
Title A Geometric Framework for Investigating the Multiple Unicast
Network Coding Conjecture

Author(s) Xiahou, T; Wu, C; Huang, J; Li, Z

Citation

The IEEE International Symposium on Network Coding (NetCod
2012), Cambridge, Massachusetts, USA, 29-30 June 2012. In
IEEE International Symposium on Network Coding Proceedings,
2012, p. 37-42

Issued Date 2012

URL http://hdl.handle.net/10722/160083

Rights IEEE International Symposium on Network Coding Proceedings.
Copyright © I E E E.



A Geometric Framework for Investigating the
Multiple Unicast Network Coding Conjecture

Tang Xiahou†, Chuan Wu‡, Jiaqing Huang§, Zongpeng Li†¶
† Department of Computer Science, University of Calgary, Canada
‡ Department of Computer Science, The University of Hong Kong

§ Dept. of Electronics & Information Engineering, Huazhong University of Science and Technology, China
¶ Institute of Network Coding, The Chinese University of Hong Kong

Abstract— The multiple unicast network coding conjecture
states that for multiple unicast sessions in an undirected network,
network coding is equivalent to routing. Simple and intuitive as
it appears, the conjecture has remained open since its proposal
in 2004 [1], [2], and is now a well-known unsolved problem
in the field of network coding. Based on a recently proposed
tool of space information flow [3]–[5], we present a geometric
framework for analyzing the multiple unicast conjecture. The
framework consists of four major steps, in which the conjecture is
transformed from its throughput version to cost version, from the
graph domain to the space domain, and then from high dimension
to 1-D, where it is to be eventually proved. We apply the geometric
framework to derive unified proofs to known results of the
conjecture, as well as new results previously unknown. A possible
proof to the conjecture based on this framework is outlined.

I. INTRODUCTION

Network coding encourages information flows to be
“mixed” in the middle of a network, via means of coding

[6], [7]. While network coding for a single communication

session (unicast, broadcast or multicast) is well understood
by now, the case of multiple sessions (multi-source, multi-

sink) is much harder, with fewer results known [8]. The

case of multiple independent one-to-one unicast sessions is
probably the most basic scenario of the multi-source multi-

sink setting. With routing, multiple unicast is equivalent to
the combinatorial problem of multicommodity flows (MCF)

[9], which is polynomial time computable (assuming fractional

flows are allowed). With network coding, the structure and the
computational complexity of the optimal solution are largely

unknown.

If the network is directed, network coding can outperform

routing for multiple unicast sessions. Fig. 1(A) shows a
network coding solution for two unicast sessions, each with

an end-to-end throughput of 1. If each link direction is fixed,

then we can verify that achieving a throughput of 1 and
1 concurrently is infeasible without network coding. The

potential of throughput improvement due to network coding
is unbounded, for multiple unicast in a directed network [1].

Interestingly, the picture is drastically different in undirected
networks, where the capacity of a link is flexibly sharable in
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Fig. 1. (Example from [1].) Two unicast sessions, from s1 to t1 and from
s2 to t2, each with target rate 1. All link capacities are 1. (A) Solution with
network coding. (B) Solution without network coding.

two opposite directions. No example is known where network
coding makes a difference from routing. Fig. 1(B) shows a

MCF with end-to-end flow rate of 1 and 1, which is feasible

if the underlying network in Fig. 1(A) is undirected. Harvey
et al. [2] and Li and Li [1] conjectured that network coding

is equivalent to routing for multiple unicast in undirected
networks.

Despite a series of research effort devoted [10]–[12] to it,

this fundamental problem in network coding has witnessed

rather limited progresses towards its resolution. Besides “easy”
cases where the cut set bounds can be achieved without

network coding [1], [2], the conjecture has been verified

only in small, fixed networks and their variations, such as
the Okamura-Seymour network [10], [11]. It is worth noting

that such verification already involves new tools such as
information dominance [10], input-output equality and crypto

equality [11].

