
Title Dynamic Scaling of VoD Services into Hybrid Clouds with Cost
Minimization and QoS Guarantee

Author(s) Qiu, X; Li, H; Wu, C; Li, Z; Lau, FCM

Citation
The 19th International Packet Video Workshop (PV 2012),
Munich, Germany, 10-11 May 2012. In Proceedings of IEEE
International Packet Video Workshop, 2012, p. 137-142

Issued Date 2012

URL http://hdl.handle.net/10722/160086

Rights Proceedings of IEEE International Packet Video Workshop.
Copyright © I E E E.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37980138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Dynamic Scaling of VoD Services into Hybrid
Clouds with Cost Minimization and QoS Guarantee

Xuanjia Qiu∗, Hongxing Li∗, Chuan Wu∗, Zongpeng Li† and Francis C.M. Lau∗

∗Department of Computer Science, The University of Hong Kong, Hong Kong, {xjqiu,hxli,cwu,fcmlau}@cs.hku.hk
†Department of Computer Science, University of Calgary, Canada, zongpeng@ucalgary.ca

Abstract—A large-scale video-on-demand (VoD) service de-
mands huge server costs, to provision thousands of videos to
millions of users with high streaming quality. As compared to
the traditional practice of relying on large on-premise server
clusters, the emerging platforms of geo-distributed public clouds
promise a more economic solution: their on-demand resource
provisioning can constitute ideal supplements of resources from
on-premise servers, and effectively support dynamic scaling of the
VoD service at different times. Promising though it is, significant
technical challenges persist before it turns into reality: how shall
the service provider dynamically replicate videos and dispatch
user requests over the hybrid platform, such that the service
quality and the minimization of overall cost can be guaranteed
over the long run of the system? In this paper, we present
a dynamic algorithm that optimally makes decisions on video
replication and user request dispatching in a hybrid cloud of
on-premise servers and geo-distributed cloud data centers, based
on the Lyapunov optimization framework. We rigorously prove
that this algorithm can nicely bound the streaming delays within
the preset QoS target in cases of arbitrary request arrival
patterns, and guarantee that the overall cost is within a small
constant gap from the optimum achieved by a T-slot lookahead
mechanism with known information into the future. We evaluate
our algorithm with extensive simulations under realistic settings,
and demonstrate that cost minimization and smooth playback
can be achieved in cases of volatile user demands.

I. INTRODUCTION

Video-on-demand (VoD) services have prospered on the
Internet over the past decade. The prevailing large-scale VoD
systems, which provide thousands of high-quality videos to
millions of users, are based on either a server-client design
[1][2] or the peer-to-peer paradigm [3][4]. In both cases,
large server clusters are inevitable to provision all the storage
and upload capacities (server-client), or an indispensable part
to supplement insufficient peer supplies (peer-to-peer) [5].
The server capacities are typically implemented by dedicated
servers of the VoD service provider or rented capacities from
a content distribution network (CDN). In all these cases, large
server costs are incurred.

The recent advance of cloud computing technologies has
enabled rapid, on-demand server utility provisioning at much
reduced costs. Especially, global-scale cloud platforms, such
as Amazon CloudFront and Google App Engine, span multiple
data centers in different geographic locations, and provide
services close to the users. Such a geo-distributed cloud
promises to be suitable for VoD applications with large user
groups in different regions and volatile resource demands over

time.
To utilize cloud resources for VoD service provisioning,

videos can be replicated in storage servers in the cloud,
and requests can be distributed to cloud-based web services,
while the VoD provider maintains the original copies of the
videos and serves some requests using its existing on-premise
servers. The key challenges to deploy a VoD service, on the
hybrid infrastructure consisting of on-premise servers and geo-
distributed cloud data centers, are how to efficiently replicate
videos and dispatch requests across the hybrid cloud, for
the modest operational expenditure and good streaming delay
guarantee at all times.

