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Department of Electrical and Electronic Engineering, The University of Hong Kong
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ABSTRACT

This paper develops a new recursive nonstationarity 
detection method based on time-varying autoregressive 
(TVAR) modeling. A local likelihood estimation approach 
is introduced which gives more weights to observations near 
the current time instant but less to those distance apart. It 
thus allows the Wald test to be computed based on RLS-
type algorithms with low computational cost. A reliable and 
efficient state regularized variable forgetting factor (VFF) 
QR decomposition (QRD)-based RLS (SR-VFF-QRRLS) 
algorithm is adopted for estimation for its asymptotically 
unbiased property and immunity to lacking of excitation. 
Advantages of the proposed approach over conventional
approaches are 1) it provides continuous parameter 
estimates and the corresponding stationary intervals with 
low complexity, 2) it mitigates low excitation problems
using state regularization, and 3) stationarity at different 
scales can be detected by appropriately choosing a certain 
window size. The effectiveness of the proposed algorithm is 
evaluated by testing vocal tract changes in real speech 
signals.

Index Terms—Nonstationarity detection, local likelihood, 
Wald test, TVAR, RLS, state regularization

1. INTRODUCTION

In many digital signal applications, the signals under study 
are often assumed to be wide sense stationary (WSS) 
Gaussian random sequences. Nonstationarity, which is 
frequently encountered, will pose significant difficulties in 
further analysis, since these analyses usually assume that the
data record is stationary. It would therefore be important to 
determine the duration in which a signal is stationary at a 
desired scale. Much effort has been spent on nonstationarity 
detection. The statistics based on Fourier transform [1] may 
not be viable for the short data record such as speeches. For 
speech detection, early work usually involves a piece-wise 
AR model assumption [2], where the AR coefficients are 
estimated as constants within a short time interval using  
maximum likelihood estimation (MLE) [3]. This implies that 
within each interval, the vocal tract is assumed to be 
stationary while jump happens abruptly at the end of each 
interval. In reality, however, vocal tracts are continually 
changing, either slowly or rapidly. To this end, the TVAR 
model was proposed for a better approximation of vocal 

tracts [4]-[6]. Recently, based on the TVAR model, a new 
nonstationary detector using the Rao test was proposed in
[7]. It requires the MLE under the null hypothesis, which is
usually easier to compute. On the other hand, the most 
widely used test is the generalized likelihood ratio test 
(GLRT), which requires MLEs under both hypotheses. It 
was first developed and applied to speech processing in [8]
for detecting between an AR and TVAR models. The 
arithmetic complexity of GLRT is usually higher and the 
MLE may lead to ill-posed problems [6] due to insufficient
samples. Consequently, it may lead to significantly higher
false alarms (FAs) in detection. As an alternative, the Wald 
test [9], which is asymptotically equivalent to GLRT, can be 
used when the estimate under the alternative hypothesis is 
available. Though, it has a lower computational complexity, 
the use of this test is rather limited due to the difficulties in 
estimating the TVAR parameters that may again suffer from 
the insufficient sample problem.

In this paper, a new recursive Wald test is proposed for
detecting nonstationarity of signals. It is based on the 
TVAR model and a local likelihood function (LLF), which 
can be implemented recursively in a RLS-type estimation 
algorithm with low computational cost. The LLF gives more 
weights to observations near the current time instant but less 
to those far away from it as in conventional RLS algorithms.
It thus allows the Wald test to be computed based on RLS-
type algorithms. Since the recursive estimation of TVAR 
parameters is a crucial step in using the Wald test, a reliable 
and efficient state regularized VFF QRD RLS algorithm [10]
is employed which possesses the asymptotically unbiased 
property and is less sensitive to lacking of input excitation.
Moreover, it can be implemented by the QRD structure 
which has low roundoff error and efficient hardware 
realization. In summary, the advantages of the proposed 
approach over conventional approaches are 1) it provides a 
continuous parameter estimates and the corresponding 
stationary interval detections with order O(p2)
computational complexity (the test is O(p)), 2) it mitigates 
the low excitation problem using the state regularization, 
and 3) stationarity at different scales can be detected by 
choosing appropriately a certain window size. The
effectiveness of the proposed algorithm is evaluated by 
testing vocal tract changes in real speech signals.

