitioners. Various methods and
techniques for measuring, managing and controlling risk
have been proposed in the literature. One of the important
and widely used tools for risk measurement is Value-at-Risk
(VaR). VaR is the maximum loss we might expect with
a given probability level over a given holding or horizon
period. For an excellent introduction of VaR and its practi-
cal implementation, interested readers may refer to Jorion
[7], Duffie and Pan [8],[9], Best [10] and J.P. Morgan’s
Risk Metrics - Technical Document. Basak and Shapiro
[14] considered the optimal portfolio allocation problem by
maximizing the utility function of an economic agent with
the VaR constraint. Yiu et al.[15] considered the optimal
portfolio selection problem subject to a maximum value-
at-Risk (MVaR) constraint when the market parameters are
allowed to switch over time according to a continuous-
time, finite-time, observable Markov chain, whose states are
interpreted as the states of an economy. In our paper, we
extend the model in [3] by considering the risk constraint.
The risk is measured by the VaR of a portfolio in a short time
duration. We then formulate the optimal submission problem
of bid and ask quotes as a stochastic optimal control problem
with VaR constraints.

Secondly, we use a diffusion approximation so that the
stock inventory level and the wealth dynamics are approx-
imated by the Wiener process. In this case, the dynamic
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programming principle is applicable. The normal distribution
is in the core of the space of all observable processes. This
distribution often provides a reasonable approximation to a
variety of data. From [4], when the intensity is large enough,
the Poisson distribution 𝑃𝑜𝑖(𝜆) can be well approximated
by the normal distribution 𝑁(𝜆, 𝜆). Hence, we can apply a
diffusion approximation to approximate Poisson arrivals of
the market buy and sell orders. There are many applications
of a diffusion approximation. For example: In Kobayashi’s
[5] paper, queuing processes of various service stations
which interact with each other are approximated by a vector-
valued Wiener process; In [6], Nagaev et al. assumed that
the stock price evolution is described by a Markov chain.
By applying a diffusion approximation to the Markov chain,
they obtained a simple but powerful approximate formula
for the studied characteristic. In our paper, a diffusion ap-
proximation is employed so that the dynamic programming
principle is applicable to deduce a set of HJB equations.
Then the solution of the optimal submission problem of bid
and ask quotes can be obtained by solving the (Hamilton-
Jacobi-Bellman) HJB equation. We employ the successive
approximation algorithm introduced by Chang and Krishna
[16] to solve the HJB equation which is a second-order
partial differential equation (PDE) in coupled with an opti-
mization. The successive approximation algorithm separates
the optimization problem from the boundary value PDE
problem and thus making the problem solvable by some
standard numerical techniques.

The rest of the paper is organized as follows. In Section II,
we formulate the constrained optimal submission problem in
a limit order book. By applying the diffusion approximation
to the Poisson arrival of market orders, we deduced the HJB
equation according to the dynamic programming principle.
In Section III, the successive approximation algorithm is
introduced to solve the HJB equation with VaR constraint.
The results of the numerical experiments are presented in
Section IV. We then summarize the main results in the final
section.

II. THE MODEL

A. Problem Formulation

We consider an optimal bid and ask quotes selection
problem by extending the model in [3]. In the securities
market, the dealers provide liquidity on the exchange by
submitting the limit order. A limit order is an order to buy
a security at no more than a specific price 𝑝𝑏, or to sell
a security at no less than a specific price 𝑝𝑎. A buy limit
order can only be executed at the bid price 𝑝𝑏 or lower, and
a sell limit order can only be executed at the ask price 𝑝𝑎 or
higher. The limit order can only be filled if the stock market
price reaches the limit price. We define the distances

𝛿𝑏 = 𝑠− 𝑝𝑏 and 𝛿𝑎 = 𝑠− 𝑝𝑎.

In the security market, execution of limit orders is deter-
mined by the dealer’s submission of the limit orders and
arrival of market orders.We can assume the dealer’s buy limit
order will be executed at Poisson rate 𝜆𝑏(𝛿𝑏) since a buy
limit order can only be executed at the bid price 𝑝𝑏 or lower.
The Poisson rate 𝜆𝑏(𝛿𝑏) should be a decreasing function of
𝛿𝑏. Similarly, the Poisson rate 𝜆𝑎(𝛿𝑎) for the executed sell
limit order is also a decreasing function of 𝛿𝑎. According
to [3] and the results in the econophysics literature, for
example, [11], [12] and [13], the Poisson intensity can be
derived as

𝜆𝑎(𝛿𝑎) = 𝐴𝑒−𝑘𝛿𝑎 and 𝜆𝑏(𝛿𝑏) = 𝐴𝑒−𝑘𝛿𝑏 .