A few recent proposals have advocated migrating VoD
services into a cloud platform. Li et al. [6] propose partial
migration of VoD services to content clouds for cost saving,
and design heuristic strategies to decide the update of cloud
contents. Wu et al. [7] deploy a VoD application on an IaaS
cloud containing a single data center. None of these work
considers a hybrid geo-distributed cloud, and their migration
algorithms do not provide guarantee of cost optimality over
a long run of the system. Some previous studies on peer-
to-peer based streaming systems also explore good content
placement strategies and request routing policies [8][9], where
it is assumed that resource of users is contributed for free.
In contrast, we propose a comprehensive cost minimization
framework to carefully tune the occupation amount of various
types of resource. Placement of services to different sites has
been investigated [10][11] based on the theories of Facility
Location Problems [12], that focus on one-time optimization
with fixed service demands, rather than online optimization
over a long run of the system.

In this paper, we design a dynamic, joint video replication
and request distribution algorithm, which minimizes overall
operational cost of the VoD system while guaranteeing bound-
ed streaming delays over time, based on the Lyapunov opti-
mization framework [13][14]. Lyapunov optimization provides
a framework for designing efficient algorithms that achieve
arbitrarily close to optimal system performance over the long
run, without a need for any information from the future. It
has been extensively used in routing and channel allocation
in wireless networks [13][15] and has recently been utilized
for resource allocation in peer-to-peer networks [16] and
CDNs [17]. We tailor Lyapunov optimization techniques in
the hybrid cloud computing setting, to dynamically and jointly
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resolve the optimal video replication and request dispatching
problems. Through rigorous analysis, we prove the optimality
of our algorithm, showing that the overall operational cost is
guaranteed to be within a small constant gap from the optimum
achieved by a T-slot lookahead mechanism with information
from the future. We also prove that our algorithm bounds the
streaming delays within the preset quality of service (QoS)
target in cases of arbitrary request arrivals. Guidelines on
how to trade the operational cost for QoS and vice versa
are also discussed. With extensive simulations, we show that
our algorithm can achieve cost minimization and playback
smoothness in large-scale VoD systems.

In the remainder of this paper, we formulate the problem
in Sec. II, design a dynamic algorithm in Sec. III, analyze its
optimality in Sec. IV, evaluate its performance in Sec. V, and
conclude the paper in Sec. VI.

II. PROBLEM FORMULATION

A. System Model

We study a VoD system that streams a collection of videos
# to users in multiple geographical regions $ . Each video !
in # is divided to a set of media chunks "(!), each of size
#(!) (in bytes). An on-premise server cluster is deployed by
the VoD service provider, both as access portals to the VoD
service and as the repository of the original video files. The
maximum number of requests the on-premise servers can serve
in a time slot is $ .

There is a public cloud platform, containing multiple geo-
distributed cloud data centers %. There are two types of servers
in each cloud data center, namely the back-end storage servers
for storage and the front-end web-service servers to serve user
requests. Let %" denote the round-trip delay between region
& ∈ $ and the on-premise server cluster, and '"# be the round-
trip delay between region & and data center ( ∈ %, reflecting
geographic distances between the two regions.

We consider the following service charge model. The cost of
uploading a byte from the on-premise servers is ℎ. The charge
of storage in data center ( is *# per byte. The cost to upload a
byte from data center ( is +#. The cost to copy a byte of data
from the on-premise servers to data center ( is ,#. Removal of
videos from a data center is cost free. These charges follow the
typical charging models of leading commercial cloud providers
such as Amazon EC2 [18] and S3[19].

B. Video Replication and Request Dispatching Problem

In our system, time is divided into equal-length time slots,
numbered as 0, 1, 2, . . .. Each time slot is one unit time, which
is enough for uploading any chunk of video ! ∈ # of size #(!)

at the unit bandwidth. In time slot /, 0(!,%)" (/) requests are
generated for downloading chunk 1 ∈ "(!) of video ! ∈ # ,
from users residing in region &. We assume that the request
generation is an arbitrary process over time, with 2&'( being
the maximum number of requests arising from each region for
all chunks of a video in each time slot.

