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Abstract 

Previous studies of the modulation instability (MI) of continuous waves (CWs) in a 

two-core fiber (TCF) did not consider effects caused by co-propagation of the two 

polarized modes in a TCF that possesses birefringence, such as cross-phase modulation 

(XPM), polarization-mode dispersion (PMD), and polarization-dependent coupling (PDC) 

between the cores. This paper reports an analysis of these effects on the MI by 

considering a linear-birefringence TCF and a circular-birefringence TCF, which feature 

different XPM coefficients. The analysis focuses on the MI of the asymmetric CW states 

in the TCFs, which have no counterparts in single-core fibers. We find that, the 

asymmetric CW state exists when its total power exceeds a threshold (minimum) value, 

which is sensitive to the value of the XPM coefficient. We consider, in particular, a class 

of asymmetric CW states that admit analytical solutions. In the anomalous dispersion 

regime, without taking the PMD and PDC into account, the MI gain spectra of the 

birefringent TCF, if scaled by the threshold power, are almost identical to those of the 

zero-birefringence TCF. However, in the normal dispersion regime, the power-scaled MI 

gain spectra of the birefringent TCFs are distinctly different from their zero-birefringence 

counterparts, and the difference is particularly significant for the circular-birefringence 

TCF, which takes a larger XPM coefficient. On the other hand, the PMD and PDC only 

exert weak effects on the MI gain spectra. We also simulate the nonlinear evolution of the 

MI of the CW inputs in the TCFs and obtain a good agreement with the analytical 

solutions. 
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1. Introduction 

Modulation instability (MI) of plane or continuous waves (CWs) arises in many 

fields of physics, e.g. Bose-Einstein condensates [1, 2], fluid mechanics [3] and optics [4, 

5]. This study focuses on optical fibers, where the dynamics is determined by the 

interplay of dispersive and nonlinear effects, as has been demonstrated in many diverse 

settings [4–9]. The MI is a physically important problem, which is closely related to the 

Fermi-Pasta-Ulam recurrence effect and the formation of solitons [5, 10].  

The MI in a conventional single-core fiber has been studied thoroughly [4–9]. If the 

wave propagation in the fiber is governed by the nonlinear Schrödinger (NLS) equation, 

which takes into account the self-phase modulation (SPM) and the group-velocity 

dispersion (GVD), the MI occurs only in the anomalous dispersion regime [5]. However, 

the MI can also be induced in the normal dispersion regime by other effects, such as 

cross-phase modulation (XPM) in the case of bimodal CWs [11], higher even-order 

dispersion [12], dispersive losses (alias spectral filtering) [13], and birefringence [14–18]. 

The effects of linear birefringence have drawn special attention, as linear birefringence 

can also generate new MI bands in the anomalous dispersion regime.  

This paper addresses the MI in a two-core fiber (TCF), i.e., a fiber that consists of two 

linearly coupled identical parallel cores. The phenomenon of periodic optical power 

transfer between the two cores along a TCF [19] is widely used in many practical 

fiber-optic devices. Various aspects of the MI in a TCF have been studied [20–22]. The 

MI characteristics of the symmetric and antisymmetric CW states in a TCF are 
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qualitatively similar to those in a conventional single-core fiber [20]. On the other hand, 

the spontaneous symmetry breaking in linearly coupled systems gives rise to asymmetric 

CW states in a TCF [23], which makes its MI characteristics qualitatively different from 

those of a single-core fiber [21]. In particular, the dispersion (or wavelength dependence) 

of the coupling coefficient between the two cores can drastically modify the MI bands of 

the asymmetric states in both the anomalous and normal dispersion regimes [22].  

