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ON THE QUASI-LIKELIHOOD ESTIMATION FOR RANDOM
COEFFICIENT AUTOREGRESSIONS

L. TRUQUET AND J. YAO

Abstract. We examine the Gaussian Quasi-Maximum Likelihood Estimator (QMLE) for

random coefficient autoregressions. Consistency and asymptotic normality are established

for general random coefficients and general correlation structure between these coefficients

and the noise. In particular, the obtained results apply even if the stationary solution has

infinite absolute mean or infinite variance. Next an application to integer-valued times series

modeling is given which provides a novel alternative for traditional INAR-like models for

these series.

1. Introduction

Random coefficient autoregressions (RCAR) appear in multiple applications such as econo-

metrics, telecommunication or dynamic population models as well as in fundamental mathe-

matics, see [14] for a review. A real or integer-valued p-th order RCAR takes the form

(1) Xt = At,1Xt−1 + · · ·+ At,pXt−p + ξt, t ∈ Z,

where the sequence

(2) Φt = (At,1, . . . , At,p, ξt) , t ∈ Z,

of AR-coefficients and the noise is i.i.d. with possible correlations between the (p + 1) com-

ponents.

The RCAR models, also called random difference equations, have been studied by several

authors ([12, 21, 23] and [18]). Most of their theoretic properties are well known, including

conditions for the existence and the uniqueness of a stationary solution, or for the existence

of moments for the stationary distribution.

In this paper, we address the parameter estimation problem for the stationary RCAR

model (1). A semi-parametric estimation procedure for a real-valued RCAR model (1) has
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been investigated by Basawa & Hwang [5]. More precisely, these authors investigated a

Conditional Least Squares (CLS) as well as a Weighted Least Squares (WLS) estimator of

the parameters θ = (EΦ0, VΦ0) using a three-step procedure.

It turns out that this three-step procedure as well as the conditional least squares can be

avoided by using a Quasi-Maximum Likelihood Estimator (QMLE) as proposed in Aue & al.

[4]. As it is well-known, when Φ0 is Gaussian, the QMLE coincides with the (conditional)

MLE and is then asymptotically more efficient than the least squares procedure studied in

[5]. Aue & al. proved the consistency and the asymptotic normality of the QMLE for model

(1) when p = 1 and the two components of Φ0 = (A0, ξ0) are uncorrelated. In this paper

we extend their result to the general stationary RCAR process, i.e with an arbitrary order p

and possible correlations between the p + 1 components of Φ0. This extension requires some

technical care due to a more complex structure of the conditional variance in the general

framework. As in [4], we show that the QMLE is asymptotically normal provided the fourth

moment of the vector Φ0 is finite. The latter condition does not impose any moment condition

on the marginal X0 (see the remark after Theorem 2). The same kind of results holds for the

well-known GARCH processes (see Mikosch & Straumann [26] where the QMLE estimator is

studied for several ARCH models).

Let us also mention two recent works about the convergence of the QMLE for the non-

stationary RCAR process when p = 1 and the components of ξ0 are uncorrelated. Berkes &

al. [7] examines the asymptotic properties of the QMLE when the RCAR process is assumed

to be non-stationary. In the same context, Aue & Horvátz [3] proves that the QMLE can be

employed regardless whether the underlying process is stationary or not.

The paper is organized as follows. In Section 2, we recall some well known facts about the

stationarity and moments of a general real-valued process (1). We also discuss some specific

constraints for its integer-valued version. In Section 3, we state asymptotic results for the

QMLE of parameter θ. In Section 4, we propose RCAR model as a novel alternative to the

analysis of integer-valued times series. All proofs are postponed to the last section of the

paper.
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2. Preliminaries on RCAR models

We first recall several useful properties of the RCAR model (1). Let (Bt) be the sequence

of companion matrices (of size p× p)

Bt =

(
At,1 At,2 · · · At,p−1 At,p

Ip−1 0

)
,

and ‖B‖ be an operator norm on Mp (the set of real matrices of size p× p) associated to an

arbitrary vector norm ‖y‖ on Rp. Define the

(3) (H0): γ < 0, E log+ ‖B1‖ < ∞, E log+ |ξ1| < ∞ ,

where γ is the top-Lyapounov exponent of the sequence (Bt) defined by

γ = inf
t>0

1
t
E log ‖Bt · · ·B1‖ .

Here for a real number a, a+ = max(a, 0). It is well-known, see e.g. [13] that under (H0),

the RCAR equation (1) has a stationary solution given as the first coordinate of the following

almost surely converging series

(4) Zt = (ξt, 0, . . . , 0)′ +
∞∑

k=1

Bt · · ·Bt−k+1(ξt−k, 0, . . . , 0)′ .

Throughout the paper, A′ denotes the transpose of a matrix A. The condition γ < 0 is also

necessary for an non-anticipative stationary solution as established in [12].

Furthermore, we know conditions for the existence of the moments for the stationary solu-

tion. Define for any positive s > 0, the generalised moment function

(5) k(s) = inf
t>0

(E‖Bt · · ·B1‖s)
1
t .

Then it is known, see for instance [19], that

• there is an interval [0, σ), possibly [0,∞), on which the function k is well defined (note

that k(0) = 1 by definition);

• the function log k(s) is strictly convex on [0, σ) and its derivative from right at zero

equals γ.

• if for some s > 0, k(s) < 1 and E|ξ1|s < ∞, then the stationary solution (Zt) has a

moment of order s, i.e. E‖Zt‖s < ∞ (a fortiori E|Xt|s < ∞).