A control center is responsible for collecting user requests,
buffering them in request queues, and then dispatching them

Fig. 1. The system model.

into the hybrid infrastructure of on-premise servers and cloud
data centers. It also decides whether a video is to be replicated
or removed from a cloud data center. Let 3(!)

" denote the
request queue caching requests for chunks of video ! from
users in region &, ∀& ∈ $, ∀! ∈ # , whose length (i.e., the
queue backlog) at time slot / is denoted by 3(!)

" (/).
The decisions that the control center needs to make in each

time slot of the dynamic system include: (1) Whether video
! should be stored in data center ( in time slot / or not, as
indicated by binary decision variable 4(!)# (/), 1 for ‘yes’ and 0
for ‘no’, ∀( ∈ %, ! ∈ # . (2) How many requests for chunks of
video ! from region & should be dispatched to the on-premise
server cluster and how many to each data center ( in time
slot /, denoted by variables 5(!)" (/) and ((!)"# (/), respectively,
∀& ∈ $, ! ∈ #, ( ∈ %. Note that requests for a chunk can only
be dispatched to a data center where the corresponding video
is stored, i.e., ((!)"# (/) > 0 only if 4(!)# (/) = 1.

The backlogs of request queues are updated as follows:
!(!)

" ("+1) = max[!(!)
" (")−#(!)" (")−

∑

#∈"

$(!)"# ("), 0]+
∑

$∈%(!)

&(!,$)
" (")

∀' ∈ $, ∀( ∈ %, ∀". (1)

The system model is illustrated in Fig. 1. Important nota-
tions are summarized in Table I, for ease of reference.

Our objective is to design a dynamic algorithm for the
control center to optimize video replication and request dis-
patching over time, such that the overall operational cost
is minimized while the service quality is guaranteed. The
operational cost in time slot /, 7(/), is modeled as follows:

!(") =
∑

!∈#

∑

"∈$
[(#(!)$(!)" (")ℎ+

∑

#∈"
#(!)&(!)"# (")'#] +

∑

!∈#

∑

#∈"
#(!)((!)# ("))#

+
∑

!∈#

∑

#∈"
∣*(!)∣#(!)[((!)# (")− (

(!)
# ("− 1)]++#, (2)

where the three items correspond to (1) the bandwidth charge
for uploading chunks to users from the on-premise servers and
the cloud data centers, (2) the storage cost for replicated videos
at the data centers, (3) the migration cost for copying videos
from the on-premise servers to the data centers, respectively.
Here [8]+ = 8 if 8 ≥ 0 and [8]+ = 0 if 8 < 0.
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TABLE I
IMPORTANT NOTATIONS

% Video set & User region set ' Cloud data center set
*(!) Set of chunks in video -
#(!) Size of a chunk in video - in bytes

.(!,$)" (") No. of requests for chunk / in video - from region 0 at time
slot "

1(!)
" (") Request queue for chunks of video - from region 0

2'() Max no. of requests for chunks of a video from a region in
a time slot.

$(!)" (") No. of requests dispatched from 1(!)
" to on-premise servers

at "

&(!)"# (") No. of requests dispatched from 1(!)
" to data center & at "

((!)# (") Binary var: store video - on data center & at " (1) or not (0).
3 Max. no. of requests on-premise servers can serve in a time

slot
4'() Max no. of requests dispatched from each request queue to

a data center in a time slot
)# Charge for storing a byte on data center & for one time slot
'# Charge for uploading a byte from data center &
ℎ Cost for uploading a byte from the on-premise servers
+# Charge for copying a byte from on-premise servers to data

center &.

5
(!)
" Upper bound of queueing delay of requests in queue 1

(!)
"

6(!)" Preset constant for controlling queueing delay in 1(!)
"

7" Round-trip delay between region 0 and on-premise server
cluster

8"# Round-trip delay between region 0 and data center &
9 Upper bound of average round-trip delay
: Virtual queue for bounding average round-trip delay

;(!)
" Virtual queue for bounding the queueing delay in 1(!)