All the previous studies of the MI in a TCF [20–22] ignored potentially significant 

effects caused by co-propagation of the two polarized modes in a TCF that possesses 

birefringence, such as XPM, polarization-mode dispersion (PMD), and 

polarization-dependent coupling (PDC) between the cores. In reality, TCFs, especially the 

recent ones based on photonic-crystal structures [24], can exhibit strong linear 

birefringence. The objective of the present work is to study the effects of birefringence on 

the MI characteristics of a TCF, by considering a linear-birefringence TCF and a 

circular-birefringence TCF. A linear-birefringence TCF, where each core supports two 

orthogonal linearly polarized modes, is just the ordinary TCF used nowadays (see, for 

example, [24]). A circular-birefringence TCF, where each core supports the right- and 

left-circularly polarized modes, is a special fiber that could be fabricated by making the 

two cores rotate around the central axis of the fiber rapidly (e.g., by rapidly spinning the 

fiber preform during the fiber drawing process or by strongly twisting an ordinary TCF) 

[25]. The circular-birefringence TCF features much stronger XPM than the 

linear-birefringence TCF and, therefore, a comparison of their MI characteristics can help 

to highlight the significance of the XPM effects.  
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In this paper, the asymmetric CW states are considered, rather than the 

symmetric/antisymmetric CW states, for which the situation is too similar to previously 

studied cases [20]. We find that, the asymmetric CW state emerges when the total input 

power exceeds a minimum (threshold) value, which strongly depends on the XPM 

coefficient. While the most general asymmetric CW states are not tractable analytically, 

we consider a special class of asymmetric CW states that admit analytical solutions. In the 

anomalous dispersion regime, without considering the PMD and PDC effects, the MI gain 

spectra of both birefringent TCFs are almost identical to those of the zero-birefringence 

TCF, if scaled by the respective threshold powers. However, in the normal dispersion 

regime, the power-scaled MI gain spectra of the birefringent TCFs are notably different 

from those of the zero-birefringence TCF and the difference is much stronger for the 

circular-birefringence TCF. On the other hand, the PMD and PDC in these fibers only 

have a weak influence on the MI characteristics. In addition, we verify the predictions on 

the dominant unstable mode from the analytical MI solutions, by direct numerical 

simulations of the coupled NLS equations. 

 

2. Coupled-mode equations and the analysis of modulation instability  

2.1 Coupled-mode equations 

In the high-birefringence limit for the TCF, the propagation of slowly varying 

amplitudes of the electric fields along coordinate z is described by four coupled 

generalized NLS equations: 
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Here amj (m = 1, 2 and j = x, y) are the amplitudes of the j polarization in the m-th core, β1j 

is the group delay of the respective polarization, β2j is its GVD coefficient at the carrier 

frequency (β2j are negative and positive for anomalous and normal dispersion, 

respectively), γj is the nonlinearity coefficient of the j polarization, σ is the relative XPM 

coefficient, Cj is the linear coupling coefficient responsible for the power exchange 

between the two cores in the j polarization, and C1j = dCj/dω, evaluated at the carrier 

frequency ω, represents the dispersion of the coupling coefficient in the j polarization. 

The latter effect is equivalent to the intermodal dispersion arising from the group-delay 

difference between the even and odd supermodes of the TCF [26, 27]. Nonlinear coupling 

between the two cores is ignored in Eq. (1), which is justified by the fact that, in most 

practical situations, the spatial overlap between the fields of the modes propagating in the 

two cores is negligibly small. Nonlinear coupling may need to be included, however, in 

unusual situations where the two cores are very close to each other and the modes are 

operated in the close-to-cutoff regime (i.e., when the two cores are exceptionally strongly 

coupled in the linear sense).  



 7 

Subscripts x and y, attached to the polarization components in Eq. (1), naturally 

refer to the orthogonal linearly polarized (in the x- and y-directions) modes of the 

individual cores of the linear-birefringence TCF, whose XPM coefficient is σ = 2/3 [28]. 

For the sake of the uniformity of the notation, we apply the same subscripts, x and y, to 

the clockwise and counter-clockwise circularly polarized modes of the individual cores of 

the circular-birefringence TCF, whose XPM coefficient is σ = 2 [28]. As usual, rapidly 

oscillating four-wave mixing terms are neglected in Eq. (1) [5]. 