In 2007, Mitzenmacher et al. compiled a list of seven open

problems in network coding [13], where the multiple unicast
conjecture appears as problem number 1. Chekuri commented

that claiming an equivalence between network coding and

routing for all undirected networks is a “bold conjecture”,
and that the problem of fully understanding network coding

for multiple unicast sessions is still “wild open” ( [14], p51-

55). A growing agreement is that new tools beyond a “simple
blend” of graph theory and information theory are required

for eventually settling the conjecture.

In this work, we apply a recently proposed tool, space
information flow [3]–[5], to develop a geometric framework

for studying the multiple unicast network coding conjecture.
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The framework consists of four main steps. In Step 1, LP
duality is applied for translating the conjecture from its

throughput version to an equivalent cost version. In Step 2,

graph embedding is performed, for translating the cost version
from the network domain to the space domain. Step 3 aims

at dimension reduction that brings the problem from a high
dimension space to 1-D. Step 4 contains a direct proof in 1-

D, where the cut condition on information flow transmission

is readily applicable. Based on the geometric framework, we
derive unified proofs to a number of known results on the

conjecture, as well as new results unknown before.

Step 1 of the framework borrows an existing result from
previous work [1]. Step 2 builds upon recent work on space

information flow, where the optimal transmission of infor-
mation flows, in a geometric space instead of in a fixed

network topology, is studied. Step 3 exploits recent results

developed in the space information flow paradigm and new
results developed in this work. Step 4 is relatively simple,

where the proof is done by taking an integration over the 1-D

space on both sides of the cut condition inequality [4].

We hope that this framework will shed light onto the original

multiple unicast conjecture in network coding, and possibly

other problems in network information flow.

II. MODEL AND PRELIMINARIES

We use G = (V,E) to represent an undirected network,

with |V | = n nodes. Let c ∈ QE
+ be a link capacity vector,

and w ∈ QE
+ be a link cost vector. Here Q+ is the set of

positive rational numbers. For the multiple unicast problem,

the set V contains in particular k sender-receiver pairs, si and
ti, 1 ≤ i ≤ k. The k unicast sessions are independent, and

have a desired throughput vector r = (r1, . . . , rk).

In the max-throughput version of the multiple unicast prob-
lem, we are given a capacitated network (G, c), and wish to

maximize a ratio α ≥ 0, such that the throughput vector αr
can be achieved. Let αNC and αMCF be the maximum values
of α possible, under network coding and routing (MCF),

respectively, then the coding advantage is defined as the ratio
αNC/αMCF .

In the min-cost version of the multiple unicast problem,

we are given a link-weighted network (G,w), with each link
having unlimited capacity. Under routing (MCF), the minimum

cost for achieving a throughput vector r is
∑

i(diri), where di
is the shortest path length between si and ti in G, under cost
vector w. Under network coding, we wish to minimize the

total solution cost
∑

e(w(e)f(e)), such that vector f together

with some code assignment forms a valid network coding
solution for achieving throughput vector r. Assume f∗ is the

underlying flow vector of an optimal network coding solution,
we define the cost advantage of network coding as the ratio∑

i(diri)/
∑

e(w(e)f
∗(e)).

A h-D space with p-norm distance is denoted as lhp . For

two nodes u and v in lhp with coordinates (xu1, . . . , xuh) and

(xv1, . . . , xvh), respectively, the distance between u and v is:

||u, v||p =

(
h∑

i=1

|xui − xvi|p
) 1

p

For the multiple unicast version of the space information flow

problem, we are given k pairs of terminals, (si, ti), 1 ≤ i ≤ k,
in a space lhp . We seek the min-cost solution that can achieve

a throughput vector r, under the rule that relay nodes can

be inserted anywhere for free, and the cost of a one-hop
transmission is proportional to both its flow rate and its

geometric distance. Under routing (MCF), the optimal cost

is
∑

i(||siti||pri). Under network coding, let f∗ be the un-
derlying flow vector of the optimal solution. The cost is then∑

e∈f∗ ||e||pf(e). The cost advantage of network coding here
is
∑

i(||siti||pri)/
∑

e∈f∗(||e||pf∗(e)).