"

On the other hand, the quality of a VoD service is evaluated
by the streaming delays, that mainly consists of queueing delay
in the respective request queue, and round-trip delay from
when the request is dispatched from the queue to the time
the first byte of the chunk is received. It is closely related
to playback smoothness of a video in our system. We ignore
processing delays inside a data center, due to the high inter-
connection bandwidth and CPU capacities inside a data center.
Let : be the upper-bound of average round-trip delay per
request, as set by the VoD service provider. We reasonably
assume that for any region &, there exists a data center (′ such
that : > '"#′ , i.e., this bound should be at least larger than
the round-trip delay between a user and its closest data center.

The optimization pursued by our dynamic algorithm is
formulated as follows :

min*(") (3)
subject to:∑

"∈$

∑

!∈#

#(!)" (") ≤ +, ∀", (4)

0 ≤ $(!)"# (") ≤ ,'()-
(!)
# ("), ∀' ∈ $, $ ∈ ', ( ∈ %, ∀", (5)

#(!)" (") +
∑

#∈"

$(!)"# (") ≤ !(!)
" ("), ∀' ∈ $, ∀( ∈ %, ∀", (6)

∑

"∈$

∑

!∈#

(#(!)" (")." +
∑

#∈"

$(!)"# (")/"#)

< 1
∑

"∈$

∑

!∈#

(#(!)" (") +
∑

#∈"

$(!)"# (")), (7)

#(!)" (") ≥ 0, ∀' ∈ $, ∀( ∈ %, ∀", (8)

-(!)# (") ∈ {0, 1}, ∀$ ∈ ', ∀( ∈ %, ∀", (9)

where 8(/) = lim)→∞
1
)

∑)−1
*=0 8(/) represents the time-

averaged value of 8(/). (4) are upload bandwidth constraints
at the on-premise server cluster. Recall that each request is
served by a unit bandwidth. (5) states that requests for a chunk
are only dispatched to data centers storing the corresponding
video at the time, and the number of requests dispatched from
a request queue to a data center in a time slot stays within an
upper bound ;&'(. (6) states that the total number of requests
dispatched from queue 3(!)

" cannot be larger than the current
queue size. (7) guarantees that the average round-trip delay
per request in the system is smaller than :. Although we only
model round-trip delay bound in the constraints, we will show
that our dynamic algorithm can guarantee a constant queueing
delay bound in each request queue 3(!)

" as well.
We note that no constraints are formulated to represent

storage capacity limit in the cloud data centers. This is due
to the common observations that a cloud has enough storage
capacity to serve more applications than a single VoD service.

III. DYNAMIC VIDEO REPLICATION AND REQUEST

DISPATCHING ALGORITHM

We next design a dynamic algorithm to solve the optimiza-
tion problem in (3). Based on Lyapunov optimization theory,
the algorithm controls values of the decision variables in each
time slot, to guarantee that all constraints in (3) are satisfied
while the queueing delays in request queues are bounded.

Constraints (4)(5)(6)(8)(9) can be addressed in each time
slot. Constraint (7) is on time-averaged variable values. (7)
can be guaranteed and queueing delays can be bounded via
virtual queue techniques in Lyapunov optimization theory [14].

A. Bounding Delays

To satisfy constraint (7), we introduce a virtual queue <,
which is updated in each time slot as follows:

2("+ 1) = max[2(") +
∑

"∈$

∑

!∈#

(#(!)" (")." +
∑

#∈"

$(!)"# (")/"#)

− 1
∑

"∈$

∑

!∈#

(#(!)" (") +
∑

#∈"

$(!)"# (")), 0], ∀", (10)

where the arrival rate
∑

"∈&
∑

!∈'(5
(!)
" (/)%" +∑

#∈( ((!)"# (/)'"#) corresponds to the overall round-trip
delay experienced by all requests in /, and departure rate
:
∑

"∈&
∑

!∈'(5
(!)
" (/) +

∑
!∈' ((!)"# (/)) is the product of the

total number of requests in / and the pre-set upper bound
of round-trip delay per request. Our algorithm should adjust
5(!)" (/)’s and ((!)"# (/)’s to make sure that < is stable (i.e., the
length of this virtual queue will not grow unbounded). Then
time-averaged arrival rate would not exceed time-averaged
departure rate, and hence inequality (7) is guaranteed.

