
Title Epidemic forwarding in mobile social networks

Author(s) Sun, H; Wu, C

Citation
The 2012 IEEE International Conference on Communications
(ICC), Ottawa, Canada, 10-15 June 2012. In IEEE International
Conference on Communications, 2012, p. 1-5

Issued Date 2012

URL http://hdl.handle.net/10722/160085

Rights IEEE International Conference on Communications. Copyright ©
IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37980137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

Epidemic Forwarding in Mobile Social Networks
Hongxian Sun, Chuan Wu

Department of Computer Science, The University of Hong Kong
Email: {hxsun,cwu}@cs.hku.hk

Abstract— Recent years have witnessed the prosperity of mobile
social networks, where various information is shared among
mobile users through their opportunistic contacts. To investigate
efficiency of information dissemination in wireless networks, epi-
demic models have been employed to study message forwarding
delays, presuming message delivery whenever an opportunistic
contact occurs. A practical concern is typically neglected, that one
mobile user may only be willing to pass information onto others
with social ties, rather than anyone upon contact. Under such
a constraint, information dissemination may behave differently,
according to the pattern of social ties that exist in the network.
In this paper, we model social-aware epidemic forwarding in
mobile social networks using mean-field equations, and carefully
study the end-to-end unicast message propagation delays under
different levels of social ties among users. Both cases of limited
and unlimited message validity are considered in our models, i.e.,
whether relay nodes may delete a message after carrying it for
some finite time T or never. Through careful theoretical analysis
and empirical studies, we made a number of intriguing obser-
vations: First, the topology of social relation graphs significantly
influences message forwarding delays, i.e., the more skewed the
social relationship distribution is, the larger delay it results in.
Second, the average delivery delay remains fairly stable with
the growth of system scale, presenting a sharp contrast with the
case without social awareness. Third, we observe that with a
moderate choice of T , message delivery can achieve a successful
ratio of almost 100% with an expected delay very close to the
case of unlimited validity, signifying that a good tradeoff can
be achieved between end-to-end message delivery efficiency and
energy/storage overhead at the relay nodes in a network. All these
provide useful guidance for efficient information dissemination
protocol design in practical mobile social networks.

I. INTRODUCTION

With the advent of mobile technologies, various mobile
social networks have emerged, which enable direct exchange
of data among mobile users when they are in physical proxim-
ity, including pictures and news [1]. It is an interesting topic
to investigate the delay of message propagation in a mobile
social network, as an in-depth understanding would give useful
insights to guide efficient information dissemination protocol
design in practice.

Various epidemic models have been employed to study
message forwarding delays in opportunistic wireless networks
[2], [3], [4], where message delivery occurs whenever there
is an opportunistic contact between two users. Groenevelt et
al. [2] and Zhang et al. [3] show that the end-to-end unicast
delay scales as lnN

N using Markovian models, where N is
the size of the network. Under the assumption that a message
can flood over a connected component of a network instanta-
neously, Kong et al. [4] study with arguments from percolation
theory the asymptotic behavior of unicast delay with respect
to the initial Euclidian distances between the source and the

destination in a large-scale mobile wireless network. Their
conclusions are: (1) if the network is supercritical (i.e., the
density of nodes is high such that a giant component of a
size proportional to the network size is guaranteed to exist
with high probability), the delay scales sublinearly with the
distance; (2) when the network is subcritical (i.e., no giant
component exists with high probability), the delay scales
linearly with the distance.

These existing work have largely ignored a practical concern
in real-world mobile social networks, that one mobile user may
only be willing to pass information onto others with social
ties, rather than anyone upon contact. Under such a constraint,
epidemic information dissemination may behave differently,
according to the pattern of social ties that exists in the network.
In particular, when no social awareness is present, all possi-
ble transmissions among nodes constitute a complete graph,
while when social awareness is present, a scale-free topology
is formed. There is a limited amount of work concerning
the temporal behavior of dynamics in scale-free networks.
Barthélemy et al. [5] demonstrate that epidemics pervade in
scale-free networks in a precise hierarchical fashion, from
higher-degree nodes to lower-degree ones. However, to the
best of our knowledge, no results have been obtained in terms
of the end-end message delivery delay in such a topology.