Note that for positive s ∼ 0, log k(s) ∼ γs. Therefore under (H0), γ < 0, we have

log k(s) < 0 for some small s > 0. Hence E|Xt|s < ∞ once E|ξ1|s < ∞ for small s > 0.
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As for the auto-correlation function ρ(k) = corr(Xt, Xt+k) (assuming the RCAR process

X has a second moment), it is easy to see that the ρ(k) satisfies the following Yule-Walker

equation: for k ∈ Z,

ρ(k + p + 1) = a1ρ(k + p) + · · ·+ apρ(k + 1),

with (a1, . . . , ap) = E(A0,1, . . . , A0,p). In other words, X is an AR(p) process in weak sense.

Let us develop the simplest special case where p = 1. The model (1) takes a simpler form

Xt = AtXt−1 + ξt, t ∈ Z.

The top-Lyapounov exponent simply equals γ = E log |A1|. Under (H0), the stationary

solution becomes

Xt = ξt +
∞∑

k=1

At · · ·At−k+1ξt−k .

If EA2
t < 1 and Eξ2

t < ∞, X thus has a finite variance. Moreover, it is a weak AR(1) process;

in particular its auto-correlation function equals ρ(k) = ak for k ≥ 0 where a = EA0.

3. Parameter estimation

For the estimation problem of the RCAR model (1), let us first rewrite the model in the

form

(6) Xt = At,1Xt−1 + · · ·+ At,pXt−p + ξt = Φ′tYt, t ∈ Z,

where Yt = (Xt−1, . . . , Xt−p, 1)′. The aim is then to estimate the distribution q of the vector

Φ0 of regression coefficients.

As stated in Introduction, we follow a semi-parametric approach as in Basawa & Hwang

[5]. More precisely, no specific form will be assumed on the distribution q, and we are only

interested in estimating the parameters

(7) (m(q), v(q)) , m(q) = EqΦ0, v(q) = VqΦ0,

i.e. the mean and variance parameters of the stochastic coefficients and the noise. Here and

in the sequel, Pq (resp. Eq and Vq) stand for the probability measure of the process (Xt)

(resp. expectation and variance operator) when the probability measure of Φ0 is q.

Let Ft = σ (Xt−j |j ∈ N) be the σ-algebra (or information set) generated by the variables

up to time t. We have

(8) mt(q) = Eq (Xt|Ft−1) = Y ′
t m(q), Vt(q) = Vq (Xt|Ft−1) = Y ′

t v(q)Yt.
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To simplify the notations, we set ` = p+1. Moreover we denote by S` the set of real valued

symmetric semi-definite positive matrices of size `.

In order to state asymptotic results for the QMLE, we define more precisely the parameter

space Θ for the mean vector and variance matrix (m(q), v(q)) of distribution q. To this end we

consider the Cholesky decomposition of a positive semi-definite matrix. If q is the probability

distribution of Φ0, then we can write

(9) v(q) =

(
P 0

w′ 1

)
·
(

D 0

0′ c

)
·
(

P ′ w

0 1

)
,

where w ∈ Rp, c ∈ R+, P is a p×p unit lower-triangular matrix and D is a p×p non-negative

diagonal matrix. Note that PDP ′ is a Cholesky decomposition of Vq (A0,1, . . . , A0,p). Of

course if Vq (A0,1, . . . , A0,p) is non-degenerate, decomposition (9) is unique. Otherwise, it is

well-known (see [28] for quadratic ARCH models) that the decomposition (9) remains unique if

we set to zero the elements of w′ and the sub-diagonal elements of P in columns corresponding

to the zero diagonal elements of D. Note that from (9), the conditional variance becomes

(10) Y ′
0v(q)Y0 = c + (X−1 + v1, . . . , X−p + vp) PDP ′ (X−1 + v1, . . . , X−p + vp)

′ ,

with v = (P ′)−1w. The condition c > 0 ensures that the conditional variance has a positive

lower bound, which is a crucial regularity condition for the application of the QMLE. In

this context the random coefficients A0,1, . . . , A0,p can be constant or more generally linearly

dependent. Note also that we have from (10),

inf
x∈Rp

(x′, 1)v(q)

(
x

1

)
= c = d2

q ,

where dq denotes the L2−distance between ξ0 and the vector subspace generated by the

random coefficients A0,1, . . . , A0,p and the constant 1. Then if c > 0, ξ0 does not write as

a linear combination of the random coefficients and the constant 1, in particular ξ0 is non-

degenerate. The strong consistency of the QMLE will be proved in this general setting.

Let ω, δ, r, s be real numbers such that ω, r, s ≥ 0 and δ > 0. Then we define the following

compact subset K of Rd with d = `(`+3)
2 :

(11) K = [−r, r]` × [−s, s]
p2+p

2 × [ω, s]p × [δ, s].

Now we define an application f : K → Rd as follows. For an element k ∈ K with

k = (m1, . . . , m`, P2,1, . . . , Pp,1, P3,2, . . . , Pp,2, . . . , Pp−1,p, w1, . . . , wp, d1, . . . , dp, c) ,
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let f(k) the vector of Rd defined by

(12) f(k) = (m1, . . . ,m`,M1,1, . . . ,M`,1,M2,2, . . . ,M`,p, . . . , M`,`) ,

with

Mi,j =





min(i,j)∑

h=1

dhPi,hPj,h, if 1 ≤ j ≤ i ≤ p, ( setting Ph,h = 1),

j−1∑

h=1

Pj,hwh + wj , if 1 ≤ j ≤ p and i = `,

c +
p∑

h=1

w2
hdh, if i = j = `.

Observe that for a given k ∈ K, the coefficients Mi,j of f(k) are the lower diagonal elements

of the positive semi-definite matrix v(q) in (9).

Finally, we define the parametric space Θ as follows:

(H1): Θ = f(K) where K = K(r, s, ω, δ) is a compact subset of Rd the form (11) and f is

defined by (12).