    Usually, the polarization dependences of the GVD, the nonlinearity coefficient, and 

the coupling coefficient dispersion, are weak. Consequently, we set β2x = β2y ≡ β2, γx = γy ≡ 

γ, and C1x = C1y ≡ C1. The PMD and PDC coefficients in the TCF are defined as Γ ≡ β1x – 

β1y and ∆C ≡ Cx − Cy. The objective of the study is to understand how the 

polarization-dependent parameters σ, Γ, and ∆C affect the MI characteristics of the TCF, 

when CWs carried by both polarized modes of the fiber are launched into the fiber. 

    It is relevant to mention that a system of four coupled equations meant for a 

birefringent TCF was postulated in some earlier works in the literature [29], but the 

system there does not include any linear coupling between the two cores, and hence 

cannot be considered as a valid model for a TCF. As shown in the following sections (and 

is obvious anyway), the linear coupling coefficients, namely Cx and Cy, which are absent 

in the earlier models [29], play a central role in the analysis of the MI characteristics of a 

birefringent TCF. 

2.2 Modulation instability analysis 
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CW solutions to Eq. (1) depend on two different propagation constants, 1k  and 2k , 

which pertain to the different polarization components, while a given polarization must be, 

obviously, carried by the same propagation constant in both cores:  

a1x = A1 exp(ik1z),  a2x = A2 exp(ik1z),  a1y = B1 exp(ik2z),  a2y = B2 exp(ik2z) . (2) 

Equations (1) and (2) admit one CW solution with the amplitudes obeying the following 

relations: 
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where P = A1
2 + B1

2 + A2
2 + B2

2 is the total CW power. The CW state given by Eqs. (2) 

and (3) is symmetric or antisymmetric when A1 = A2 or A1 = – A2, being asymmetric 

otherwise. Note that Eq. (3a) yields physically relevant (real) solutions under the 

conditions σCx < Cy < Cx/σ for 0 ≤ σ < 1, and σCx > Cy > Cx/σ for σ ≥ 1. 

In the CW solutions given by Eqs. (2) with (3), one of the amplitudes, for instance, 

1A , may be chosen arbitrarily, as only three relations out of four in Eq. (3a) are 

independent. The most general CW asymmetric solutions of Eq. (1) depend on two 

independent parameters, namely the two propagation constants, k1 and k2, in Eq. (2). It is, 

however, impossible to find them analytically and hence study their MI in an analytical 

form. Therefore, we focus on the special analytical solutions given by Eqs. (2) and (3), 
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which, as elaborated in Section III, are sufficient to demonstrate MI gain spectra that are 

notably different from their counterparts in a TCF without birefringence. 

We also note that Eqs. (2) and (3) produce asymmetric CW solutions provided that 

the total CW power, P , exceeds a minimum (threshold) value, Pmin(σ). With regard to 

Eq. (3a), this condition is cast into the following form: 
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x y
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+
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At the threshold, P = Pmin(σ), one has 
( )1 2 21
−

= =
−

x yCC
A A

σ
γ σ

. The minimum power 

Pmin(σ) is sensitive to the value of the XPM coefficient σ; the linear-birefringence TCF (σ 

= 2/3) has a higher threshold power than the circular-birefringence TCF (σ = 2). As 

shown in Section III, the minimum power plays a crucial role in the study of the MI gain 

spectra of the TCFs. 

    In the experiment, the transition to the asymmetric state can also be controlled, in an 

obvious way, by means of the total power of the beam coupled into the TCF. If the power 

exceeds Pmin(σ), the asymmetric configuration will form by itself, through the instability 

of the symmetric state. 

For a given total power, P > Pmin(σ), the powers of the four components of the 

asymmetric CW solutions are 
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Hence, the power ratio between the two cores is 
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where R = P/Pmin(σ) is the total power normalized to the minimum power. 