In this paper, we model unicast epidemic message forward-
ing in a mobile social network, where information is only
shared among socially connected users upon their contacts.
Such a social-aware epidemic forwarding process is modeled
using mean-field equations, and the end-to-end message prop-
agation delays are carefully studied under different levels of
social ties among the users. We consider both cases of limited
and unlimited message validity in our models, i.e., whether
nodes may delete a message after carrying it for some finite
time T or never.

Through careful theoretical analysis and empirical studies,
we discover that the constraint of social awareness can signifi-
cantly increase the average delay of unicast message deliveries,
which increases with the skewness of the social tie distribution
among users. On the other hand, the average unicast delay
changes little with the increase of network size, which is quite
different from the case without social awareness. Third, we
observe that with a moderate value of T , message delivery can
achieve a successful ratio of almost 100% with an expected
delay very close to the case of unlimited validity.

The remainder of the paper is organized as follows. We
present system overview in Sec. II, and model social-aware
epidemic forwarding under unlimited and limited message
validity in Sec. III and Sec. IV, respectively. Sec. V presents
simulation results and Sec. VI concludes the paper.
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II. SYSTEM MODEL AND ASSUMPTIONS

We consider a mobile social network with users
n1, n2, ..., nN moving around all the time in a region A.
Message delivery occurs from one node to another when
they encounter and are socially connected with each other.
The target is to derive the expected delay of unicast message
delivery E[Td], for one message to be passed from a randomly
chosen source node ns to a randomly chosen destination nd

via other nodes as relays.

A. Social Graph

A social graph FN (V,E) is defined to represent social
ties among the users, with V = {n1, n2, ..., nN}, and a link
(ni, nj) ∈ E exists if user ni is socially connected with user
nj , e.g., friends, relatives, etc. The two nodes are referred to
as social friends or friends for simplicity hereinafter. Existing
studies have shown that the social graph among people has a
scale-free structure [6]. We therefore use a generic power-law
model to describe the degree distribution of FN :

P (k) =

{
0, k < m,
C(m, γ)k−γ , m ≤ k < N.

Here P (k) is the probability that a node has degree k. m is the
smallest degree of all nodes in the network, i.e., the smallest
possible number of social ties for a user. If m > 1, FN is
guaranteed to be connected with probability 1 [7]. γ represents
the skewness of the degree distribution: the larger γ is, the
more skewed the distribution is. C(m, γ) is the normalization
constant. We denote the expectation of the degree distribution
as ⟨k⟩ =

∑N−1
k=m kP (k).

Mobile social networks in different scenes can be described
by different values of γ and m. For instance, among people
on campuses or in office buildings, social ties are stronger,
and the social graph has a large m and a small γ. On the
other hand, in some other public places like cinemas or cafes,
usually one is acquainted with few people around, and the
social graph resumes a small m but a large γ.

Similar to most existing analytical studies on scale-free
topologies [7], [5], we ignore potential correlation of degrees
among users in our models. This renders significant simplicity
in analytical modeling.
B. Mobility Model

Human mobility patterns are very sophisticated and can
not be captured well by simple mobility models like Ran-
dom Walk. These simple models typically correspond to
an exponentially distributed inter-contact time [2]. However,
existing empirical studies report that the inter-contact time of
human beings generally follows some power law[8]. But using
power law distribution makes the computation of delivery
delay extremely difficult. Besides, [9] demonstrates with real
traces that exponential decay is still evident[9]. To preserve
mathematical tractability and simplify the problem, we assume
that the inter-contact time of any pair of nodes is a random
variable following exponential distribution with rate λ.

C. End-to-End Message Delivery Delay

Nodes ni and nj are connected at time t if they are socially
connected and within the transmission range of the respective

TABLE I.
NOTATIONS

N the number of users in the mobile social network
λ inter-contact rate between user pairs
P (k) power-law degree distribution function of social graph
γ parameter denoting skewness of the degree distribution
m the smallest possible number of social ties per user
C(m, γ) normalization constant in the degree distribution
⟨k⟩ expected node degree in social graph FN (V,E)

i(k, t) percentage of ignorants of social degree k at time t,
i(t) =

∑N−1
k=m i(k, t)

s(k, t) percentage of spreaders of social degree k at time t,
s(t) =

∑N−1
k=m s(k, t)