Since f is a continuous function, Θ is a compact subset of Rd. Moreover Θ can be trivially

identified to a compact subset of R` × S`, containing the mean vector and covariance matrix

(m(q), v(q)) of the distribution q of the noise Φ. Then we will denote mt(θ) (resp. Vt(θ))

instead of mt(q) (resp. Vt(q)) in (8). If ω > 0 in the definition of Θ, the uniqueness of the

Cholesky decomposition (10) implies that f is one to one and we can identify Θ and K. If

now ω = 0, f is no more one to one and the parameter k is not identifiable. This is why we

consider the parameter θ = f(k) instead of k. The rule of parameter k is to give a suitable

parametrization of a compact subset of covariance matrices.

We are now ready to define the Gaussian quasi-likelihood. Suppose we observe {Xt},
−p + 1 ≤ t ≤ n where Φt has an unknown distribution q0. The Gaussian quasi-likelihood of

(X1, . . . , Xn) is defined, conditionally on {Xt}, −p + 1 ≤ t ≤ 0, as

Ln(X1, . . . , Xn; θ) =
n∏

t=1

{
2πY ′

t v(q)Yt

}− 1
2 exp

{
−(Xt − Y ′

t m(q))2

2Y ′
t v(q)Yt

}
.

This is of course the exact (conditional) likelihood when the noise (Φt) is Gaussian.

The QMLE equals

(13) θ̂n = arg max
θ∈Θ

Ln(X1, . . . , Xn; θ) = arg min
θ∈Θ

Qn(θ),
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where

Qn(θ) =
1
n

n∑

t=1

qt(θ);

qt(θ) =
(Xt − Y ′

t m(q))2

Y ′
t v(q)Yt

+ ln Y ′
t v(q)Yt, t ≥ 1.

Let

Q (θ) = Eq0

(
(X0 − Y ′

0m(q))2

Y ′
0v(q)Y0

+ ln
(
Y ′

0v(q)Y0

)
)

.

Assumption (H1) ensures the existence of a uniform positive lower bound for the con-

ditional variance which will be useful to study the strong consistency of the QMLE. More

precisely, we have from (10)

(14) inf
θ∈Θ

Vt(θ) ≥ δ, a.s.

In order to study the asymptotic normality of the QMLE, it is necessary to assume that the

true value θ0 lies in the interior of Θ. In this case, v(q0) is positive definite and we can give

a more precise lower bound for the conditional variance if we assume the coordinates of Φ0

linearly independent for all θ ∈ Θ. The following lemma will be useful to prove the asymptotic

normality under minimal moment conditions. From now on, we use the Euclidean norm for

vectors or matrices.

Lemma 1. If (H1) is satisfied with ω > 0, then there exists a positive number h such that

inf
θ∈Θ

Vt(θ) ≥ h‖Yt‖2, a.s.

3.1. Consistency of the QMLE θ̂n. The following hypotheses will also be required. In the

sequel, any a.s. convergence refers to the actual distribution Pq0 of the process (Xt).

(H2): Under Pq0 , the top-Lyapounov exponent γ of the sequence (Bt) is negative.

Moreover, Eq0‖Φ0‖2 < ∞.

(H3): For any matrix M and any vector m, we have

(
m′Yt, Y

′
t MYt

)
= 0 a.s ⇒ (m,M) = 0.

Note that (H2) does not imply that Eq0 |X0|2 < ∞. Actually, we know only that for some

small s > 0, Eq0 |X0|s < ∞. On the other hand, Condition (H3) will ensure the identifiability

of the parameter θ0. We will give below a condition on the distribution of Φ0 that implies

(H3).



8 L. TRUQUET AND J. YAO

Theorem 1. Under Assumptions (H1) to (H3), the QMLE θ̂n is strongly consistent:

lim
n→∞ θ̂n = θ0 a.s.

3.2. Asymptotic normality of the QMLE θ̂n. In the following, if f is a real function

defined on Θ, ∇f denotes its gradient and ∇2f its Hessian matrix.

For asymptotic normality, we need the following assumptions:

(H4): Eq0‖Φ0‖4 < ∞ ;

(H5): The actual value θ0 of θ is an interior point of Θ.

Theorem 2. Under Assumptions (H1)- (H5), with ω > 0 in the definition of Θ, the QMLE

θ̂n is asymptotically normal: as n →∞,

√
n(θ̂n − θ0) ⇒ N (0, F−1

0 G0F
−1
0 ) in distribution,

where

F0 = Eq0∇2q0(θ0)

= Eq0

[{V −2
0 ∇V0(∇V0)′}(θ0)

]
+ 2Eq0

[{V −1
0 ∇m0(∇m0)′}(θ0)

]
,

and with Z0 = {X0 −m0(θ0)}/V0(θ0),

G0 = Vq0{∇q0(θ0)}
= Eq0{Z4

0 (∇V0∇V ′
0)(θ0)}

−Eq0

[{V −2
0 ∇V0∇V ′

0}(θ0)
]
+ 4Eq0

[{V −1
0 ∇m0∇m′

0}(θ0)
]

+Eq0

[
Z3

0{∇V0∇m′
0 +∇m0∇V ′

0}(θ0)
]
.

Remark. It is worth noticing that the QMLE is asymptotically normal without assuming

any particular moment condition for the stationary distribution of (Xt). As it was already

mentioned the condition γ < 0 in Assumption (H2) ensures the existence of a number s > 0

such that Eq0 |X0|s < ∞. But s can be arbitrary small even if Assumption (H4) holds. For

example when p = 1, A0 and ξ0 are independent Gaussian random variables with mean 0 and

respective variance σ2 and 1, the condition for stationarity γ < 0 becomes

σ < σ0, σ0 ≈ 2.742.

But it is easy to show that

Eq0 |X0|s ≥ σs 2s/2

√
π

Γ
(

s + 1
2

)
Eq0 |X0|s,
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where Γ denotes the usual Gamma function. Then we deduce that Eq0 |X0|s = ∞ provided

(15) σs 2s/2

√
π

Γ
(

s + 1
2

)
> 1.