III. THE GEOMETRIC FRAMEWORK

In this section, we describe the geometric framework for
studying the multiple unicast conjecture, including its four

major steps.

A. Step 1. From Throughput to Cost: LP Duality

In their original work where the multiple unicast conjecture
was proposed [1], Li and Li first formulated the conjecture in

the throughput domain, and then applied linear programming

duality to translate it into the cost domain.

The Multiple Unicast Conjecture [1], [2]

Throughput domain: For k independent unicast sessions
in a capacitated undirected network (G, c), a throughput
vector r is feasible with network coding if and only if it is
feasible with routing.
Cost domain: Let f be the underlying flow vector of a
network coding solution for k independent unicast sessions
with throughput vector r, in a cost-weighted undirected
network (G,w). Then

∑
e(w(e)f(e)) ≥

∑
i(diri).

Li and Li proved that the throughput version of the conjec-
ture is equivalent to the cost version, by applying LP duality

in the form of the Japanese Theorem. In particular, their proof
leads to the following result that will be used in this work:

Theorem 3.1. (Li and Li, 2004 [1]) Given an undirected

network G with k pairs of unicast terminals specified, and any
desired throughput vector r, the maximum coding advantage

in (G, c) over all c ∈ QE
+, equals the maximum cost advantage

in (G,w) over all w ∈ QE
+.

Intuitively, the throughput version of the conjecture claims

that network coding cannot help improve throughput, while the
cost version claims that network coding cannot help reduce

transmission cost. In Step 1 of the framework, we apply
Theorem 3.1 to translate the statement to be proven from its

throughput version to cost version.
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B. Step 2. From Network to Space: Graph Embedding

An embedding of a link-weighted graph (G = (V,E), w)
into a space lhp involves assigning a h-D coordinate to each
node u ∈ V . In the multiple unicast problem, we embed either

the closure or the partial closure of G. The closure network
G′ is a complete network defined over the same set of vertices

as in G, such that the cost of a link e = (uv) equals duv , the

shortest path length between u and v in G. The partial closure
of G is G with direct links added between each pair of si and

ti, with cost di.
A closure embedding has distortion β if ||uv||p ≤ d(uv) ≤

β · ||uv||p, ∀u, v ∈ V . A partial closure embedding has distor-
tion β if ||siti||p ≤ di ≤ β||siti||p, and ||e||p ≤ w(e), ∀e ∈ E.

In both cases, the embedding is isometric if β = 1.

Theorem 3.2. For k pairs of unicast sessions in an undirected

network (G,w), with desired throughput vector r, assume G
has a β-distortion closure embedding in a space lhp . If the cost

advantage is 1 after the embedding, then it is upper-bounded
by β before the embedding.

Proof: If there is a network coding solution in G, with an un-

derlying flow vector f satisfying
∑

e(w(e)f(e)) <
∑

i(diri),
then there is such a f ′ in G′, by the definition of a closure
network. The embedding of f ′ leads to a solution in lhp , where∑

e(||e||pf ′(e)) < β ·∑i(||siti||pri) due to the β-distortion

property of the embedding. ��
A similar result holds for partial embedding as well.

Theorem 3.3. For k pairs of unicast sessions in an undirected

network (G,w), assume there is a β-distortion partial closure
embedding of G in a space lhp . If the cost advantage is 1
after the embedding, then it is upper-bounded by β before the

embedding.

The proof of Theorem 3.3 is similar to that of Theorem 3.2,

and is omitted. Informally, when the original link cost vector is

‘nice’, e.g., satisfying the triangular inequality, partial closure
embedding may be preferred. Otherwise, closure embedding

is likely to be more helpful. A special case of Theorem 3.2
and Theorem 3.3 is when β = 1, then cost advantage is 1 after

the embedding only if it is 1 before the embedding.