θ(t) (or θ(k, t)) probability that a friend of a given ignorant is a spreader
α(t) auxiliary function, α(t) =

∫ t
0 θ(x)dx

e(k, t) percentage of timed-out nodes of social degree k at time t,
e(t) =

∑N−1
k=m e(k, t)

E[Td] the expected end-to-end unicast delay
T the timeout value

E[Te]
expected end-to-end delay of successful deliveries

delivery ratio

mobile devices at that moment. Denote the set of connections
at time t by V (t), V (t) ⊆ V . Now and then users with social
ties meet and the message is gradually propagated from the
source to the destination. We next formally define the message
delivery process and the unicast delivery delay.

Definition 2.1: An end-to-end delivery is a spatial-temporal
path of the message {nt0 , nt1 , ..., ntf } where nt0 = ns, ntf =
nd, (nti , nt(i+1)) ∈ V (ti+1). The end-to-end message delivery
delay is Td = tf − t0.

The expected delay E[Td] that we investigate measures
message dissemination efficiency in a given mobile social
network. In the message propagation process, nodes holding
the message are referred to as spreaders, and the others with-
out the message are ignorants. Table I summarizes important
notations to appear in our models, for ease of reference.

III. MODEL SOCIAL-AWARE EPIDEMIC FORWARDING

We next develop mean-field equations [5] to model epidem-
ic message forwarding in a mobile social network. We assume
that the users will always retain the received message without
a message expiration deadline here, and will analyze the case
with message expiration in the next section.

The key idea is to classify nodes according to their degrees
and compute the expected proportional decrement of ignorants
of degree k (in the social graph) in a short interval [t, t+∆t].
The analysis is in line with that in [5].

Apparently this decrement is proportional to the current
population of degree-k ignorants, as well as the probability
that a degree-k ignorant contacts a spreader during [t, t+∆t],
denoted as P (Ak):

i(k, t+∆t)− i(k, t) = −i(k, t) · P (Ak).

To derive P (Ak), we consider that the number of spreaders
g among all the k neighbors of the node in question is a
binomial random variable g ∼ b(k, θ(k, t)), where θ(k, t) is
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the probability that a friend of an ignorant with k social ties is
a spreader (referred to as event Θ). For each spreader friend,
denote the event that the ignorant node does not meet it in
[t, t + ∆t] as event B. The probability it occurs is simply
P (B) = e−λ∆t. Therefore, we have

P (Ak) = 1− P (Ak)

= 1−
k∑

g=0

(
k

g

)
θ(k, t)g(1− θ(k, t))k−gP (B)g

= 1− (1− (1− P (B))θ(k, t))k.

Based on the above equation, in the limit ∆t → 0, we obtain

di(k, t)

dt
= −i(k, t) lim

∆t→0

P (Ak)

∆t

= −i(k, t) lim
∆t→0

1− (1− (1− P (B))θ(k, t))k

∆t

= −i(k, t)kθ(k, t) lim
∆t→0

1− e−λ∆t

∆t
= −λki(k, t)θ(k, t). (1)

The total population of k-degree nodes is a constant,i.e.,
i(k, t) + s(k, t) = P (k). Because the source of the message
delivery is chosen uniformly at random in the network, the
initial conditions of the equation set above are

i(k, 0) =
N − 1

N
P (k), k = m,m+ 1, ....N − 1.

We refine the description of event Θ by defining a series of
independent events Θk,k′

,m ≤ k′ < N , which means that a
given ignorant of degree k connects to a spreader of degree
k′. Θk,k′

can be further decomposed into two events: (1) a
randomly chosen k′-degree node nj is a spreader, denoted as
Θk,k′

1 (2) a given k-degree ignorant node ni connects to that
nj , denoted as Θk,k′

2 . Thus we have

θ(k, t) =
N−1∑
k′=m

P (Θk,k′
) =

N−1∑
k′=m

P (Θk,k′

1 )P (Θk,k′

2 ). (2)

Under the homogenous mixing hypothesis of mean-field theo-
ry, we approximate the probability that event Θk,k′

1 occurs by
the relative density of degree-k′ spreaders, i.e., P (Θk,k′

1 ) ≈
s(k′,t)
P (k′) . This constitutes an overestimation because of the lo-

cality of epidemic spreading in the social graph FN : Spreaders
are always clustered and this cluster continues expanding over
time. The majority of degree-k ignorants reside apart from the
cluster in the social graph, and therefore the chance for one to
get connected to a degree-k′ spreader is less than the density.