2. THE PROPOSED RECURSIVE WALD TEST
In the TVAR model, the nonstationary discrete-time signal 
{x(n)} at time instant n is given by
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where p is the order of the model, a(n)=[a1(n),…,ap(n)]T is
the model coefficient vector of length p, x(n)=[x(n-1),…,
x(n-p)]T is the corresponding signal vector, and {g(n)} is the 
excitation which is assumed to be a zero-mean white 
Gaussian process with variance 2

�� . Normally, the process is 
assumed stationary and all the data record will be used to 
estimate the model parameters. However, real-world data 
may be nonstationary and we need to test whether the data at 
hand is stationary or not. We can formulate this problem as 
the following hypothesis test:
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where �0 is the p by 1 known vector. Assuming N+1
samples of the observations {x(n)} whose components are 
continuous random variables, we let p(x;�) be its probability 
density function (pdf), which is assumed to be continuously 
differentiable with respect to �. Since g(n) is white Gaussian, 
the LF of the TVAR model in (1) can be approximated by
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where x�=[x(p),…,x(N)]T after excluding the first p samples
and TT n ]),([ 2

��a� � . Usually, the parameter vector can be 
solved by maximizing the LF which gives the ML estimator. 
For recursive estimation, less emphasis will be paid to 
distance samples and hence one can assume that the noise 
variance increases exponentially for samples with increasing 
delays from the current one. Consequently, one can define a
“local” LF as
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where e(i)=x(i)-aT(i)x(i), �n-i(n)=�(n)�n-i-1(n-1) with �0(n)=1 
and �(n) is the FF used at the time index n, which satisfies 
0<�(n)<1. Note, maximizing (3) gives the least squares 
estimator while maximizing (4) gives the recursive least 
squares estimator with an exponential window. To 
differentiate the two solutions to the problem, the latter will 
be denoted by w in the subsequent discussion. For the 
hypothesis test in (2), the Wald test statistic reads

)()()(),( 0
1
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where B(w) is the Cramer-Rao bound (CRB) at the true 
parameter w or some estimate of it, whereas w0 is the 
candidate vector to be tested in the hypothesis. For 
notational convenience, we shall drop the dependence of T(.) 
on w0. To proceed further, we therefore need to determine 
the CRB and w. First, the CRB of any unbiased estimator 
has the simplified form of the inverse of the Fisher 
information matrix (FIM), whose (l,m)-th entry is given by
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where rx(k) is the autocorrelation at lag k of {x(n)}.
To determine w, we need to maximize the local LF 

which can be obtained by finding the zero of the Fisher 
score vector
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which gives the normal equation for RLS algorithm
)()()( nnn XoptXX pwR � (8)

where wopt (n) is estimate of w, )()()()( 0 iinn Tn
i inXX xxR �� �� �

and �)(nXp �� �
n

i in n0 )(� x(i)x(i) are the autocorrelation 
matrix of x(n) and the crosscorrelation vector of x(n) and 
x(n), respectively. We will propose in Section 3 an adaptive 
filter algorithm to solve (8). Assuming w has been estimated, 
we will determine the difference between w and w0 and 
further simplify the Wald test in (5). At �=w, we have from 
the mean value theorem that
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for some point � L, the interval joining w and w0. If w0 is 
sufficiently close to w, we can approximate I(�) by I(w), 
due to the continuity property at I(w) under reasonable 
regularity assumption. Consequently, one gets w-w0 = -I-1(w)
s(w0) and
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where Rx is the autocorrelation matrix of {x(n)}, s(w0)=
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further be simplified by using the normal equation to obtain
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Substituting it into (10) gives the simplified test that we 
should reject the hypothesis of stationarity if
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where ��is chosen to maintain a constant false alarm (CFAR).
To make use of the above test for checking stationarity 
recursively, we can compute the TVAR estimate using a 
SR-VFF-QRRLS algorithm (to be described in Section 3) at 
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TABLE I THE SR-VFF-QRRLS ALGORITHM
Initialization:

IR ��)0( , � is a small positive constant;
0�)0(u , 0�)0(w are null vectors.