To study the stability of the CW state, we seek perturbed solutions in the following 

form: 
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where ui ≡ ui(z, t) and vi ≡ vi(z, t) (i = 1, 2) are small perturbations. With Eq. (10) inserted 

into Eq. (1), the linearization with respect to ui and vi yields 
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Further, we seek solutions for the perturbation modes in the following natural form: 

1 1 1exp( ) exp( )F iKz i t G iu Kz i t= − Ω + − + Ω , 

2 2 2exp( ) exp( )F iKz i t G iu Kz i t= − Ω + − + Ω , 

1 1 1exp( ) exp( )f iKz i t g iv Kz i t= − Ω + − + Ω ,   

2 2 2exp( ) exp( )f iKz i t g iv Kz i t= − Ω + − + Ω , (12) 

where Fi, Gi, fi, and gi (i = 1, 2) are real amplitudes, and K and Ω are the wave number 

and the frequency of the perturbations. After substituting Eq. (12) into Eq. (11), the 

existence of nontrivial solutions for Fi, Gi, fi and gi requires the vanishing of the 

determinant of the corresponding coefficient matrix M, i.e., 

det [ M( K )] = 0 (13) 

with 
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The dispersion relation that determines the MI is given by Eq. (13) for K as a function of 

real Ω. MI will occur when there are complex solutions for K, and the MI gain is then 

given by 

g(Ω) = | Im(K) |. (15) 

In the general case, the dispersion relation is quite involved. In the following sections, we 

provide explicit MI results for several special cases.  

2.3 Zero PMD and PDC: Γ = 0 and ∆C = 0 

In this special case, the asymmetric CW solution given by Eqs. (2) and (3) 

degenerates into 

a1x = A1 exp(ik1z),  a2x = A2 exp(ik1z),  a1y = A1 exp(ik2z),  a2y = A2 exp(ik2z). (16) 
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with the amplitudes, propagation constants, and total power determined by the following 

relations: 
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( ) ( )min
4
1

CP σ
γ σ

=
+

, (21) 

    The above asymmetric CW solution, which is obtained for zero PMD and PDC, does 

not reduce to that for a zero-birefringence TCF [22]. The values of the XPM coefficients 

are different for different fibers, which generally lead to different MI characteristics. 

2.4 Zero-birefringence TCF: σ = 0 

With σ = 0, the two polarized modes are uncoupled and Eq. (1) degenerates into two 

identical sets of coupled equations, with either set representing a zero-birefringence TCF. 

For either polarization, the corresponding dispersion relation from Eq. (13) reduces to 

2 2

1 1 31 1 1 2
2 2( ) ( ) 0

2 2
K C r K C r rβ β

      
   −Ω + − −Ω − − − =               

, (22) 

where β1 can be either β1x or β1y, and r1, r2, r3 are given by Eq. (19) with    

                       
( )min 0
PR

P σ
=

=
, 2 2

1 2P A A= + , (23) 

( )min
20 CP σ
γ

= = . (24) 

Note that the minimum power given by Eq. (24) is smaller by a factor of 2 than that 

obtained by setting σ = 0 in Eq. (21). The reason is that the input power for the 

zero-birefringence fiber (σ = 0), as defined by Eq. (23), is also smaller by the factor of 2 

than that for the birefringent fiber, as defined by Eq. (20). Equations (22) and (24) have 

been derived elsewhere by directly solving the system of two coupled equations [22]. 
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3. Numerical results 

3.1 Linear-birefringence TCF (σ = 2/3) 

We first address the MI in the anomalous dispersion regime. The following physical 

parameters are taken here: β2 = –0.02 ps2m-1, γ = 3 (kW⋅m)-1, Cx = Cy = 200 m-1, and Γ = 

C1 = 0. The range of the numerical values for the coupling coefficient in typical TCFs can 

be found in Ref. [26]. A coupling coefficient of 200 m-1 corresponds roughly to a TCF 

with a core-to-core separation of 3 to 4 times of the core radius, operating at the 

wavelength 1.55 µm. To highlight the effects due to the XPM, both PMD and PDC are 

ignored. 