For example if σ >
√

π/2 ∼ 1.25, E|X0| = ∞ and when σ > 1.48, E
√
|X0| = ∞. Nevertheless,

Theorems 1 and 2 still apply to these cases.

In the case where p = 1 and Φ0 has uncorrelated components, Theorem 1 and 2 have been

obtained in [4] under similar conditions. In [5], the conditional least squares are first applied

to X for the estimation of the mean of Φ0 and next to X2 for the estimation of its variance;

a WLS estimation is also investigated to improve the efficiency. This three-step procedure

requires the existence of the fourth moment of X and is therefore restrictive. Moreover when

Φ0 is Gaussian, the QMLE coincide with the conditional maximum likelihood estimator and

is thus asymptotically efficient.

In [3], the authors study the RCAR process with p = 1 and A0,1 independent of ξ0.

They show that the QMLE can be employed regardless whether the underlying process is

stationary or not. In fact if the process is non-stationary, the variance of ξ0 cannot be

estimated consistently (see [7]), whereas the QMLE of the mean/variance of A0,1 is shown to

be always consistent and asymptotically normal. Our result for the general RCAR process

with possible correlations between the components of Φ0 do not apply in the non-stationary

case (i.e when the top-Lyapunov exponent is non-negative). However the results given in [7]

and [3] are stated only for the case p = 1 and when A0,1 and ξ0 are uncorrelated and further

investigation is needed to study the general case considered in this paper. This difficult

problem is beyond the scope of this paper.

3.3. A sufficient condition for (H3). In this section, we study the problem of parameter

identification. We first give a sufficient condition on the distribution of Φ0 in order to satisfy

(H3).

(ID) For all real numbers a1, . . . , ap, α, β with aj 6= 0 for j = 1, . . . , p

Pq0




p∑

j=1

ajA0,j + ξ0 ∈ {α, β}

 < 1.

The implications (ID) ⇒ (H3) is an easy consequence of the following lemma.
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Lemma 2. Suppose that (ID) holds. Let {ai,j , bj , c/i, j ∈ {1, . . . , p}} be a family of real

numbers satisfying ai,j = aj,i and such that:
p∑

i,j=1

ai,jXt−iXt−j +
p∑

j=1

bjXt−j + c = 0 a.s.

Then ∀i, j ∈ {1, . . . , p}, ai,j = bj = c = 0.

Remarks.

(1) Assumption (ID1) is satisfied when the coordinates of Φt are independent and when

ξ0 and at least one of the coefficients A0,1, . . . , A0,p are non degenerate. Indeed if (ID)

is not satisfied, set U =
∑p

j=1 ajA0,j with aj 6= 0, and

Pq0 (U + ξ0 ∈ {α, β}) = 1.

We have Vq0(U) =
∑p

j=1 a2
jVq0 (A0,j) > 0 and U is non-degenerate. Now

1 = Pq0 (U + ξ0 ∈ {α, β}) =
∫

Pq0 (u + ξ0 ∈ {α, β}) PU (du),

then P (u + ξ0 ∈ {α, β}) = 1 for PU−almost all u. Then ξ0 has a two points distri-

bution with support {α − u, β − u} for at least two different values of u (since U is

non-degenerate). Since ξ0 is non degenerate, this is not possible and we conclude that

(ID) is always satisfied.

(2) When p = 1, Φ0 uncorrelated and ξ0 centered, assumption (ID) is also used by Aue

et al. [4] in order to prove the asymptotic normality of the QMLE, as well as the

condition

(16) P (A0,1ξ0 = 0) < 1.

In order to prove the strong consistency of the QMLE, Aue et al. [4] used only

the condition (16). We found that condition (ID) is sufficient for the proof of both

consistency and asymptotic normality. Note that none of these assumptions imply the

other. For example when A0,1 has a Bernoulli distribution and ξ0 = (1−A0,1)ξ̃0 (see

model (19)), where ξ̃ is independent of A0,1 and whose support is not concentrated in

one or two points, (ID) is satisfied but (16) is not. On the other hand, if A0,1 and δ

are two independent Bernoulli random variables and ξ0 = (1−A0)+δ, (16) is satisfied

but (ID) not.

One can mention that if the random variables A0,1 and ξ0 are correlated, condition

(16) is no more sufficient for the identification of the parameter θ0. Let us consider the
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case p = 1 and give an example of model (1) such that Assumption (16) is satisfied and

the parameters are not identifiable. Assume that the observed process X is defined

by

Xt = AtXt−1 + ξt

At

ξt -1 0 1

-1 0 1/3 0

0 0 0 1/3

1 1/3 0 0

Note that the support of the stationary distribution is {−1, 2}. More, A0, ξ0 and

1 are linearly independent. We have P (A0,1ξ0 = 0) = 2
3 < 1 and Eq0 (Xt/Ft−1) = 0.

Moreover

Vq0 (Xt|Ft−1) =
2
3
X2

t−1 −
2
3
Xt−1 +

2
3

= 2.

Now for a real number β satisfying −4/9 < β < 0, we denote α = −2β and γ = 2+4β.

In this case there exists a random vector Φ0 with mean 0 and covariance matrix given

by

(
α β

β γ

)
. More,

αX2
t−1 + 2βXt−1 + γ = 2 = Vq0 (Xt/Ft−1) a.s,

and if β 6= −1/3, parameters are different.