C. Step 3. From High Dimension to 1-D: Projection

Step 3 of the framework aims to simplify the statement to

be proven from high dimension to 1-D. We introduce a few
results useful for such dimension reduction.

Theorem 3.4. If there exists a configuration of k unicast ses-
sions in ln∞, n > k, where

∑
e(||e||∞fe) <

∑
i(||siti||∞ri),

then there exists a configuration of k unicast sessions in lk∞,
where the same inequality holds.

Proof: For each session i of the k unicast sessions in

the ln∞ space, let’s define the primary coordinate of i as
argmaxj |xsij−xtij |. We project the original multiple unicast

instance from ln∞ to lk∞ by truncating the coordinate of each
node in the following way: keep k coordinates including all

the primary coordinates, dropping other coordinates.

After the projection from ln∞ to lk∞ above, the distance
||si, ti||∞ remains unchanged, for each session i. The distance

between any two nodes u and v cannot increase. Therefore,∑
e(||e||∞fe) does not increase due to the projection, while∑
i(diri) remains unchanged due to the projection, and hence

the theorem is true. ��
By definition, the normed spaces are all equivalent in 1-

D. In particular, there is no difference between l12 and l1∞.

Therefore we drop the norm p from l1p, and simply write l1.

Theorem 3.5. If there exists a configuration of k unicast

sessions in l2∞, where
∑

e(||e||∞fe) <
∑

i(||siti||∞ri), then
there exists a configuration of k unicast sessions in l1, where

the same inequality holds.

Proof: Let �x and �y be two vectors in a space lhp . We define

the projection of �x onto �y as proj(�x, �y) = |�x·�y|
||�y||p , where · is

the inner product operation.

o x
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E
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Fig. 2. Projecting a unit vector in l2∞ to the two diagonal lines. While unit
vectors form a circle in l2

2
, they form a square in l2∞. The total Euclidean

length of the two projected vectors is constant, and is
√
2, since ||OD||2 +

||OE||2 = ||OM ||2.

As shown in Fig. 2, given a unit length vector (
−−→
OC) in l2∞,

the total Euclidean length of the two projected line segments

onto the two diagonal lines (
−−→
OM and

−−→
ON ) is constant (

√
2).

Since
∑

e(||e||∞fe) <
∑

i(diri) by assumption, we have:
∑

e

(fe(proj(e,
−−→

OM) + proj(e,
−−→

ON)))

<
∑

i

(ri(proj(
−→
siti,

−−→

OM) + proj(
−→
siti,

−−→

ON)))

From the inequality above, we can conclude that for at least

one of
−−→
OM and

−−→
ON , the projected network coding solution

still has a smaller total cost than the cost of the projected MCF

solution. ��
Theorem 3.6. (Li and Wu, 2012 [4].) If there exists a

configuration of k unicast sessions in lh2 , for any h ≥ 2,
where

∑
e(||e||2fe) <

∑
i(||siti||2ri), then there exists a

configuration of k unicast sessions in l1, where the same
inequality holds.

Below we formulate a conjecture that generalizes Theorem
3.5 from l2∞ to lh∞ for h ≥ 2. It can also be viewed as

the transformation of Theorem 3.6 from lh2 to lh∞. Later we

show that this conjecture implies the original multiple unicast
network coding conjecture.

Conjecture 3.1. If there exists a configuration of k unicast

sessions in lh∞ for some h ≥ 2, where
∑

e(||e||∞fe) <
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∑
i(||siti||∞ri), then there exists a configuration of k unicast

sessions in l1, where the same inequality holds.

D. Step 4. Prove Conjecture in 1-D: Integrating Cut
Inequality

In a recent work, Li and Wu prove the following equivalence

between network coding and routing in 1-D spaces. Their
approach is to write an inequality for the cut condition at a

point in l1, and then integrate both sides of the inequality over

all points in l1.