Then the inventory level of the stock at time 𝑡 should be:

𝑞𝑡 = 𝑁 𝑏
𝑡 −𝑁𝑎

𝑡 .

where 𝑁 𝑏
𝑡 and 𝑁𝑎

𝑡 are Poisson processes with intensities
𝜆𝑏 and 𝜆𝑎. And 𝑁 𝑏

𝑡 is the amount of stocks bought by the
dealer and 𝑁𝑎

𝑡 is the amount of stocks sold. Then the wealth
is also a stochastic process and determined by the executed
limit orders:

𝑑𝑋𝑡 = 𝑟𝑋𝑡 + 𝑝𝑎𝑑𝑁
𝑎
𝑡 − 𝑝𝑏𝑑𝑁

𝑏
𝑡

where 𝑟 is the risk-free interest rate. The stock price in the
market is modeled as a Brownian motion which is same
as the model in [3]: 𝑆𝑡 = 𝑠 + 𝜎𝑊𝑡. The dealer wants
to maximize his terminal utility of the wealth. Then this
optimal submission problem in a limit oder book can be
formulated as:

max
𝛿𝑎,𝛿𝑏

𝐸𝑡[−𝑒−𝛾(𝑋𝑇+𝑞𝑇𝑆𝑇 )] (1)

subject to:{
𝑑𝑆𝑡 = 𝜎𝑑𝑊𝑡, 𝑆0 = 𝑠 ,
𝑑𝑋𝑡 = 𝑟𝑋𝑡 + 𝑝𝑎𝑑𝑁𝑎

𝑡 − 𝑝𝑏𝑑𝑁𝑏
𝑡 ,

𝑞𝑡 = 𝑁𝑏
𝑡 −𝑁𝑎

𝑡 .

where 𝛾 is the coefficient for exponential utility which
represents the degree of risk aversion.

B. The diffusion approximation
From [4] we know that if 𝑋 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆), then

𝑋 ≈ 𝑁(𝜇 = 𝜆, 𝜎 =
√
𝜆) for 𝜆 > 20, and approximation

improves as 𝜆 increases. Hence, we apply the diffusion ap-
proximation to the uncertainty sources with Poisson nature.
Then the constraints for the optimal submission in a limit
oder book can be rewritten as:⎧⎨

⎩
𝑑𝑆𝑡 = 𝜎𝑑𝑊𝑡1 , 𝑆0 = 𝑠 ,
𝑑𝑋𝑡 = (𝑟𝑋𝑡 + 𝑝𝑎𝜆𝑎 − 𝑝𝑏𝜆𝑏)𝑑𝑡

+𝑝𝑎
√
𝜆𝑎𝑑𝑊𝑡2 − 𝑝𝑏

√
𝜆𝑏𝑑𝑊𝑡3 ,

𝑑𝑞𝑡 = (𝜆𝑏 − 𝜆𝑎)𝑑𝑡+
√
𝜆𝑏𝑑𝑊𝑡3 −√

𝜆𝑎𝑑𝑊𝑡2 .

(2)

We assume that the three Brownian motions 𝑊𝑡1 ,𝑊𝑡2 and
𝑊𝑡3 are independent. Recall that the dealer’s objective is
given by the value function:

𝑣(𝑆,𝑋, 𝑞, 𝑡) = max
𝛿𝑎,𝛿𝑏

𝐸𝑡[−𝑒−𝛾(𝑋𝑇+𝑞𝑇𝑆𝑇 )].
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According to the dynamic programming principle we can
deduce the following Hamilton-Jacobi-Bellman equation to
select the optimal bid and ask prices in a limit order book.