As degree correlations are neglected, the probability of
Θk,k′

2 is independent of the degree of emanating node ni.
The probability that a random edge in the social graph has an
endpoint of degree k′ is k′P (k′)

⟨k⟩ , proportional to k′. However,
we know that during the message forwarding process, there
is at least one spreader among the friends of any spreader –
the one the latter gets the message from. This edge should
be excluded from the calculation of P (Θk,k′

2 ), resulting in an
approximation P (Θk,k′

2 ) ≈ (k′−1)P (k′)
⟨k⟩ .

Therefore, we can derive

θ(k, t) ≈
N−1∑
k′=m

(k′ − 1)P (k′)

⟨k⟩
s(k′, t)

P (k′)
=

N−1∑
k′=m

k′ − 1

⟨k⟩
s(k′, t)

=

N−1∑
k′=m

k′ − 1

⟨k⟩
(P (k′)− i(k′, t)). (3)

Observe that θ(k, t) does not depend on any particular k, but
reflects the density of spreaders in the whole system at time t.
We hereinafter simplify it to θ(t). It presents an overestimation
of P (Θ), which is also verified in our simulations.

Solution complexity of Eqn. set (1) is high. However,
through θ(t), Eqn.s (1) can be collated into only one equation,
which offers an insightful picture of system dynamics and
leads to a much easier numerical solution.

Integrating Eqn. (1) gives:

i(k, t) = i(k, 0)e−λkα(t) =
N − 1

N
P (k)e−λkα(t), (4)

where α(t) =

∫ t

0

θ(x)dx.

According to Eqn. (3), the following holds
dα(t)

dt
= θ(t) =

N−1∑
k=m

k − 1

⟨k⟩
(P (k)− i(k, t))

=
N−1∑
k=m

(k − 1)P (k)

⟨k⟩
(1− N − 1

N
e−λkα(t)). (5)

The initial condition for Eqn. (5) is α(0) = 0.
We precede to derive the cumulative distribution function

(CDF) of Td, D(t). Let S1 be the event that the destination
successfully meets a spreader in dt time and S2k be the event
that the destination of degree k has not successfully received
the message from its k neighbors in dt. The following holds:

D(t+ dt)−D(t) = P (t < Td < t+ dt)

= (1−D(t))P (S1)

= (1−D(t))

N−1∑
k=m

P (deg(dest.) = k)(1− P (S2k))

= (1−D(t))
N−1∑
k=m

P (k)(1− (1− (1− e−λdt)θ(t))k)

≈ (1−D(t))
N−1∑
k=m

kP (k)λθ(t)dt

= (1−D(t))λ⟨k⟩θ(t)dt.

Then we can easily get D(t) = 1 − e−λ⟨k⟩α(t). So the
expected unicast delay is given by

E[Td] =

∫ ∞

0

(1−D(t))dt =

∫ ∞

0

e−λ⟨k⟩α(t)dt. (6)

Based on Eqn. (5) and (6), we have the following theorem:
Theorem 3.1: E[Td] monotonically decreases with m and

increases with γ.
The intuition of the theorem is quite straightforward: more
friends and less skewed distribution of the number of friends
in the mobile social network lead to more efficient propagation
of messages. See a rigorous proof in our technical report [10].
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IV. EPIDEMIC FORWARDING WITH MESSAGE EXPIRATION

Since retaining and forwarding messages consume storage
and battery power, we next investigate a more practical timeout
scenario, where nodes will delete the received message after
it has been kept for time T . We wish to investigate a proper
message timeout threshold, using which a good tradeoff can
be achieved between end-to-end message delivery delay and
power consumption at relay nodes.

Specifically, a node starts a timer which expires after a
threshold T upon the reception of the message. When time
is up, it deletes the local copy and stores an ‘anti-packet’ to
prevent future duplicate receptions. We analyze the end-to-end
message delivery in this case in what follows.