To bound queueing delays in the request queues 3(!)
" , ∀& ∈

$, ! ∈ # , we apply the technique of =-persistent service queue
[20], and guarantee the stability of the following virtual queue
>(!)

" associated with each request queue 3(!)
" :
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3(!)
" ("+ 1) = max[3(!)

" (") + 1{*(!)
" (+)>0}(4

(!)
" − #(!)" (")

−
∑

#∈"

$(!)"# ("))− 1{*(!)
" (+)=0},'(), 0], ∀( ∈ %, ∀' ∈ $, ∀", (11)

where =(!)" > 0 is a constant that can be gauged to con-
trol the queueing delay bound. Intuitively, when the request
queue 3(!)

" is not empty, =(!)" is added to the virtual queue
>(!)

" (arrivals), and the departure rate of the virtual queue,
5(!)" (/)−

∑
#∈( ((!)"# (/), is the same as the departure rate from

its corresponding request queue. If the request queue is empty,
the length of the virtual queue decreases by ;&'(. 5(!)" (/)’s
and ((!)"# (/)’s are strategically decided to keep the virtual queue
stable; in this way, requests are timely dispatched from the
request queue, resulting in limited queueing delay per request.
The value of =(!)" renders a tradeoff between the queueing
delay bound and the optimality of operational cost achieved
by our algorithm, which will be analyzed in Sec. IV.

B. Designing Dynamic Algorithm

Next we design a dynamic algorithm which stabilizes all
kinds of queues modeled above, and solves optimization (3).

Let Θ(/) = [Q(/),R(/),D(/)] be the vector of all queues
in the system. Define our Lyapunov function as

5(Θ(")) =
1
2

∑

!∈#

∑

"∈$

[(!(!)
" ("))2 + (3(!)

" ("))2] +
1
2
(2("))2. (12)

The one-slot conditional Lyapunov drift is
Δ(Θ(")) = !{5(Θ("+ 1))− 5(Θ("))∣Θ(")}.

According to the drift-plus-penalty framework in Lyapunov
optimization theory (Chapter 5 in [14]), simultaneously min-
imizing the upper bound of the “penalty” (i.e., the time-
averaged operational cost in (3) in our case) and stabilizing
queues can be achieved by minimizing the upper bound of the
following term in each time slot:

Δ(Θ(")) + 6 *("),

where ? is a non-negative parameter chosen by the VoD
service provider, denoting a tradeoff between the operational
cost and the streaming delays, which will be discussed in
Sec. IV. We can derive the following inequality (detailed
steps are included in our technical report [21]):

Δ(Θ(")) + 6 *(")

≤ 7 −
∑

!∈#

∑

"∈$

#(!)" (")[!(!)
" (") + (1− .")2(")

+1{*(!)
" (+)>0}3

(!)
" (")− 8(!)6 ℎ]−

∑

!∈#

∑

"∈$

∑

#∈"

$(!)"# (")

[!(!)
" (") + (1− /"#)2(") + 1{*(!)

" (+)>0}3
(!)
" (")− 6 8(!):#]

+6
∑

!∈#

∑

#∈"

8(!)[-(!)# (");# + [-(!)# (")− -(!)# ("− 1)]+∣<(!)∣=#]

+
∑

!∈#

∑

"∈$

!(!)
" (")

∑

$∈'

&(!,$)
" (")

+
∑

!∈#

∑

"∈$

3(!)
" (")[1{*(!)

" (+)>0}4
(!)
" − 1{*(!)