Theorem 3.7. (Li and Wu, 2012 [4].) For any configuration
of k unicast sessions in l1, we always have

∑
e(||e||1fe) ≥∑

i(||siti||ri).
IV. UNIFIED PROOFS TO PREVIOUS RESULTS

In this section, we demonstrate the application of the
geometric framework designed in Sec. III, by providing unified

proofs to three known results of the multiple unicast conjec-
ture.

A. The Case of Two Unicast Sessions

Theorem 4.1. For two unicast sessions in an undirected net-
work (G, c), network coding is equivalent to routing (MCF),

i.e., a throughput vector (r1, r2) is feasible with network
coding if and only if it is feasible with routing.

Proof:

Step 1. Transformation: Apply Theorem 3.1 to all network

configurations with k = 2, to translate the statement from its

throughput version to cost version.

Step 2. Embedding: Apply Theorem 3.2, to translate the

statement to be proven from the network information flow
domain to the space information flow domain, from G to

ln∞. A network (G,w) with n nodes has an isometric closure

embedding into ln∞, as reviewed below.
Let u and v be two nodes in ln∞, at location (xu1, . . . , xun)

and (xv1, . . . , xvn), respectively. The ∞-norm distance, or

Chebyshev distance, between u and v is:

||u, v||∞ = lim
p→∞

(
n∑

i=1

|xui − xvi|p
) 1

p

= max
i
|xui − xvi|

We number the nodes in G and hence G′ as u1, u2, . . .,
un. We can embed each node ui, 1 ≤ i ≤ n by assigning
it the coordinates (xi1 = di1, xi2 = di2, . . . , xii = dii =
0, . . . , xi,n = di,n), where dij is the shortest path length

between ui and uj in G. After such an embedding, we can
verify that for any 1 ≤ k ≤ n, |dik − djk| ≤ |dij | due to

the triangular inequality satisfied by cost metric d in G′, and

hence ||ui, uj||∞ = di,j by the definition of ∞-norm distance
above.

Step 3. Projection: Apply Theorem 3.4 to reduce the space
from ln∞ to lk∞ (k = 2), and then apply Theorem 3.5 to further

reduce to l1.

Step 4. 1-D Proof: Apply Theorem 3.7 to prove the statement

in l1, concluding the proof to Theorem 4.1. ��

B. The O(log k) Upper-Bound in The General Case

Theorem 4.2. For k unicast sessions in a undirected capaci-
tated network (G, c) with n vertices, the coding advantage is

upper-bounded by O(log k).

Proof: Step 1. Transformation: Apply Theorem 3.1, to

translate the statement from throughput version to its cost
version.

Step 2. Embedding: We apply Theorem 3.3 to translate the

problem from G to a Euclidean space. It is known that a partial

closure embedding of G with distortion O(log k) is always
possible (e.g., see Section 4 of [15]).

Step 3. Projection: Apply Theorem 3.6 to reduce the space
from lh2 to l1. Here h is the dimension required for the

embedding in Step 2 to be feasible.

Step 4. 1-D Proof: Apply Theorem 3.7 to prove the statement

in l1, concluding the proof to Theorem 4.2. ��

C. Multiple Unicast in Star Networks

A network G is a star network, if there is a (center) node
u in G, such that every other node is directly connected to u
only. It has been previously studied in the literature of network

coding for multiple unicast sessions [16].

Theorem 4.3. For k unicast sessions in an undirected network

(G, c) with a star topology that satisfies the following property,

network coding is equivalent to routing: for each session i, at
least one of si or ti locates at a node that is a source or

destination of at most three sessions.

Proof:

Step 1. Transformation: Apply Theorem 3.1 to undirected
star networks, to translate the statement from throughput

version to its cost version.