Recursion:
Given R(n-1), u(n-1), w(n), x(n) and x(n), compute at time n:
(i). The first update:
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where Q(1)(n) and Q(n) are calculated by Givens rotation to obtain 
the left hand side of each equation above and �(n)=�(n)p. For the 
QRRLS algorithm, R(1)(n)=R(n)
(ii). )()()( 1 nnn uRw �� (back-substitution).

the current time instant n, �, and then apply the test (11) to 
a previous estimate w0, say at time instant (n-N0). Note, the 
original test assumes that the origin is at time n=0. To use it 
for the current setting, the Fisher score vector at w0 will be 
modified to � �� �

�� n

Nni in iien
0

)()()()( 0
2

0 xws ��� , i.e. we only 
compare the two candidates using the data samples inside a
window of size N0, whereas the two estimates are obtained 
by all the samples up to their respective time instants. The 
new s(w0) can then be computed recursively starting at time 
instant (n-N0) with O(p) complexity. The required exciting 
variance 2

�� can be approximated from the residual of the 

algorithm, i.e. )())(1()()()( 2222 nennnn ����� ��� ���� , 
which again can be computed recursively. The choice of N0
depends on the scale of changes that we wish to detect. A 
small N0 means we wish to detect fast varying changes in 
the signal under consideration, such as abrupt jumps. On the
other hand, a large N0 tends to detect slow variations in the 
process.

The performance of the Wald test above can be found 
asymptotically to have a central chi-squared distribution of 
order p under H0 or

)0(~)( 2
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Under H1, it has a noncentral chi-squared distribution or
)(~)( 2 "! pT x , (13)

where the noncentrality parameter is given by
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3. THE SR-VFF-QRRLS ALGORITHM

In this section, we propose to solve (8) using the SR-VFF-
QRRLS algorithm [10]. Let the weight vector of the adaptive 
filter be w(n)= [w1(n),…,wp(n)]T. Eqn. (8) can be efficiently 
implemented using a QRD-based algorithm as summarized 
in Table I with the first update only. The following method 
is used to update the FF

)(/11)( nLn ��� (15)

where )}))](((1[{)( LUNL LLnGgLroundnL ���� is the 
exponential window size with a lower and upper bound of
LL and LU, g(x)=min{x,1} is a clipping function which keeps 
its positive argument x within the interval [0, 1], and 
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estimates of )(2 nxe� at the beginning of adaptation and 
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where e� is a FF and xe(n) is averaged from x(n)e(n) over a 
time window of length Txe so as to suppress the effect of 
background noises on )(2 nxe� , which is a measure of the 
convergence status [10].

To address the ill-conditioned problem in RXX(n), a state

regularization is imposed and the solution, instead of (8), 
will be modified to

)()()()())()(( nnnnnn XXX wpwIR ## ��� (17)
where �(n) is a regularization parameter used to balance 
between bias and variance and I is a positive definite matrix.
It can be seen that the optimal solution to (17) is identical to 
that of (8) and therefore, (17) is unbiased and depends on 
w(n). To iteratively solve (17), w(n) on the right hand side is 
approximated by w(n-1). Hence, the algorithm is 
asymptotically unbiased. According to [10] �(n) is given by
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x� is the averaged 

input power over the whole duration while )(2 nx� is the 
short term averaged input power estimated by using a FF, 
and 2

2|||| rw is the norm of the system channel which is 
usually assumed to be known a priori. The update of the 
regularization in (17) can be realized successively using 
another QRD. In particular, the QRD is executed once for 
the data vector [xT(n), x(n)] and once for the regularization 
vector )]1()(,)([ �nwnn ll   d at each time instant, where
dl is the l-th row of I and �(n)=�(n)p. If the vector is 
sequentially applied, l=(n mod p)+1. This yields the SR-
VFF-QRRLS algorithm, as shown in Table I.