" =0},'()],

(13)

where

7 =
1
2
∣%∣∣$∣[>2

'() + 42'() + 2(+ + ∣'∣,'())
2]

+
1
2
(∣%∣∣$∣∣'∣,'()/'() + +.'())

2 +
1
2
12(∣%∣∣$∣∣'∣,'() + +)2

is a constant, %&'( = max{%"∣& ∈ $}, '&'( = max{'"#∣& ∈
$, ( ∈ %}, and =&'( = max{=(!)" ∣& ∈ $, ! ∈ #}.

By minimizing the right-hand-side of inequality (13), we
are able to minimize the upper bound of Δ(Θ(/)) + ? 7(/),
and thus the upper bound of 7(/).

To do that, we first simplify the notation by defining

?(!)
" (") = !(!)

" (") + 1{*(!)
" (+)>0}3

(!)
" (")− 6 8(!)ℎ+ (1− .")2("),

@(!)
"# (") = !(!)

" (") + 1{*(!)
" (+)>0}3

(!)
" (")− 6 8(!):# + (1− /"#)2("),

A(!)
# (") = 6 8(!)(;# + 1{-(!)

# (+−1)=0}∣<
(!)∣=#),

all of which are constants in time slot /.
Since

∑
!∈#

∑
"∈$ !(!)

" (")
∑

$∈' &(!,$)
" (") +∑

!∈#
∑

"∈$ 3(!)
" (")[1{*(!)

" (+)>0}4
(!)
" − 1{*(!)

" =0},'()] is
constant in each time slot, minimizing the right-hand-side of
(13) is equivalent to:

max B (") =
∑

!∈#

∑

"∈$

#(!)" (")?(!)
" (")+

∑

!∈#

∑

"∈$

∑

#∈"

$(!)"# (")@(!)
"# (")−

∑

!∈#

∑

#∈"

A(!)
# (")-(!)# (") (14)

subject to: constraints (4) (5) (6) (8) (9).

This problem is an integer linear program, which can be
solved by optimization tool kits such as GLPK [22].

In summary, the flow of our dynamic algorithm, carried
out by the control center, is as follows: The control center
maintains a table of video replication information, with entries
4(!)# , ∀( ∈ %, ! ∈ # , which are initialized to be 0 at the
beginning. In each time slot, it enqueues received requests
for chunks of video ! originated from region & to request
queue 3(!)

" , ∀& ∈ $, ! ∈ # . Virtual queues < and >(!)
" ’s

are maintained simply as counters. By observing the queue
states Θ(/) and request arrival rates 0(!,%)" (/), ∀& ∈ $, ∀@ ∈
#, ∀1 ∈ "(!), the control center solves optimization (14) to
calculate the optimal video replication strategies 4(!)# (/), ∀( ∈
%, ! ∈ # , and request dispatching strategies 5(!)" (/) and
((!)"# (/), ∀& ∈ $, ( ∈ %, ! ∈ # . The control center then signals
the on-premise servers and data centers to replicate video
and/or upload chunks accordingly.

IV. ANALYSIS ON COST AND DELAYS

We next analyze the queueing delay bound and the optimal-
ity of operational cost achieved by our dynamic algorithm, as
well as the tradeoff between operational cost minimization and
the delay bound. Due to the space limit, detailed proofs to all
theorems are included in our technical report [21].
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A. Bound of Queueing Delay

Theorem 1: (Bound of Queue Length) Define

!(!)
"

'()
= 6 8(!)(;#̃ + ∣<(!)∣=#̃ + :#̃) +>'(), (15)

where
$̃ = argmin#{8

(!)(;# + ∣<(!)∣=# + :#)∣1− /"# > 0, ∀$ ∈ '}. (16)

We have 3(!)
" (/) ≤ 3(!)

"
&'(

, ∀& ∈ $, ∀! ∈ #, ∀/.
Theorem 2: (Bounded Queueing Delay): The queueing de-

lay in each request queue 3(!)
" , ∀& ∈ $, ∀! ∈ # , is bounded

by
D (!)

" = ⌈6 8(!)(;#̃ + ∣<(!)∣=#̃ + :#̃) +!(!)
"

'()

4(!)"

⌉,

where (̃ is defined in (16).