Figure 1(a) shows the variation of the MI gain spectrum of the linear-birefringence 

TCF (σ = 2/3) with the normalized total input power, P/Pmin. For comparison, Fig. 1(b) 

shows the same physical entities for the zero-birefringence TCF (σ = 0). An examination 

of Figs. 1(a) and 1(b) shows that the results are almost identical, regardless of the fact that 

the two systems have different threshold powers, i.e., Pmin(σ = 2/3) = 160 kW and Pmin(σ 

= 0) = 133.3 kW. The level of similarity is shown more clearly in Fig. 1(c), where the MI 

gain spectra of the two systems are juxtaposed at several normalized input powers. The 

results suggest that the MI gain spectrum of the linear-birefringence TCF can be obtained 

from that of the zero-birefringence TCF by a straightforward rescaling of the input power, 

i.e., the XPM effects can simply be taken into account by means of power rescaling. This 

is a surprising result, considering the fact that the linear-birefringence TCF is described 

by four coupled equations, while the zero-birefringence TCF is described by two coupled 
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equations. 

The effects of the PMD on the MI gain spectrum in the anomalous dispersion regime 

are shown in Fig. 2. The PMD in a TCF should be similar to that in a single-core fiber, so 

the PMD values used in these examples are taken as typical ones for a single-core fiber 

[15]. It is seen from Fig. 2 that PMD leads only to a slight decrease of the MI gain. For a 

realistic TCF, the value of PDC is within ±0.1% of the coupling coefficient, which can 

hardly affect the MI gain spectrum. 

Next, we consider the MI in the normal dispersion regime, taking the following 

physical parameters: β2 = 0.02 ps2 m-1, γ = 6 (kW⋅m)-1, Cx = Cy = 200 m-1, and Γ = C1 = 0. 

Again, both PMD and PDC are set to zero to highlight the effects of XPM. 

Figures 3(a) and 3(b) show the evolution of the MI gain spectra with the normalized 

total input power for the linear-birefringence and zero-birefringence TCFs, respectively, 

and Fig. 3(c) compares the MI gain spectra of the two fibers at several normalized input 

powers, where the threshold powers for the two fibers are Pmin(σ = 2/3) = 80 kW and 

Pmin(σ = 0) = 66.7 kW. Unlike the situation in the anomalous dispersion regime, the 

power-scaled MI spectra of the two fibers show obvious differences. In particular, a new 

MI band is generated in the linear-birefringence TCF when the input power becomes large 

enough, although this additional MI band is relatively insignificant, as compared to the 

dominant MI band.   

The effects of the PMD on the MI gain spectra in the normal dispersion regime are 

shown in Fig. 4. The PMD tends to decrease the MI gain and can lead to splitting of the 

MI bands at sufficiently large values of the power, but the effects are weak over the 
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practically relevant range of the PMD values. Similar to the situation in the anomalous 

dispersion regime, the PDC has negligible effects on the MI gain spectrum. 

3.2 Circular-birefringence TCF (σ = 2) 

In the anomalous dispersion regime, as in the case of the linear-birefringence TCF, 

the MI characteristics of the circular-birefringence TCF are almost identical to those of 

the zero-birefringence TCF, if the MI gain spectra of both fibers are expressed in terms of 

the respective normalized input powers, as shown in Fig. 5 for the same set of parameters 

as in Fig. 1: β2 = –0.02 ps2m-1, γ = 3 (kW⋅m)-1, Cx = Cy = 200 m-1, and Γ = C1 = 0. Note 

that the minimum power of the circular-birefringence TCF is Pmin(σ = 2) = 88.9 kW, 

which is significantly smaller than those of the linear-birefringence TCF [Pmin(σ = 2/3) = 

160 kW] and the zero-birefringence TCF [Pmin(σ = 0) = 133.3 kW].  

The situation in the normal dispersion regime is very different. The evolution of the 

MI gain spectra of the circular-birefringence TCF and the zero-birefringence TCF with 

the respective normalized input powers are shown in Fig. 6 for β2 = 0.02 ps2m-1, γ = 6 

(kW⋅m) -1, Cx = Cy = 200 m-1, Γ = C1 = 0, to allow direct comparison with the results for 

the linear-birefringence TCF presented in Fig. 3. The minimum power of the 

circular-birefringence TCF is Pmin(σ = 2) = 44.4 kW. As shown in Fig. 6, for the 

circular-birefringence TCF, a new MI band appears and quickly becomes dominant with 

an increase of the input power. This scenario is markedly different from the situation for 

the zero-birefringence TCF.  