4. Application to integer-valued time series

Finding accurate models for integer-valued time series has been an important goal for

statisticians since a long time. Among firstly proposed models are the class of integer-valued

auto-regressions (INAR) introduced in [1, 2, 25]. A general INAR(p) model ([15]) is defined

as solution of

(17) Xt =
p∑

i=1

ai ◦Xt−i + ξt, t ∈ Z,

where ai ∈ (0, 1) satisfying
∑p

i=1 ai < 1 and a◦X denotes the thinning operator of Steutel and

Van Harn [29]. Recall that each of the thinning operations ai ◦Xt−i uses a series of Bernoulli-

valued counting variables assumed independent from each other among different indexes i and
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time epochs t, as well as from the noise ξ = (ξt). Concerning the auto-correlation structure,

INAR(p) models are examples of AR processes in the weak sense, i.e

(18) Xt =
p∑

i=1

aiXt−i + ηt, t ∈ Z,

where η is an uncorrelated process. Then INAR processes have the same auto-correlation

structure as AR processes. INAR processes have possible extensions if we consider other

probability distributions for the thinning operator aj◦ (for example a Poisson distribution

instead of a Bernoulli distribution). Such extensions called generalized integer-valued autore-

gressive processes (GINAR) are considered by Latour [22].

Despite these nice properties, INAR or GINAR models have several limitations. For exam-

ple they can be used to model positive time series only. However, negative-valued times series

occur frequently, for example when one uses Box-Jenkins differences when the original series

of counts display trend or seasonal effects. Moreover, due to the positivity of the regression

coefficients (aj) in (18), the auto-correlations of a GINAR process are always positive. Thus,

time series with negative correlations cannot be treated by these models. Another drawback

relates to the stationary distribution of the process. As shown in [29], the stationary distri-

bution of an INAR(1) process is infinitely divisible; hence distributions such as binomial or

categorical observations are excluded.

Recent attempts have been made to overcome these drawbacks. In Kachour and Yao

[24], the authors propose to replace the thinning operation a ◦X by 〈aX〉, that is the usual

multiplication followed by a rounding step. Their model, named Rounded INAR model

(RINAR), is applicable to negative-valued time series as well as to series having some negative

auto-correlation coefficients. However, due to the discontinuity of the rounding operator, the

CLS estimator proposed by these authors has no regular behaviour. For example, no CLT for

the estimator is obtained yet. On the another hand and in order to weaken the constraining

requirement for the stationary distribution to be infinitely divisible, Biswas and Song [11]

proposed an alternative model using random coefficients. It will be seen below that their

model can be viewed as a particular instance of what we present in this paper.

Here we propose to use the RCAR models as a novel alternative to the traditional INAR/GINAR

models for integer-valued time series. To be specific, we consider the general RCAR model

(1) but with integer-valued random coefficients and noise, i.e. the random vectors

Φt = (At,1, . . . , At,p, ξt) , t ∈ Z,
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are assumed to take their values in Z for all t.

In this case, the condition γ < 0 in (3) holds if P (A0,1 = 0, . . . , A0,p = 0) > 0. Indeed, it is

easy to verify that P (Bp · · ·B1 = 0) > 0 and then E (log ‖Bp . . . B1‖) = −∞ which implies

γ = −∞.

All the properties presented in Sections 2 and 3 for both the model and the QMLE esti-

mator apply equally here. To summarize, the RCAR model (1) with integer-valued random

coefficients and noise has the following properties

• the model can take negative values as well as positive values ;

• it has the same auto-correlation structure than a standard AR(p) model ;

• the stationary solution is not necessarily infinitely divisible;

• under appropriate moment and identifiability conditions, the associated QMLE esti-

mator is strongly consistent and asymptotically normal.

Therefore, this integer-valued RCAR model has overcome the indicated drawbacks of the

INAR/GINAR model, as well as some difficulties of the RINAR model of [24].

4.1. Comparison with a model proposed by Biswas and Song [11]. The integer-

valued AR process proposed in [11] can be presented as follows. Let (δt) be a sequence of

independent and identically distributed random variables with P (δ0 = i) = ai for i = 1, . . . , p

and P (δ0 = `) = 1 −
p∑

i=1

ai, where ai ∈ (0, 1),
p∑

i=1

ai < 1 and ` = p + 1. Then a weak AR

specification discussed in [11] is

(19) Xt =
p∑

i=1

1δt=iXt−i + 1δt=` · ξ̃t, t ∈ Z,

where the sequence ξ̃ is i.i.d and independent of the sequence δ. Note that this process is a

particular instance of the general RCAR(p) model (1), with

Φt = (1δt=1, . . . ,1δt=p,1δt=` · ξ̃t), t ∈ Z.

In particular, the components of Φt are strongly correlated. Furthermore by construction, the

stationary distribution of (19) can have an arbitrary form, since this distribution is exactly

that of the noise ξ̃t. As for a general RCAR process, the model (19) has the same auto-

correlation function than an AR(p) process with autoregression coefficients ai = Eq0At,i =

P(δt = i), i = 1, . . . , p. Since these coefficients are all positive, the underlying auto-correlation

function is less general than for a general AR(p) process or the RCAR processes considered

in this paper. In Section 3, we have studied the parametric estimation of RCAR processes in
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Table 1. Parameters estimates of three fits of a RCAR(1) model for the whole

series, its first and second halves respectively.

a a′ v v′

whole series (1:120) 0.44 1.82 0.12 3.59

first half (1:60) 0.48 1.49 0.06 2.81

second half (61:120) 0.43 2.21 0.11 4.57

a very general setting. Note that the model (19) satisfies the assumptions (H1), (H4) and

(ID) when the support of ξ̃0 contains at least three distinct values.

4.2. An application to real data. The time series in Figure 1 represents the number of

cases of E. Coli (O157:H7) infections observed over a four weeks period starting from January

1990 to December 2000. In total we have 143 observed values ranging from 0 to a maximum

of 29 cases (December 1999)1.

A visual inspection reveals that the maximum value of 29 corresponds to an exceptional

event we might not be able to analyze correctly. Therefor we restrict our attention to the first

120 observations. A first attempt was made to fit a RCAR model for the whole time series.