B. Optimality against the T-Slot Lookahead Mechanism

Since request arrival rates are arbitrary in our system, it
is difficult to find the global cost minimum, with which to
compare the time-averaged cost achieved by our dynamic
algorithm. Therefore, we compare with a local optimum,
which is the optimal (objective function) value of a similar cost
minimization problem within known information (e.g., request
arrivals) for A time slots into the future, i.e., a T-slot lookahead
mechanism [14]. In the T-slot lookahead mechanism, time is
divided into successive frames, each consisting of A time slots.
Denote each frame as B+ = {CA, CA + 1, . . . , CA + A − 1},
where C = 0, 1, . . .. In each time frame, consider the following
optimization problem over variables ((!)"# (/), 5

(!)
" (/), 4(!)# (/),

∀& ∈ $, ∀! ∈ #, ∀( ∈ %, / ∈ B+:

min
1
E

./+/−1∑

+=./

*(") (17)

subject to:
∑

!∈#

∑

"∈$

#(!)" (") ≤ +, ∀" ∈ B.,

0 ≤ $(!)"# (") ≤ ,'()-
(!)
# ("), ∀' ∈ $, $ ∈ ', ( ∈ %, " ∈ B.,

#(!)" (") +
∑

#∈"

$(!)"# (") ≤ !(!)
" ("), ∀( ∈ %, ' ∈ $, " ∈ B.,

./+/−1∑

+=./

∑

"∈$

∑

!∈#

(
∑

#∈"

$(!)"# (")/"# + #(!)" (").")

< 1
./+/−1∑

+=./

∑

"∈$

∑

!∈#

(
∑

#∈"

$(!)"# (") + #(!)" (")),

./+/−1∑

+=./

[
∑

$∈%(!)

&(!,$)
" (")− #(!)" (")−

∑

#∈"

$(!)"# (")] ≤ 0,

∀' ∈ $, ( ∈ %,

#(!)" (") ≥ 0, ∀' ∈ $, ( ∈ %, " ∈ B.,

-(!)# (") ∈ {0, 1}, ( ∈ %, $ ∈ ', " ∈ B..

We then have the following result.
Theorem 3: (Optimality of Cost Minimization) Let 7̂+ de-

note the optimal objective function value in the T-slot Looka-
head problem (17) in time frame B+. The minimum operational
cost in time slot / derived by our algorithm is 7(/). In the first
DA time slots, where D is a constant. We have

1
5E

0/−1∑

+=0

*(") ≤ 1
5

0−1∑

.=0

*̂. +
7E
6

, (18)

i.e., our algorithm achieves a time-averaged cost within con-
stant gap ,)

- from that by assuming full knowledge of request
arrivals in the T slots in the future.

C. Tradeoff between Operational Cost and QoS

Theorems 2 and 3 show that when ? increases, worst-case
queueing delay E (!)

" increases, while the gap between the
operational cost achieved by our dynamic algorithm and that of
the T-Slot lookahead mechanism shrinks. The pre-set constant
=(!)" has a similar effect: When =(!)" increases, the worst-case
queueing delay E (!)

" decreases, but F increases such that the
gap to optimality increases.

V. PERFORMANCE EVALUATION

We evaluate our dynamic algorithm with extensive sim-
ulations under realistic settings. There are 100 regions and
1000 videos in the VoD system. The length of videos follows
a uniform distribution within range [1800, 3600] (seconds).
The playback bitrate of each video is 400 Kbps. Each chunk
corresponds to 60 seconds of video playback. Users in each
region join the VoD system following Poission arrivals; the
average inter-arrival times of Poission arrival processes in dif-
ferent regions are uniformly distributed within range [1.2, 2.4]
(seconds). User online time follows an exponential distribution
with the mean of 30 minutes [23]. The probabilities that a user
requests different videos are proportional to the popularity of
the videos, which follows a Zipf-like distribution. Each user
issues a random-seek VCR command periodically, with inter-
command time following an exponential distribution with a
5-minute mean. The on-premise servers can serve at most
1000 requests in one time slot, and charges $1.2× 10−10 for
uploading one byte.