𝑣𝑡 + max
𝛿𝑎,𝛿𝑏

{
1

2

(
(𝑝2𝑎𝜆𝑎 + 𝑝2𝑏𝜆𝑏)

∂2𝑣

∂𝑥2
− 2(𝑝𝑎𝜆𝑎 + 𝑝𝑏𝜆𝑏)

∂2𝑣

∂𝑥∂𝑞

+(𝜆𝑎 + 𝜆𝑏)
∂2𝑣

∂𝑞2
+ 𝜎2

∂2𝑣

∂𝑆2

)
+(𝑟𝑋𝑡 + 𝑝𝑎𝜆𝑎 − 𝑝𝑏𝜆𝑏)

∂𝑣

∂𝑥
+ (𝜆𝑏 − 𝜆𝑎)

∂𝑣

∂𝑞

}
= 0 ,

with terminal condition 𝑣(𝑇, ⋅) = −𝑒−𝛾(𝑋𝑇+𝑞𝑇𝑆𝑇 ). For this
type of HJB equation, we make the assumption that 𝑣 =
−𝑒−𝛾𝑋𝑒−𝛾𝑢(𝑆,𝑞,𝑡) to simplify the problem. Then we obtain

𝑢𝑡 + max
𝛿𝑎,𝛿𝑏

{
1

2

(
(𝑝2𝑎𝜆𝑎 + 𝑝2𝑏𝜆𝑏)(−𝛾) + 2𝛾(𝑝𝑎𝜆𝑎 + 𝑝𝑏𝜆𝑏)

∂𝑢

∂𝑞

+(𝜆𝑎 + 𝜆𝑏)(
∂2𝑢

∂𝑞2
− 𝛾 ∂𝑢

∂𝑞
) + 𝜎2(

∂2𝑢

∂𝑆2
− 𝛾 ∂𝑢

∂𝑆
)

)
+(𝑟𝑋𝑡 + 𝑝𝑎𝜆𝑎 − 𝑝𝑏𝜆𝑏) + (𝜆𝑏 − 𝜆𝑎)

∂𝑢

∂𝑞

}
= 0, (3)

with the terminal condition 𝑢(𝑇, ⋅) = 𝑞𝑇𝑆𝑇 .

C. The VaR constraint
In this subsection, we present the VaR constraint of

the optimal selection problem in a limit order book. It
is reasonable to assume that the dealer submit the limit
orders at the beginning of the small time intervals discretely.
The stock price and the arrival of the market orders are
approximately constants in the small time interval [𝑡, 𝑡+ℎ].
Firstly we define 𝑉 (𝑡) = 𝑋𝑡 + 𝑞𝑡𝑆𝑡. According to (2),

𝑑𝑞𝑡𝑆𝑡 = 𝑞𝑡𝜎𝑑𝑊𝑡1 + 𝑆𝑡(𝜆𝑏 − 𝜆𝑎)𝑑𝑡
+𝑆𝑡

√
𝜆𝑏𝑑𝑊𝑡3 − 𝑆𝑡

√
𝜆𝑎𝑑𝑊𝑡2 + 𝑑[𝑆𝑡, 𝑞𝑡].

We have assumed that 𝑊𝑡1 ,𝑊𝑡2 and 𝑊𝑡3 are independent,
hence 𝑑[𝑆𝑡, 𝑞𝑡] = 0.
Then, in the small time interval [𝑡, 𝑡+ ℎ]:

Δ𝑉 (𝑡, ℎ)

= (𝑋𝑡 + 𝑞𝑡𝑆𝑡)− 𝑒−𝑟ℎ(𝑋𝑡+ℎ + 𝑞𝑡+ℎ𝑆𝑡+ℎ)

= 𝑒𝑟𝑡
(∫ 𝑡+ℎ

𝑡

𝑟𝑒−𝑟𝜏 𝑞𝑡𝑆𝑡𝑑𝜏 −
∫ 𝑡+ℎ

𝑡

𝑒−𝑟𝜏 𝑞𝑡𝜎𝑑𝑊𝜏1

−
∫ 𝑡+ℎ

𝑡

𝑒−𝑟𝜏 (𝑝𝑎𝜆𝑎 − 𝑝𝑏𝜆𝑏 + 𝑆𝑡(𝜆𝑏 − 𝜆𝑎))𝑑𝜏

+

∫ 𝑡+ℎ

𝑡

𝑒−𝑟𝜏 (𝑆𝑡
√
𝜆𝑎 − 𝑝𝑎

√
𝜆𝑎)𝑑𝑊𝜏2

+

∫ 𝑡+ℎ

𝑡

𝑒−𝑟𝜏 (𝑝𝑏
√
𝜆𝑏 − 𝑆𝑡

√
𝜆𝑏)𝑑𝑊𝜏3

)
Under the measure 𝒫 , the conditional probability distribu-

tion of Δ𝑉 (𝑡, ℎ) given ℱ𝑡 is a normal distribution with the
conditional mean:

𝐸[Δ𝑉 (𝑡, ℎ) ∣ ℱ𝑡] = 𝑞𝑡𝑆𝑡(𝑒
−𝑟ℎ − 1)

+

(
𝑝𝑎𝜆𝑎 − 𝑝𝑏𝜆𝑏 + 𝑆𝑡(𝜆𝑏 − 𝜆𝑎)

)
1− 𝑒−𝑟ℎ

𝑟
.

and the conditional variance of Δ𝑉 (𝑡, ℎ)

𝑉 𝑎𝑟[Δ𝑉 (𝑡, ℎ) ∣ ℱ𝑡] =
1− 𝑒−2𝑟ℎ

2𝑟

(
𝜆𝑎(𝑝𝑎−𝑆𝑡)2+𝑞2𝑡 𝜎2+𝜆𝑏(𝑆𝑡−𝑝𝑏)2

)
.

The VaR of the wealth with confidence level 𝛼 is given by

𝑉 𝑎𝑅𝛼(Δ𝑉 (𝑡, ℎ) ∣ ℱ𝑡)

= inf{𝑥 ∈ 𝑅 ∣ 𝑃 (Δ𝑉 (𝑡, ℎ) > 𝑥 ∣ ℱ𝑡) ≤ 1− 𝛼}
= 𝐸[Δ𝑉 (𝑡, ℎ) ∣ ℱ𝑡] + 𝜙

−1(𝛼)
√
𝑉 𝑎𝑟[Δ𝑉 (𝑡, ℎ) ∣ ℱ𝑡]

which depends on the bid and ask prices 𝑝𝑏, 𝑝𝑎 we submit
at time 𝑡.
We define the risk constraint at the level 𝐺 for this optimal
submission problem in a limit order book as

𝑉 𝑎𝑅𝛼(Δ𝑉 (𝑡, ℎ) ∣ ℱ𝑡) ≤ 𝐺
Then the optimal submission problem in a limit order book

with the VaR constraint is summarized as

max
𝛿𝑎,𝛿𝑏

𝐸𝑡[−𝑒−𝛾(𝑋𝑇 +𝑞𝑇 𝑆𝑇 )]

subject to:⎧⎨
⎩

𝑑𝑆𝑡 = 𝜎𝑑𝑊𝑡1 , 𝑆0 = 𝑠 ,
𝑑𝑋𝑡 = (𝑟𝑋𝑡 + 𝑝𝑎𝜆𝑎 − 𝑝𝑏𝜆𝑏)𝑑𝑡

+𝑝𝑎
√
𝜆𝑎𝑑𝑊𝑡2 − 𝑝𝑏

√
𝜆𝑏𝑑𝑊𝑡3 ,

𝑑𝑞𝑡 = (𝜆𝑏 − 𝜆𝑎)𝑑𝑡+
√
𝜆𝑏𝑑𝑊𝑡3 −√

𝜆𝑎𝑑𝑊𝑡2 .

(4)

and

𝐸[Δ𝑉 (𝑡, ℎ) ∣ ℱ𝑡] + 𝜙−1(𝛼)
√
𝑉 𝑎𝑟[Δ𝑉 (𝑡, ℎ) ∣ ℱ𝑡] ≤ 𝐺.

(5)

III. NUMERICAL EXPERIMENTS AND DISCUSSIONS

In this section, we first present the iterative algorithm to
solve the HJB equation with VaR constraint. Then by figur-
ing out the optimal selection of the bid and ask prices with
risk constraint we can find how the risk constraint affects
dealer’s choices. We also conduct numerical experiments to
analyze the influence of risk constraint to dealer’s terminal
profit.