4. SIMULATION RESULTS

We now apply the proposed recursive Wald test to the real 
speech data and evaluate its performance in detecting vocal 
tract variation. In the experiments, the waveform used is a 
vowel [a] (as in “father”) followed by [ai] (as in “life”). It 
was downsampled to 1 kHz in order to focus on lower 
frequency formants. In the first experiment, we would like to 
detect the vocal tract change once it happens. In this case, w
is the TVAR estimate at current time n whereas w0 is the
TVAR estimate at the last detected change point, say at n0
and (11) will be used to test from the current estimate w to a
point that corresponds to a new change. If so, n0 will be set 
to the current time instant n and repeat the above process, 
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otherwise, it will proceed to the next time instant. Thus, N0 is 
variable in this case. The proposed method is compared with 
the GLRT in [8]. According to the rule-of-thumb that “2 
coefficients per kHz”, a 2-order model is applied to both 
algorithms. According to the parameter selection in [8], a
power series with q=4 is used for the TVAR modeling in the
GLRT and the length of the basic segment is 16ms. For the 
proposed Wald test, the following parameters are suggested
so as to achieve satisfactory performance under a wide range 
of conditions: a short window length Txe=20 and �e= 0.99 are 
used to achieve a quick response for FFs when the signal 
changes rapidly; a longer window Ts0= 50 is used to estimate 
a reliable reference for the convergence status 2

0� . LL and LU

are chosen as 3 and 10, respectively, so that the minimum 
and maximum FFs are around 0.7 and 0.9.

The performance of the two detection methods is 
compared in Fig. 1 with a CFAR of 1%. In contrast to the 
satisfactory segmentation results obtained by the Wald test, 
the GLRT results indicate that there are certain detection 
latencies especially at the beginning of each vowel and the 
segment duration at around 1.2 s is too short for further 
analysis. All of these are mainly due to the need of batch 
processing. In addition, large variation of T(x) is observed in 
GLRT results due to insufficient excitation at three different 
occasions (marked as squares in Fig. 1), which leads to FAs. 
On the other hand, the proposed method can combat these 
ill-conditioned problems by employing state regularization. 
Also shown as dashed lines in Fig. 1 are the continuous 
frequency tracks obtained from (upper) the segmented data 
using GLRT and (lower) SR-VFF-QRRLS. It shows the 
flexibility of the proposed approach in recursively tracking 
the desired parameters as well as providing a nonstationarity 
detection.

In the second experiment, we would like to detect the 
nonstationary at larger scales, which may help in segmenting 
large scale features in the signal. This is achieved by using a
constant N0. Other settings are the same as above. Failure to 
reject (11) implies that the signal is stationary under a certain 
scale defined by N0. The black solid lines in Fig. 2 show the 
nonstationarity detected by the proposed approach, 
respectively, for window sizes of N0=10 and 20. In order to 
indicate the changes of original spectrum on the same 
frequency scale, these lines are obtained by setting 300 Hz 
(200 Hz) when T(x) is larger (smaller) than the threshold �, 
and then smoothing with a median filter of window size N0.
We can see that different N0’s help to isolate changes at 
different scales, which are useful for automatic segmentation.

5. CONCLUSION

A new recursive Wald test has been presented for detecting
the nonstationarity of signals. It is based on the TVAR model 
and a LLF, which can be implemented recursively in a 
QRRLS-type estimation algorithm with efficiency and low 
computational cost.
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Fig. 1. Change detection results for GLRT (16ms segment duration) and the 
proposed recursive Wald test.
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Fig. 2. Nonstationarity duration at different scales: N0=10 and 20.
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