Equations (1) to (5) still hold when t < T . When t >
T , we denote e(k, t) as the proportion of nodes of degree
k, at which the message has expired at time t. Denoting
g(k, t) = θ(t)i(k, t), the following mean-field equations model
the evolution of the system after T :

di(k, t)

dt
= −λkg(k, t)

ds(k, t)

dt
= λk(g(k, t)− g(k, t− T )) (7)

de(k, t)

dt
= λkg(k, t− T ). (8)

Eqn. (7) tells that the current net increment of the number of
spreaders of degree k, i.e., s(k, t), is the difference between the
number of new spreaders at time t and the increment occurred
at time t−T (since at those nodes the message expires at T ).

Integrating both sides of Eqn. (7) leads to:

s(k, t) = λk

∫ t

t−T

i(k, t)θ(t)dt+
P (k)

N
. (9)

From Eqn. (3), (5) and (9), we can easily get (for t > T )

dα(t)

dt
= θ(t) =

N−1∑
k=m

k − 1

⟨k⟩
s(k, t)

=

N−1∑
k=m

(k − 1)P (k)

⟨k⟩
(
1

N
+

N − 1

N
(e−λkα(t−T ) − e−λkα(t))).

Therefore, a complete description of the system is the
following Delay Differential Equation (DDE):

t < 0 : α(t) = 0,

t > T :
dα(t)

dt
=

N−1∑
k=m

(k − 1)P (k)

⟨k⟩
(
1

N
+

N − 1

N
(e−λkα(t−T ) − e−λkα(t))).

(10)

The expression of expected delay in Eqn. (6) is still valid. So
we can derive the expected delay in this case according to
Eqn. (6) and (10). We see that Eqn. (10) degenerates to the
simple case of Eqn. (5) as T → ∞.

We note that in case of message expiration, an end-to-
end unicast message delivery may not always be successful,
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Figure 1. Expected delivery delay
vs. network size.
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Figure 2. Average number of friends
per user vs. N .

as it is possible that the message times out at all spread-
ers before they meet any of their friends. Our mean-field
equations just describe the expected change in the number
of nodes in each category. For instance, Eqn. (7) describes
the expected increment of spreaders of degree k at time t.
Through simulations in Sec. V we find that the expected
delay E[Td] calculated based on Eqn. (6) and (10) can
indicate the following value when message deliveries may
fail. E[Te] =

expected end-to-end delay of successful deliveries
delivery ratio . This metric

can be interpreted as an integrated indication of message
forwarding hardness: its value is larger if the expected delay
among all successful deliveries is larger and/or when the
successful delivery ratio (the number of successful unicast
message deliveries over the total number of unicast message
deliveries) is smaller.

V. EMPIRICAL STUDIES

In this section, we carry out simulations to verify the
epidemic models constructed by our mean-field equations. For
each set of parameters, each experiment is run 5000 times and
the average results are plotted.

A. Delay As a Function of Network Size

Suppose the unit time of the system to be 0.01 hour.
Since existing empirical studies have told that the average
inter-contact time between people is around 5 hours [9], we
choose an inter-contact rate of λ = 0.002 for simulations.
γ is set to be 3, a typical exponent of real life scale-free
networks. In Fig. 1, we set m = 20 and compare the expected
delays derived numerically using our mean-field equations
and those produced experimentally through simulations, in
networks of different sizes. For comparison purpose, we also
plot the delays obtained under epidemic forwarding without
social awareness, based on the analytical results in [2].
We observe that the numerical results from our models are
typically smaller than the observed delays from simulations,
while the gaps are small. This is consistent with our analysis
in Sec. III that Eqn. (3) represents an overestimation of the
probability that a friend of an ignorant is a spreader. We can
also see that the delay under social-aware epidemic forwarding
is typically larger than that obtained without social awareness.