In both the anomalous and normal dispersion regimes, the PMD and PDC in the 
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circular-birefringence TCF produce only weak effects on the MI characteristics, similar to 

the properties exhibited in a linear-birefringence TCF.  

It is worthwhile to highlight that the XPM coefficient σ = 2 case also corresponds to 

a different, and meaningful, physical configuration, namely, CWs of two different 

wavelengths being simultaneously launched into a zero-birefringence TCF. Consequently, 

the results obtained for the circular-birefringence TCF apply equally well to the 

two-wavelength case, where the PMD should be interpreted as the group-delay difference 

between the two wavelengths, and PDC as the wavelength-dependent coupling. A more 

general analysis of the MI in the two-wavelength case should also take into account the 

wavelength dependence of the GVD and the dispersion of the coupling coefficient. 

 

4. Comparison with numerical simulations 

To verify the above MI analysis, Eq. (1) was solved numerically by launching 

asymmetric CW states, perturbed by small-amplitude white noise, into the fiber. The 

equations were solved by means of the pseudospectral method in the time domain, and the 

fourth-order Runge-Kutta scheme with an adaptive step-size control in the space domain. 

The power of the added white noise was typically about 0.01% of the input CW power, 

and the bandwidth of the noise covered the range of [–1200 THz, 1200 THz], centered at 

the carrier optical frequency. In terms of the MI analysis, the maximum initial growth rate 

of the perturbations is expected to be in the vicinity of the dominant MI frequency, which 

corresponds to the maximum gain. As a result, the actual value of the dominant frequency 
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at the onset of instability in the numerical simulations may be used to verify the MI 

analysis. The propagation distance is normalized by the coupling length, defined by Lc = 

π/(2C), where Cx = Cy ≡ C is assumed.  

4.1 The anomalous dispersion regime 

In the anomalous dispersion regime, the following fiber parameters were used, 

assuming a carrier wavelength of 1.5 μm: β2 = –0.02 ps2m-1, γ = 3 (kW⋅m)-1, Cx = Cy = C = 

200 m-1, and Γ = C1 = 0. The minimum powers for the corresponding zero-birefringence, 

linear-birefringence, and circular-birefringence TCFs are, respectively, Pmin(σ = 0) = 

133.3 kW, Pmin(σ = 2/3) = 160 kW, and Pmin(σ = 2) = 88.9 kW.  

Figures 7 − 9 display the wave-propagation dynamics for the zero-birefringence (σ = 

0), linear-birefringence (σ = 2/3), and circular-birefringence (σ = 2) TCFs, respectively. In 

each case, the total input power normalized by the respective threshold (minimum) power 

is fixed at 1.2, and the power ratio between the two cores is 3.47. The period of the 

modulated waves at the onset of the MI can be estimated from the propagation dynamics. 

From the results presented in Figs. 7 – 9, the periods for the zero-birefringence, 

linear-birefringence, and circular-birefringence TCFs are found to be 33.5, 34.3, and 34.2 

fs, respectively (all at z = 4Lc), which correspond to modulation frequencies 29.9, 29.2, 

and 29.3 THz, in good agreement with the dominant MI frequencies from the MI analysis: 

29.15, 29.15 and 29.24 THz. As predicted by the MI analysis, the three fibers have almost 

identical MI gain profiles and should start to produce the MI at similar propagation 

distances. 



 20 

4.2 The normal dispersion regime 

In the normal dispersion regime, the following fiber parameters are used: β2 = 0.02 

ps2m-1, γ = 6 (kW⋅m)-1, Cx = Cy = C = 200 m-1, and Γ = C1 = 0. The minimum powers for 

the zero-birefringence, linear-birefringence, and circular-birefringence TCFs are, 

respectively, Pmin(σ = 0) = 66.7 kW, Pmin(σ = 2/3) = 80 kW, and Pmin(σ = 2) = 44.4 kW. 