Despite the fact that the series has a much bigger variance by the end of the period than at

the beginning, the sample ACF and PACF suggest that an AR(1) model is likely possible.

We then fit a RCAR(1) model Xt = AtXt−1 + ξt where (At) and (ξt) are independent.

A closer look at the series also demonstrates that the second half of the series should have

a bigger volatility than the first one. To confirm this, we made two more fits for both halves.

The parameter estimates are displayed in Table 1.

Recall that the conditional variance of Xt equals to vX2
t−1 + v′. For the first half of the

series, the variance parameter estimate v̂ = 0.06 of the random coefficient is indeed non

significant: its standard deviation is estimated to be 0.08. Therefore, a deterministic integer-

valued AR(1) model is better suited to this half where the conditional variances could be a

constant (homoscedasticity). For the second half, we found v̂ = 0.11 which is significantly

non null indicating a possible heteroscedastic behaviour. This agrees with a higher volatility

observed in this half which is also confirmed by a bigger value of the variance parameter v̂′

of 4.57 against 2.81.

1The authors would like to thank Pierre Boivin from the Health and Social Services (Direction of public

health, Department of infectious diseases), in Roberval (Québec) Canada, and Alain Latour from University

of Grenoble (France) who kindly provided the data set.
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Figure 1. Series of E. Coli infections - left panel, from January 1990 to

December 2000 with 143 data points, and its ACF and PACF - right panel.

5. Proofs

Proof of Lemma 1. If q is the distribution of Φ0, then using (8), we have:

Vq (Xt|Xt−1, . . . , Xt−p) ≥ α(q)‖Yt‖2,

where α(q) denotes the smallest eigenvalue of the matrix v(q). From the assumption (H1)

with ω > 0, v(q) is positive definite and we have:

θ = g(q) ∈ Θ ⇒ α(q) > 0.

Let h = inf
g(q)∈Θ

α(q). Since Θ is supposed to be compact, the subset of real matrices {v(q)/g(q) ∈
Θ} is bounded. Moreover from the continuity of the determinant, inf

g(q)∈Θ
det (v(q)) > 0. Then

h is positive number and Lemma 1 follows.¤

Proof of Lemma 2.

• We first prove that for all k ≥ 1, we have P (Xt−1 6= 0, . . . , Xt−k 6= 0) > 0. For k = 1,

the result is obvious since if X0 = 0 a.s then ξ0 = 0 a.s, which is excluded by the

assumption (H1). We use an induction argument. If Pq0 (Xt−1 6= 0, . . . , Xt−k 6= 0) >

0 for an integer k ≥ 1, then

Pq0 (Xt−1 6= 0, . . . , Xt−k−1 6= 0) =
∫

x1,...,xk 6=0
Pq0




p∑

j=1

A0,jxj + ξ0 6= 0


 PX−

t−1
(dx),

where X−
t−1 = (Xt−j)j≥2. Then if Pq0 (Xt−1 6= 0, . . . , Xt−k−1 6= 0) = 0, there exist

x1, . . . , xp ∈ Rp such that Pq0

(∑p
j=1 A0,jxj + ξ0 6= 0

)
= 0. But this contradicts the

assumption (H1), which ensures that dq0 > 0, where dq0 is the L2−distance between
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ξ0 and the vector subspace generated by the random coefficients A0,1, . . . , A0,p and

the constant 1.

• We now prove Lemma 2. Suppose that the assumptions of Lemma 2 hold. For

convenience, we set ai,j = At,j = bj = 0 for t ∈ Z and i, j > p. For k ∈ N∗, we denote

qt,k =
∑

i,j≥k

ai,jXt−iXt−j +
∑

j≥k

bjXt−j + c.

We are going to show that:

(20) qt,k = 0 a.s ⇒ ∀j ≥ k bk = ak,j = 0 and qt,k+1 = 0 a.s.

Then the conclusion of Lemma 2 will follow from a finite induction on {1, . . . , p} and

the equality qt,` = c.

Suppose that qt,k = 0 a.s. Then we have

ak,kX
2
t−k + s

(
X−

t−k

)
Xt−k + z

(
X−

t−k

)
= 0 a.s,

where s
(
X−

t−k

)
= 2

∑
j≥k+1 ak,jXt−j+bk and z

(
X−

t−k

)
= qt,k+1 a.s. Then conditioning

with respect to X−
t−k, we have for PX−

t−k
−almost all x:

ak,k




p∑

j=1

A0,jxj + ξ0




2

+ s(x)




p∑

j=1

A0,jxj + ξ0


 + z(x) = 0, a.s.,

and from the first point of the proof, we can suppose x1, . . . , xp 6= 0. Then if ak,k 6= 0,

there exists α, β such that

P




p∑

j=1

A0,jxj + ξ0 ∈ {α, β}

 = 1,

which contradicts the assumption (ID). We conclude that ak,k = 0 and

s
(
X−

t−k

)



p∑

j=1

A0,jXt−j−k + ξt−k


 + z

(
X−

t−k

)
= 0 a.s.

In this case s
(
X−

t−k

)
= 0 a.s, otherwise there exist x such that the random variable

∑p
j=1 A0,jxj + ξt−k is degenerate which contradicts dq0 > 0. If s

(
X−

t−k

)
= 0 a.s,

we easily deduce ak,j = bk = 0 for j ≥ k + 1. This easily follows by an induction

argument, since the conditional variance is always positive (see 14). We conclude that

qt,k+1 = 0 a.s and the proof is complete.¤
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Proof of Theorem 1. The proof follows the proof of theorem 2.1 in Jeantheau [20] who

proved the consistency of the QMLE for general multivariate ARCH models (see theorem

2.1 of that paper). As in [20], we use the following Theorem which is a straightforward

generalisation of Theorem 1.12 in Pfanzagl (1969) for i.i.d data.