Step 2. Embedding: We apply Theorem 3.3 to transform the

problem from G to l2∞. We show a partial closure embedding
of the star network (G,w) into l2∞, with β = 1, guaranteeing

the distance between every pair of si and ti remains unchanged

during the embedding

2 s3t4

y

x

t1

（a） （b）

1

2
1

2

2

1

1

1 2

t1

s1

s3t4

s2t3
s2t3t2s4

t2s4

s1

Fig. 3. Embedding a star network with heterogeneous cost into l2∞. (a)
Original network G. (b) Embedding in l2∞.

As shown in Fig. 3, we first embed the center node to the
origin O in l2∞. The other nodes are distributed on the four

quadrants. For each pair of si and ti, if neither is at center
O, then embed the pair to different quadrants. The distance

between this pair is (dsiO + dtiO), thus the pairwise weights
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remain unchanged. Given the condition in the theorem, such
an isometric embedding into l2∞ is always possible.

Step 3. Projection: Apply Theorem 3.5 to reduce the space

from l2∞ to l1.

Step 4. 1-D Proof: Apply Theorem 3.7 to prove the statement

in l1, concluding the proof to Theorem 4.3. ��
V. NEW RESULTS IN COST DOMAIN

In this section, we further apply the geometric framework
from Sec. III to prove a number of new results.

A. Complete Networks

We prove that in a complete network with uniform cost,
network coding can not outperform routing, for multiple

unicast sessions.

Theorem 5.1. For k unicast sessions in a network (G,w), if

G is a complete graph and w is a uniform cost vector, then

the cost advantage is 1.

Proof:

Step 1. Transformation: In this case, we are proving network

coding is equivalent to coding in the cost domain only. Step
1 in the framework does not apply.

Step 2. Embedding: We describe an isometric closure em-

bedding of the uniform complete network G into ln2 . For
each vertex i, i = 1, 2, · · · , n, let all the coordinates of i be

zero, except that the ith coordinate is
√
2
2 . Consequently, the

distance between any two points is 1 in the target space, and
we obtain an isometric embedding of G. We can then apply

Theorem 3.2 to transform the problem from G to ln2 .

Step 3. Projection: Apply Theorem 3.6 to reduce the space
from ln2 to l1.

Step 4. 1-D Proof: Apply Theorem 3.7 to prove the statement

in l1, concluding the proof to Theorem 5.1. ��
If the complete network (G,w) does not have a uniform

cost in w, then we can similarly prove that the cost advantage

is upper-bounded by the maximum heterogeneity in list costs

maxe1,e2∈Gw(e1)/w(e2). The difference in the proof lies in
Step 3, where we resort to an embedding with a distortion,

instead of an isometric one.

B. Grid Networks

o

x

y

s1

t1

t2s2

Fig. 4. The straightforward embedding of a 2-D square grid network into
l2
2

.

Theorem 5.2. For k pairs of unicast sessions in a 2-D square

grid network (G,w) with uniform cost in w, the cost advantage

is at most
√
2 (Fig. 4). If each pair of si and ti is further on

the same row or column, then cost advantage is 1.

Proof: Step 1. Transformation: Not applicable.

Step 2. Embedding: We perform a partial closure embedding
of the grid network into l22 in the straightforward way. The

distortion is upper-bounded by
√
2. If each pair of si and

ti is on the same horizontal or vertical line, then we obtain
an isometric partial closure embedding. Then we can apply

Theorem 3.3 to transform the problem from G to l22.

Step 3. Projection: Apply Theorem 3.6 to reduce the space

from l22 to l1.

Step 4. 1-D Proof: Apply Theorem 3.7 to prove the statement
in l1, concluding the proof to Theorem 5.2. ��

The result in Theorem 5.2 can be enhanced and generalized

in a number of directions. For instance, if the original network

G is a uniform h-D grid instead of a 2-D grid, for some h ≥ 2,
then we can embed G into lh2 with distortion

√
h, leading to an

upper-bound of
√
h on the cost advantage of network coding

for multiple unicast sessions.

o

x

y

t1

t2

s1

s2

Fig. 5. Embedding a grid network with diagonal links into l2∞.