A. The Iterative Algorithm

As a necessary condition for an optimal solution of a
stochastic control problem, the HJB equation is a second-
order nonlinear partial differential equation. Analytical so-
lutions can be obtained only for some special cases with
simple state equations. In this sub section we shall apply the
successive approximation algorithm to solve the HJB equa-
tion numerically which was introduced in [16]. According
to the successive approximation algorithm, the problem of
solving the HJB equation numerically has been separated
into two sub-problems:
(1) Solving the PDE numerically, and
(2) Optimization of the nonlinear function over 𝛿𝑎 and 𝛿𝑏.
To solve the PDE, we employ a finite difference scheme
introduced in [18]. According to the finite difference scheme,
we divide the domain of the computation into a grid of
𝑁𝑡×𝑁𝑞×𝑁𝑋 mesh points, where 𝑁𝑡, 𝑁𝑞 and 𝑁𝑋 represent
the number of mesh points in the time and the space
domains. For a function of 𝑢 defined on the grid we write
𝑢𝑙,𝑚,𝑛 for the value of 𝑢 at the grid point (𝑡𝑙, 𝑞𝑚, 𝑋𝑛). Then
the steps in the iterative algorithm are presented as follows:
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Step I: For each 𝑙 = 𝑁𝑡 − 1, . . . , 0,𝑚 = 1, . . . , 𝑁𝑞, 𝑛 =
1, . . . , 𝑁𝑋 , the initial value 𝛿𝑎 = 0.5, 𝛿𝑏 = 0.5. Then 𝑢0𝑙,𝑚,𝑛
are computed from the following equation:

𝑢0𝑙,𝑚,𝑛 = 𝑢0𝑙+1,𝑚,𝑛 +Δ𝑡

{
1

2

(
(𝑝2𝑎𝜆𝑎 + 𝑝2𝑏𝜆𝑏)(−𝛾) + 𝑟𝑋𝑡

+𝑝𝑎𝜆𝑎 − 𝑝𝑏𝜆𝑏
)
+

(
(𝑝𝑎𝜆𝑎 + 𝑝𝑏𝜆𝑏 −

𝜆𝑎 + 𝜆𝑏

2
)𝛾

+𝜆𝑏 − 𝜆𝑎
)𝑢0𝑙+1,𝑚+1,𝑛 − 𝑢0𝑙+1,𝑚,𝑛

Δ𝑞

+
𝜆𝑎 + 𝜆𝑏

2

𝑢0𝑙+1,𝑚+1,𝑛 − 2𝑢0𝑙+1,𝑚,𝑛 + 𝑢0𝑙+1,𝑚−1,𝑛

Δ𝑞2

+
𝜎2

2

(𝑢0𝑙+1,𝑚,𝑛+1 − 2𝑢0𝑙+1,𝑚,𝑛 + 𝑢0𝑙+1,𝑚,𝑛−1

Δ𝑆2

−𝛾
𝑢0𝑙+1,𝑚,𝑛+1 − 𝑢0𝑙+1,𝑚,𝑛

Δ𝑆

)}
,

Step II: With the constraint, according to (3) and (5), our
optimization problem is given by

max
𝛿𝑎,𝛿𝑏

{
1

2

(
(𝑝2𝑎𝜆𝑎 + 𝑝2𝑏𝜆𝑏)(−𝛾) + 2𝛾(𝑝𝑎𝜆𝑎 + 𝑝𝑏𝜆𝑏)

∂𝑢

∂𝑞

+(𝜆𝑎 + 𝜆𝑏)(
∂2𝑢

∂𝑞2
− 𝛾 ∂𝑢

∂𝑞
) + 𝜎2(

∂2𝑢

∂𝑆2
− 𝛾 ∂𝑢

∂𝑆
)

)
+(𝑟𝑋𝑡 + 𝑝𝑎𝜆𝑎 − 𝑝𝑏𝜆𝑏) + (𝜆𝑏 − 𝜆𝑎)

∂𝑢

∂𝑞

}
,

subject to

𝐸[Δ𝑉 (𝑡, ℎ) ∣ ℱ𝑡] + 𝜙
−1(𝛼)