Theorem 3. Let (Yt)t∈Z be a strictly stationary and ergodic process, θ a parameter in Θ a

compact of Rd, and for n ∈ N∗, let Qn be a contrast function such that

Qn(θ) =
1
n

n∑

t=1

f (Yt, . . . , Yt−p; θ) ,

where f is a measurable function with real values and continuous in θ. Suppose that

(1) E infθ∈Θ f (Y0, . . . , Y−p; θ) > −∞.

(2) θ 7→ Ef (Y0, . . . , Y−p; θ) has a unique finite minimum at θ0.

Then, the minimum contrast estimator θ̂n associated to Qn is thus strongly consistent: limn→∞ θ̂n =

θ0 a.s.

We apply Theorem 3 setting f (X0, . . . , X−p; θ) = q0(θ). Obviously f is continuous in θ.

• Using (14), we have infθ∈Θ f (Y0, . . . , Y−p; θ) ≥ ln δ, assumption 1) of Theorem 3 holds

for the process X.

• We next prove that assumption 2) holds. Since Φt is independent of Ft−1 for t ∈ Z,

we have using equation (1):

Eq0

{
(X0 −m0(θ0))2

V0(θ0)
/Ft−1

}
=

V0(θ0) + (m0(θ0)−m0(θ))
2

V0(θ0)
.

Since the last expression is positive and ln (V0(θ)) ≥ ln
(
δ2

)
, the following expression

can be deducted:

(21) Q(θ) = Eq0

(
V0(θ0) + (m0(θ)−m0(θ0))

2

V0(θ)
+ ln (V0(θ))

)
.

Now we prove that Q(θ0) = Eq0(θ0) ∈ R (from the first point we know that Q(θ0) is

well defined and ∈ R ∪ {∞}. Let s > 0 such that E|X0|s < ∞ (s exists by (H2)).

Since V0(θ0) is a polynomial of degree 2 in X−1, . . . , X−p, obviously EV0(θ0)s/2 < ∞.

Then we obtain:

(22) E (lnV0(θ0)) =
2
s
E ln

(
V0(θ0)s/2

)
≤ 2

s
ln EV0(θ0)s/2 < ∞.

From (21) and (22) we conclude that Q(θ0) < ∞.

Now we prove that for θ ∈ Θ, Q(θ) ≥ Q(θ0) and the equality holds only when θ = θ0.
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Since Q(θ0) is finite, the difference Q(θ)−Q(θ0) is well defined for θ ∈ Θ, and we get:

Q(θ)−Q(θ0) = E

(
V0(θ0) + (m0(θ)−m0(θ0))

2

V0(θ)
− ln

(
V0(θ0)
V0(θ)

)
− 1

)

Since
(
x− lnx ≥ 1, ∀x > 0

)
and

(
x− lnx = 1 ⇔ x = 1

)
we derive Q(θ0) ≤ Q(θ) and:

Q(θ) = Q(θ0) ⇒ (m0(θ), V0(θ)) = (m0(θ0), V0(θ0)) a.s

As m0(θ) = m(q)′Y0 and V0(θ) = Y ′
0v(q)Y0, assumption (H3) implies that θ = θ0

which proves that assumption 2) of Theorem 3 holds.

Then the consistency of the QMLE follows from Theorem 3. ¤

Proof of Theorem 2. Let t ∈ Z. In Section 3, qt(θ) has been defined as:

qt(θ) =
(Xt −mt(θ))

2

Vt(θ)
+ lnVt(θ).

So the first and second derivatives are:

∇qt(θ) =
∇Vt(θ)
Vt(θ)

(
1− (Xt −mt(θ))2

Vt(θ)

)
− 2

(Xt −mt(θ))∇mt(θ)
Vt(θ)

(23)

∇2qt(θ) =
1

Vt(θ)2

[
∇Vt(θ)∇Vt(θ)′

(
2
(Xt −mt(θ))2

Vt(θ)
− 1

)

+∇2Vt(θ)

(
1− (Xt −mt(θ))

2

Vt(θ)

)
+ 2(Xt −mt(θ))∇mt(θ)∇Vt(θ)′

+2Vt(θ)∇mt(θ)∇mt(θ)′ − 2Vt(θ)(Xt −mt(θ))∇2mt(θ)

+2 (Xt −mt(θ))∇Vt(θ)∇mt(θ)′
]

Lemmas 3 to 5 give important properties of ∇qt(θ) and ∇2qt(θ). They are required to prove

Theorem 2

Lemma 3. For all θ ∈ Θ, the sequences {∇qt(θ)}t and {∇2qt(θ)}t are ergodic and stationary.

Proof of Lemma 3. From (23), one can see that for suitable measurable functions fθ : R` → Rd

and gθ : R` → Md, where Md denotes the space of square matrices of size d, we have

∇qt(θ) = fθ (Xt, . . . , Xt−p) and ∇2qt(θ) = gθ (Xt, . . . , Xt−p). Then the stationarity and the

ergodicity of these two sequences follows from the ergodicity and stationarity of X.¤
Recall that ‖·‖ is the Euclidean norm on Rd or the matrix norm associated with ‖·‖, as

required.



QMLE FOR RANDOM COEFFICIENT AR 19

Lemma 4. We have:

E ‖∇q0(θ0)‖2 < ∞ and Esup
θ∈Θ

∥∥∇2q0(θ)
∥∥ < ∞.

Proof of Lemma 4. Recall that if P is a polynomial of degree q defined on Rp, then there

exist non-negative constants d0, . . . , dp such that:

|P (X−1, . . . , X−p)| ≤ d0 +
p∑

j=1

dj |X−j |q , a.s.

Proof of the first assertion: E ‖∇q0(θ0)‖2 < ∞.