Most importantly, we observe that the delay in social-aware
epidemic forwarding remains quite stable with the increase
of network size. (We also test different configurations of γ
and m and find identical phenomena.)This counter-intuitive
result is in a sharp contrast with the case of no social
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awareness [2]. The steady behavior of delays in social-aware
epidemic forwarding reveals intrinsic characteristics of scale-
free networks. First, the network diameter increases slowly
with N . Cohen et al. [11] demonstrate that with γ > 2,
the diameter d only scales as d ∼ loglogN . Second, average
number of friends ⟨k⟩ only grows slightly even in case of very
large increment of N , as indicated by Fig. 2. Social awareness
limits the sights of nodes to their local neighbors in the social
graph, essentially transforming message dissemination from a
global dynamic into an aggregation of some quite isolated,
local dynamics which are insensitive to the boost of system
scale. However, in the absence of social awareness, nodes gain
much more relay opportunities when the network size grows,
leading to a rapid decrement of delivery delay.

B. Impact of Social Graph Models

We next investigate the expected delay in terms of different
social graph models. In the following experiments, we fix λ =
0.002, N = 100, but vary γ and m respectively.

In Fig. 3, we fix γ to be 3 and vary m from 15 to 25. We
observe that the delay decreases with the increase of m. On
the other hand, in Fig. 4, m is set to 20 and γ varies over
[2.4, 4.4]. We can see the delay increases with the increase of
γ. All these verify our Theorem 3.1 in Sec. III.
C. Impact of Message Timeout Length

We next study the impact on message delivery when dif-
ferent message timeout intervals are employed. In this set of
experiments, we set N = 100,m = 20, γ = 3. We observe
a rough match between the numerical results of Eqn. (6) and
the metric E[Te] =

expected end-to-end delay of successful deliveries
delivery ratio .

In the former experiments, we derive that in the unlimited
validity case, the expected delay E[Td] under the identical
setting is approximately 66, indicated by the two dashed lines.

From Fig. 5, we observe the when the threshold T is larger
than this value of E[Td], E[Te] becomes very close to this

value, which implies a successful delivery ratio of almost
100%. This result tells us that by setting T to be slightly larger
than the expected delay in the unlimited validity case, a good
tradeoff can be achieved between message delivery efficiency
and energy/storage overhead at the relay nodes in a network.

VI. CONCLUSION

Addressing the practical concern that users in mobile so-
cial networks may exchange information with their social
acquaintances exclusively, we investigate in this paper the
delay of unicast message deliveries with social-aware epidemic
forwarding. Using mean-field equations, we investigate the
average delay under different levels of social-ties among
users, considering both cases of limited and unlimited va-
lidity of messages. Results demonstrate that the constraint
of social awareness significantly increases the delay, which
has a positive relationship with the skewness of the social tie
distribution. More importantly, we discover that the average
delay remains almost constant when the size of the network
increases significantly. In the case of limited message validity,
we find that with a moderate choice of T , message delivery can
achieve a successful ratio of almost 100% with an expected
delay very close to the case of unlimited validity. These
results provide good implications for the design of message
dissemination protocols in mobile social networks.
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[5] M. Barthélemy, A. Barrat, R. Pastor-Satorras, and A. Vespig-
nani, “Velocity and Hierarchical Spread of Epidemic Outbreaks
in Scale-Free Networks,” Physical Review Letters, vol. 92,
no. 17, pp. 18–21, Apr. 2004.

[6] A. Rapoport and W. J. Horvath, “A study of a large sociogram,”
Behavioral Science, vol. 6, no. 4, pp. 279–291, 1961.

[7] R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin, “Resilience
of the Internet to Random Breakdowns,” Physical review letters,
vol. 85, no. 21, pp. 4626–8, Nov. 2000.

[8] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. S-
cott, Impact of Human Mobility on the Design of Opportunistic
Forwarding Algorithms. IEEE, 2006.

[9] T. Karagiannis, J.-Y. Le Boudec, and M. Vojnovic, “Power Law
and Exponential Decay of Inter contact Times Between Mobile
Devices,” Proceedings of the 13th annual ACM international
conference on Mobile computing and networking - MobiCom
’07, p. 183, 2007.

[10] H. Sun and C. Wu, “Social-aware information
dissemination in social networks,” Tech. Rep.,
http://www.cs.hku.hk/~hxsun/TR-hxsun-1.pdf,
The University of Hong Kong 2011.

[11] R. Cohen and S. Havlin, “Scale-Free Networks Are Ultrasmall,”
Physical Review Letters, vol. 90, no. 5, pp. 5–8, Feb. 2003.

1445