Figures 10 − 12 show the wave propagation dynamics for the single-polarization (σ 

= 0), linear-birefringence (σ = 2/3), and circular-birefringence (σ = 2) TCFs, respectively. 

In each case, the total input power normalized by the respective minimum power is fixed 

at 2.5, and the power ratio between the two cores is 22.96. The periods of the modulated 

waves for the zero-birefringence, linear-birefringence, and circular-birefringence TCFs 

are found to be 41.1 (at z = 12Lc), 43.5 (at z = 12Lc), and 39.9 fs (at z = 5Lc), which 

correspond, respectively, to modulation frequencies 24.3, 23.0, and 25.1 THz, in good 

agreement with results of the MI analysis: 24.45, 24.42, and 27.36 THz. As expected, the 

distance needed for the onset of the MI in the zero-birefringence and linear-birefringence 

TCFs are similar, which conforms to the finding from the MI analysis that the MI gain 

profiles are nearly identical in these two cases. On the other hand, the MI occurs at a 

much shorter distance in the circular-birefringence TCF, as predicted by the MI analysis, 

in view of the much larger growth rate. 

 

5. Conclusions 

In this work, we have analyzed in detail the MI characteristics of linear-birefringence 
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and circular-birefringence TCFs for a class of asymmetric CW inputs which admit 

analytical solutions. We have also verified the predictions of the MI analysis by means of 

direct simulations of wave propagation along different fibers. The asymmetric CW state 

exists when the total input power exceeds a minimum value, which depends on the fiber 

type (zero-birefringence, linear-birefringence, or circular-birefringence). In the anomalous 

dispersion regime, the MI gain spectra of the three fibers are almost identical, if scaled 

with the respective minimum powers. The results suggest that the XPM interaction 

between the polarized modes of a birefringent TCF does not generate any new MI 

characteristics in the anomalous dispersion regime. In the normal dispersion regime, 

however, the power-scaled MI gain spectra corresponding to the three fibers are different 

and the difference is particularly significant for the circular-birefringence TCF, which has 

the largest XPM coefficient (σ = 2). In both regimes, the PMD and PDC show only weak 

effects on the MI characteristics of the TCF. Finally, it is relevant to highlight the 

significance of the MI in settings other than conventional optical fibers. In particular, 

linear couplings between parallel photonic nanowires [30–33] may display strong 

dispersion, which can consequently generate especially pronounced MI effects. The 

associated spatiotemporal solitary pulses and other related soliton phenomena [34] 

suggest fruitful directions of future research.    
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Figures captions 

Fig. 1. (color online) Variations of the MI gain spectra with the normalized input power, 

P/Pmin, in the anomalous dispersion regime for (a) the linear-birefringence TCF, (b) 

the zero-birefringence TCF, and (c) the comparison of the MI gain spectra in the 

linear-birefringence (dashed) and zero-birefringence (solid) TCFs at several 

normalized input powers. The results are obtained for the following parameters: β2 

= –0.02 ps2m-1, γ = 3 (kW⋅m)-1, Cx = Cy = 200 m-1, and Γ = C1 = 0. 

Fig. 2. (color online) (a) 3D and (b) 2D plots showing the variation of the MI gain 

spectrum with the PMD in the anomalous dispersion regime for the 

linear-birefringence TCF (σ = 2/3) with β2 = –0.02 ps2m-1, γ = 3 (kW⋅m)-1, Cx = Cy 

= 200 m-1, and C1 = 0. The total input power is P = (A1
2 + A2

2 + B1
2 + B2

2) = 200 

kW. 