We have using (23):

(24) ‖∇q0(θ0)‖ ≤ H(θ0) + G(θ0)× (X0 −m0(θ0))
2

V0(θ0)
,

where

H(θ0) = V0(θ0)−2
(‖∇V0(θ0)‖V0(θ0) + ‖∇m0(θ0)‖2V0(θ0)

)
,

G(θ0) =
‖∇V (θ0)‖+ V0(θ0)

V0(θ0)
.

Note that H(θ0) and G(θ0) are two bounded random variables. Indeed by Lemma 1, we have

Vt(θ0) ≥ h‖Yt‖2,

and the numerator of H(θ0) (resp G(θ0)) is a polynomial of degree 4 (resp. 2) in Xt−1, . . . , Xt−p

and the boundedness of H(θ0) and G(θ0) follows easily from the remark stated at the begin-

ning of the proof.

Moreover, as X0 −m0(θ0) = (Φ0 −m(q0))
′ Y0, we have

(X0 −m0(θ0))
2 ≤ ‖Y0‖2 × ‖Φ0 −m(q0)‖2,

which leads to the bound

(25)
(X0 −m0(θ0))

2

V0(θ0)
≤ ‖Φ0 −m(q0)‖2

h
.

Then by assumption (H4), the left hand side of the previous bound is a square integrable

random variable. Thus, as H(θ0) and G(θ0) are bounded, the first assertion follows from the

bound (24).
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Proof of the second assertion: Eq0 supθ∈Θ

∥∥∇2q0(θ)
∥∥ < ∞. The principle is the same than for

the proof of the first assertion. Using the expression (??), assumption H8) and the lower

bound given by Lemma 1, we can bound each term by a random variable not depending on

θ and of the form

P (‖Φt‖)× Q(Y0)
‖Y0‖q

,

where P is a polynomial of degree less than 4, Q is a polynomial of degree q ≤ 4 in

Xt−1, . . . , Xt−p In this case, each random variable of the form Q(Y0)
‖Y0‖q is bounded and the

second assertion follows.¤

Lemma 5. The entries of the column vectors of the differential of the function θ 7→ (m0(θ), V0(θ))

evaluated at θ0 are linearly independent random variables.

Proof of Lemma 5. Suppose there exist constants λ1, . . . , λd such that

d∑

i=1

λi∂im0(θ0) = 0 a.s or
d∑

i=1

λi∂iV0(θ0) = 0 a.s,

where ∂i denotes the partial derivative with respect to the i−th coordinate of θ ∈ Rd. Since

we have:

m0(θ) = m(q)′Y0, and V0(θ) = Y ′
0v(q)Y0,

assumption (H3) ensures that

d∑

i=1

λi∂im(q) = 0 and
d∑

i=1

λi∂iv(q) = 0,

and then λ1 = . . . = λd = 0 which completes the proof.¤

Before giving the demonstration of Theorem 2, let us recall Theorem 4 from [26], which

will be used to derive a uniform law of large numbers.

Theorem 4. Let Θ be a compact set of Rd and (vt)t∈Z a stationary ergodic sequence of random

elements with values in the space of continuous functions C (
Θ, Rk

)
. Then the uniform strong

law of large numbers is implied by

E sup
θ∈Θ

‖v0(θ)‖ < ∞.



QMLE FOR RANDOM COEFFICIENT AR 21

We are now ready to prove Theorem 2.

Proof of Theorem 2. The technique for the proof of this theorem is very classical, we follow

the proof given in [26, Theorem 2.2.1, p. 19]. Since θ ∈ Θ◦, using a Taylor expansion, we get:

0 = ∇Qn(θ̂n) = ∇Qn(θ0) + M̃n · (θ̂n − θ0)

where M̃n is the matrix of the second order derivatives, that is :

M̃n(i, j) = ∂2
ijQn(γi), 1 ≤ i, j ≤ d.

with ‖θ̂n − γi‖ ≤ ‖θ̂n − θ0‖, i = 1, . . . , d. Hence,

√
nQn(θ0) =

√
nM̃n · (θ̂n − θ0)

By Lemma 3,
(∇2qt(θ0)

)
t∈Z is an ergodic stationary sequence. According to Lemma 4,

supθ∈Θ

∥∥∇2q0(θ)
∥∥ is integrable. Then, we can apply Theorem 4 and since θ̂n →n→∞ θ0

a.s, we conclude that M̃n →n→∞ F0 = E∇2qt(θ0) a.s. More, F0 is non-singular. Indeed using

(23), we have:

F0 = E
(
V0(θ0)−2

{∇V0(θ0)∇V0(θ0)′ + 2V0(θ0)∇m0(θ0)∇m0(θ0)′
})

,

and using Lemma 5, it is easily shown that this matrix is positive-definite. More:

√
nQn(θ0) =

1√
n

n∑

t=1

∇qt(θ0) and E (∇qt(θ0)/Ft−1) = 0.

Since by Lemma 4, E ‖∇q0(θ0)‖2 < ∞, the sequence (∇qt(θ0))t is an ergodic stationary Ft-

martingale difference sequence of finite variance. Then by [10, Theorem 23.1, p. 206], we have:
√

nQn(θ0) →n→∞ N (0, G0) in distribution, with G0 = E (∇q0(θ0)∇q0(θ0)′) . Consequently,

we get:
√

n(θ̂n − θ0) →n→∞ N (F−1
0 G0F

−1
0 ).

The expression of G0 follows from straightforward computations using the expression (??).
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[3] Aue, A., Horváth, L. (2010) Quasi-Likelihood estimation in stationary and nonstationary autoregressive

models with random coefficients. To appear in Statistica Sinica.



22 L. TRUQUET AND J. YAO
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[16] Francq, C., Zaköıan, J-M. (2004) Maximum Likelihood Estimation of Pure GARCH and ARMA-GARCH

Processes. Bernoulli, 10, 605-637.
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