There are 100 cloud data centers (each in one region). The
charges by the cloud service are extracted from real-world
settings [19]. The storage cost is $2 × 10−13 per byte per
hour in each data center. The cost of uploading from a data
center follows a uniform distribution within range [$0.96 ×
10−10, $1.44×10−10] per byte. The cost of copying data from
the on-premise servers to a data center is $1.2×10−10 per byte.
The maximum number of requests dispatched from a request
queue to a data center in each time slot, i.e., ;&'(, is 24. The
round-trip delay between users in a region and the on-premise
servers, or between users in a region and a data center, follows
a uniform distribution within range [0.005, 0.025] (seconds).
Especially, the round-trip delay within the same region is set
to '## = 0.005 seconds for all ( ∈ %. The upper bound of
round-trip delay is set as : = 0.015 seconds. The length of a
time slot in running our dynamic algorithm is 10 seconds.

Each =(!)" is set proportional to ? #(!)(*#̃+ ∣"(!)∣,#̃++#̃)+

3(!)
"

&'(
where (̃ and 3(!)

"
&'(

are defined in (16) and (15),
respectively. In this way, the queueing delay bounds E (!)

" ’s
of the request queues are similar to each other. The mean of
the parameter set {=(!)" ∣∀& ∈ $, ∀! ∈ #}, denoted by =, has a
default value of 1. The default value of ? is 50000.
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Fig. 2. Comparison of operational cost between our dynamic algorithm and
a heuristic scheduling algorithm.
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Fig. 3. Operational cost at different
values of < .
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Fig. 4. Playback smoothness at
different values of < .
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Fig. 5. Operational cost at different
values of 6.
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Fig. 6. Playback smoothness at
different values of 6.

A. Cost Optimality
We compare our dynamic algorithm with a simpler schedul-

ing algorithm, that processes all requests in the time slot
when they arrive without buffering in queues, and decides
video replication and request distribution by solving a one-
time optimization similar to (3) in this time slot (instead of
calculating over-time average of the involved quantities). Fig. 2
shows the costs incurred by both algorithms under the same
settings. We observe that our dynamic algorithm outperforms
the heuristic algorithm at all times.
B. Tradeoff between Operational Cost and QoS

1) Impact of ? : Fig. 3 shows that when ? increases, the
operational cost becomes smaller. In Fig. 4, the playback
smoothness is evaluated as the percentage of chunks down-
loaded before their respective playback deadlines in the entire
system. When the streaming delay is smaller, more chunks can
be downloaded by the users in time, so that the playback is
more smooth. With the increase of ? , the average streaming
delay per request (queueing delay+round-trip delay) increases,
and thus the playback is less smooth. These figures clearly
show a tradeoff in ? ’s setting. Setting ? = 50000 can result
in a good trade-off between cost optimality and the QoS.

2) Impact of =(!)" : In Fig. 5 and Fig. 6, we vary the
value of =, and observe that when its value increases, the
operational cost increases while the playback smoothness
improves. Therefore, = also renders a tradeoff between cost
optimality and service quality. When = is larger than 1, the
marginal increase of playback smoothness is small while the
cost increase is significant. Therefore, = ∈ [0.8, 1.2] would be
a good option in the algorithm.

VI. CONCLUSION

This paper investigates optimal deployment of VoD services
on a hybrid cloud, consisting of on-premise servers and public

geo-distributed cloud data centers. A dynamic algorithm is
proposed based on Lyapunov optimization theory, to replicate
videos in the hybrid cloud and to distribute user requests,
which minimizes the long-run operational cost of the VoD ser-
vice provider under service quality constraints. With rigorous
theoretical analysis, we show that our algorithm approaches
the optimality achieved by a mechanism with known informa-
tion in the future A time slots by a small constant gap, no
matter what the request arrival pattern is. Simulations further
verify its performance under realistic settings. In our ongoing
work, we are implementing a prototype VoD system on real-
world cloud platforms based on the algorithm.
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