√
𝑉 𝑎𝑟[Δ𝑉 (𝑡, ℎ) ∣ ℱ𝑡] ≤ 𝐺

Furthermore we compute 𝑢𝑘𝑙,𝑚,𝑛

𝑢𝑘𝑙,𝑚,𝑛 = 𝑢𝑘𝑙+1,𝑚,𝑛 +Δ𝑡

{
1

2

(
(𝑝2𝑎𝜆𝑎 + 𝑝2𝑏𝜆𝑏)(−𝛾) + 𝑟𝑋𝑡

+𝑝𝑎𝜆𝑎 − 𝑝𝑏𝜆𝑏
)
+

(
(𝑝𝑎𝜆𝑎 + 𝑝𝑏𝜆𝑏 −

𝜆𝑎 + 𝜆𝑏

2
)𝛾

+𝜆𝑏 − 𝜆𝑎
)𝑢𝑘𝑙+1,𝑚+1,𝑛 − 𝑢𝑘𝑙+1,𝑚,𝑛

Δ𝑞

+
𝜆𝑎 + 𝜆𝑏

2

𝑢𝑘𝑙+1,𝑚+1,𝑛 − 2𝑢𝑘𝑙+1,𝑚,𝑛 + 𝑢𝑘𝑙+1,𝑚−1,𝑛

Δ𝑞2

+
𝜎2

2

(𝑢𝑘𝑙+1,𝑚,𝑛+1 − 2𝑢𝑘𝑙+1,𝑚,𝑛 + 𝑢𝑘𝑙+1,𝑚,𝑛−1

Δ𝑆2

−𝛾
𝑢𝑘𝑙+1,𝑚,𝑛+1 − 𝑢𝑘𝑙+1,𝑚,𝑛

Δ𝑆

)}
,

Step III: Return to Step II with 𝑘 = 𝑘 + 1 until

∥𝑢𝑘−1 − 𝑢𝑘∥ < 𝜖

where 𝜖 is a small positive number. The proof of the
convergence of this Successive Approximation Algorithm
can be found in [17].

B. Optimal Bid and Ask Prices with VaR Constraint

In this subsection, we conduct the numerical experiments
to compare the optimal submission in a limit order book aris-
ing from the model with VaR constraint with that obtained

from the model without VaR constraint. We implement the
above iterative algorithm by MATLAB. Figure 1 shows the
simulated path with the parameters 𝑇 = 1, 𝛾 = 0.1, 𝑟 =
0.02, 𝑠 = 100, 𝜎 = 2, 𝑑𝑡 = 0.01, 𝑘 = 1.5, 𝐴 = 140 for
the model with VaR constraint. From (1) we know that the
dealer’s profit consists of two parts: the terminal value of the
inventory stock and the terminal wealth obtained from the
transaction. From Figure 1 we can observe that the dynamic
of stock price has a significant impact on the dealer’s choice.
For example, in the time interval (0.30, 0.33), the stock price
is increasing, the dealer should hold more stocks to increase
his inventory value by submitting a higher bid price. He can
also sell the stock he holds at a higher price by submitting
a higher ask price. And as the stock price increases, the
increase rate of the ask price is greater than that of bid
price. This makes intuitive sense as the dynamic of stock
price affect the dealers submission from two perspectives.
On one hand, to minimize the inventory risk, it is wise for
the dealer to submit a higher ask price if his inventory level
is positive, meanwhile, he should lower the ask price if he is
a short seller. On the other hand, to consider the transaction
risk and maximize his terminal wealth, he should sell the
stock at a higher price and buy the stock in a lower price
to earn more bid-ask spread. The dealer’s incentive to hold
more stock results in a higher intensity of market buy orders,
until 𝑡 = 0.33, where the stock price stars to decrease.
We consider the inventory risk throughout the submission
process, hence, when the terminal time is approaching, the
stock price is easier to predict. Then the optimal bid and ask
prices seem to be symmetric with respect to the stock price
since the inventory risk is small.

Figure 2 shows the simulated path with the same param-
eters for the model without VaR constraint. By comparing
Figure 1 with Figure 2, we can find that the dealer behaves
more conservative when we consider the risk constraint. For
example, in the time interval (0.40, 0.43), the optimal ask
price at 𝑡 = 0.41 in Figure 1 is 103.8 while 𝑝𝑎 = 104 in
Figure 2 at the same time. It seems that when the stock price
moves drastically, the dealer’s strategy is more modest by
considering the risk constraint which is reasonable since the
dealer should not be that anxious or excited to make a profit
when there is an opportunity to invest in the market.

After 200 times simulations we obtained the average and
the standard deviations of the profit from the two models.
The strategy with VaR constraint has a lower profit (of
$63.32 versus $75.46) and lower standard deviation ($4.32
versus $7.14) which is illustrated in the histogram in Figure
3.

IV. CONCLUSION

We consider the optimal bid and ask quotes selection
problem subject to a value-at-Risk (VaR) constraint when
the arrival of the buy and sell orders are governing by
Poisson processes. By considering diffusion approximation,
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Figure 1. Simulation Results with risk constraint
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Figure 2. Simulation Results without risk constraint

the dynamic programming principle is applicable. We obtain
the numerical solutions by solving the HJB equation. We
can find that the dealer behaves more conservative when we
consider the risk constraint and the profit from our model
has a lower expectation and lower standard deviation than
that from the model without the VaR constraint.
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