Fig. 3. (color online) Variations of the MI gain spectra with the normalized input powers 

P/Pmin in the normal dispersion regime for (a) the linear-birefringence TCF, (b) the 

zero-birefringence TCF, and (c) the comparison of the MI gain spectra of the 

linear-birefringence (dashed) and zero-birefringence (solid) TCFs at several 

normalized input powers. The results are obtained for the following parameters: β2 

= 0.02 ps2m-1, γ = 6 (kW⋅m)-1, Cx = Cy = 200 m-1, and Γ = C1 = 0.  

Fig. 4. (color online) (a) 3D and (b) 2D plots showing the variation of the MI gain 

spectrum with the PMD in the normal dispersion regime for the 

linear-birefringence TCF with β2 = 0.02 ps2m-1, γ = 6 (kW⋅m) -1, Cx = Cy = 200 m-1, 
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and C1 = 0 ps m-1. The total input power is P = (A1
2 + A2

2 + B1
2 + B2

2) = 160 kW. 

Fig. 5. (color online) Variations of the MI gain spectra with the normalized input power 

P/Pmin in the anomalous dispersion regime for (a) the circular-birefringence TCF 

and (b) the zero-birefringence TCF, and (c) the comparison of the MI gain spectra 

of the circular-birefringence (dashed) and zero-birefringence (solid) TCFs at 

several normalized input powers. The results are obtained for the following 

parameters: β2 = –0.02 ps2m-1, γ = 3 (kW⋅m)-1, Cx = Cy = 200 m-1, and Γ = C1 = 0.  

Fig. 6. (color online) Variations of the MI gain spectra with the normalized input power 

P/Pmin in the normal dispersion regime for (a) the circular-birefringence TCF and 

(b) the zero-birefringence TCF, and (c) the comparison of the MI gain spectra of 

the circular-birefringence (dashed) and zero-birefringence (solid) TCFs at several 

normalized input powers. The results are obtained for the following parameters: β2 

= 0.02 ps2m-1, γ = 6 (kW⋅m) -1, Cx = Cy = 200 m-1, and Γ = C1 = 0.  

Fig. 7. (color online) Evolution of the asymmetric CW input in a zero-birefringence TCF 

with β2 = –0.02 ps2m-1, γ = 3 (kW⋅m)-1, Cx = Cy = 200 m-1, C1 = 0, Pmin(σ = 0) = 

133.3 kW, and P/Pmin(σ = 0) = 1.2.  

Fig. 8. (color online) Evolution of an asymmetric CW input in a linear-birefringence TCF 

with β2 = –0.02 ps2m-1, γ = 3 (kW⋅m)-1, Cx = Cy = 200 m-1, Γ = C1 = 0, Pmin(σ = 2/3) 

= 160 kW, and P/Pmin(σ = 2/3) = 1.2. 

Fig. 9. (color online) Evolution of the asymmetric CW input in a circular-birefringence 

TCF with β2 = –0.02 ps2m-1, γ = 3 (kW⋅m)-1, Cx = Cy = 200 m-1, Γ = C1 = 0, Pmin(σ 

= 2) = 88.9 kW, and P/Pmin(σ = 2) = 1.2. 
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Fig. 10. (color online) Evolution of the asymmetric CW state in a zero-birefringence TCF 

with β2 = 0.02 ps2m-1, γ = 6 (kW⋅m)-1, Cx = Cy = 200 m-1, C1 = 0, Pmin(σ = 0) = 66.7 

kW, and P/Pmin(σ = 0) = 2.5. 

Fig. 11. (color online) Evolution of the asymmetric CW state for a linear-birefringence 

TCF with β2 = 0.02 ps2m-1, γ = 6 (kW⋅m)-1, Cx = Cy = 200 m-1, Γ = C1 = 0, Pmin(σ = 

2/3) = 80 kW, and P/Pmin(σ = 2/3) = 2.5. 

Fig. 12. (color online) Evolution of the asymmetric CW state for a circular-birefringence 

TCF with β2 = 0.02 ps2m-1, γ = 6 (kW⋅m)-1, Cx = Cy = 200 m-1, Γ = C1 = 0, Pmin(σ = 

2) = 44.4 kW, and P/Pmin(σ = 2) = 2.5. 
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