Furthermore, consider a 2-D uniform grid network G that
further includes diagonal lines within all minimal squares, also

with unit cost. We can embed the partial closure of G into l2∞
in an isometric fashion, as shown in Fig. 5. Here the isometric
embedding is obtained by applying the most straightforward

way of embedding G into a plane. Applying this as Step 2 in
the framework, we can prove that network coding is equivalent

to routing in G.

C. Layered Networks

A layered network is a generalization of a bipartite network

into multi-partite, such that edges exist between neighboring
partite/layers only, as shown in Fig. 6. We prove that, if links

from each layer have uniform cost, then the cost advantage
for multiple unicast is 1. If links from each layer have

heterogeneous costs, the cost advantage can still be bounded

by the degree of intra-layer cost heterogeneity.

In a layered network (G,w), let L be a layer of links. Define

cost heterogeneity of layer L as maxe,e′∈L
w(e)
w(e′) .

Theorem 5.3. For k pairs of unicast sessions in an undirected
layered network (G,w), with each pair of si and ti lying at

different layers, the cost advantage of network coding is 1
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min(d1,..., dL+1)

x

y

d1 d2 dL+1

s1
…

o

level 1 level 2 level L+1

t1

tk

sk

Fig. 6. Embedding a layered network (can be viewed as generalization of
both a bipartite network and a combination network Cn,k) into l2∞. di is
the uniform cost of links in layer i. If link costs in layer i is not uniform,
we scale them to uniform before embedding, losing a factor equivalent to the
cost heterogeneity.

if each layer has uniform link costs. Otherwise, the cost ad-

vantage is upper-bounded by the maximum cost heterogeneity
over all layers.

Proof: Step 1. Transformation: Not applicable.

Step 2. Embedding: We embed the partial closure of the

layered network G into l2∞, as shown in Fig. 6. If each layer
has uniform link cost, then in the embedding, the distance

between any pair of si and ti remains unchanged. The distance

between any other pair of nodes can only decrease. If each
layer has heterogeneous link costs, then the distortion of

the embedding can be upper-bounded by the maximum cost
heterogeneity over all layers. We can then apply Theorem 3.3

to transform the problem from G to l2∞.

Step 3. Projection: Apply Theorem 3.5 to reduce the space

from l2∞ to l1.

Step 4. 1-D Proof: Apply Theorem 3.7 to prove the statement
in l1, concluding the proof to Theorem 5.2. ��
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Fig. 7. A specific layered network and its embedding.

A special case of a layered network, as shown in Fig. 7(a),

was used to demonstrate that network coding can have an

arbitrarily large coding advantage for multiple unicast sessions
[1]. There are k pairs of unicast sessions. Each si is connected

to node A and all the receivers except ti. A is connected
to B. Each receiver ti is connected to B as well as all the

senders except si. If we assume each link has a unit cost

(instead of a unit capacity [1]), Fig. 7(b) depicts the embedding
of this network into l2∞. From Theorem 5.3, we know that

network coding does not make a difference here, contrasting

the arbitrarily large coding advantage under uniform link
capacities.

VI. CONCLUSION

We applied a recently proposed tool, space information flow,
to design a geometric framework for analyzing the multiple

unicast conjecture, a well-known open problem in network

coding. Based on the framework, we obtain unified proofs to
a number of new results as well as existing results on the

multiple unicast conjecture. We conclude by suggesting the

following direction for proving the conjecture itself, based on
the framework:

A possible proof to the multiple unicast conjecture

Step 1. Transformation: Apply Theorem 3.1 to translate

the conjecture from its throughput version to cost version.

Step 2. Embedding: Based on the isometric closure em-

bedding of G into ln∞, apply Theorem 3.3 to transform the
problem from G to ln∞.

Step 3. Projection: Prove and then apply Conjecture 3.1,

to reduce the problem from ln∞ to l1.

Step 4. 1-D Proof: Apply Theorem 3.7 to prove the
statement in l1, concluding the proof to the conjecture.
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