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Technical Correspondence
Decentralized Adaptive Pinning Control for Cluster
Synchronization of Complex Dynamical Networks

Housheng Su, Zhihai Rong, Michael Z. Q. Chen, Member, IEEE,
Xiaofan Wang, Senior Member, IEEE,

Guanrong Chen, Fellow, IEEE, and Hongwei Wang

Abstract—In this brief, we investigate pinning control for cluster syn-
chronization of undirected complex dynamical networks using a decen-
tralized adaptive strategy. Unlike most existing pinning-control algorithms
with or without an adaptive strategy, which require global information of
the underlying network such as the eigenvalues of the coupling matrix of
the whole network or a centralized adaptive control scheme, we propose a
novel decentralized adaptive pinning-control scheme for cluster synchro-
nization of undirected networks using a local adaptive strategy on both
coupling strengths and feedback gains. By introducing this local adaptive
strategy on each node, we show that the network can synchronize using
weak coupling strengths and small feedback gains. Finally, we present
some simulations to verify and illustrate the theoretical results.

Index Terms—Cluster synchronization, complex dynamical network,
local decentralized adaptive strategy, pinning control.

I. INTRODUCTION

Various synchronization phenomena are ubiquitous in nature. Stim-
ulated by two pioneering papers on synchronization in coupled sys-
tems [1] and in chaotic systems [2], there has been much interest
in the study of synchronization of coupled complex dynamical sys-
tems. In the past few years, global synchronization [3] and local
synchronization [4] of coupled complex dynamical systems have been
studied intensively. In general, synchronization can be classified as
complete synchronization [3], [4], phase synchronization [5], cluster
synchronization [6]–[10], and so on. The first-order consensus of
multiagent systems [11]–[13] can be regarded as a special case of
the synchronization of coupled complex dynamical systems, in which
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the intrinsic dynamics of all agents are zero. In particular, cluster
synchronization of complex dynamical networks aims to make nodes
synchronize with each other in the same cluster but desynchronize
with each other among different clusters, where clusters represent
subgroups of the coupled oscillators in a network [6]–[10]. Due to the
specific goals in practice, many biological, social, and technological
networks functionally divide into communities. Therefore, cluster
synchronization has many applications in practice. For example, two
subgroups will be naturally formed in social networks when a crowd
of people choose to accept or reject an opinion according to their pref-
erence. When a group of robots is to carry out a complex task, subtasks
will divide the robot network into communities, and consensus should
be achieved within each community.

Recently, some efforts have been devoted to the investigation in
synchronization and control of complex dynamical networks [3]. In
particular, pinning control is an effective method to control the col-
lective dynamics of a complex network to a desired state such as an
equilibrium point or a periodic orbit [14]–[21]. A common feature of
the works presented in [14]–[21] is that there are certain convergence
conditions that require global information on the underlying network.
The convergence conditions given in [14]–[19] actually require the
knowledge of eigenvalues of the coupling matrix of the network.
The adaptive strategies developed in [20] and [21] are centralized,
in which the adaptive parameter for each node contains the state
information about all nodes and the information of the homogeneous
stationary state or various heterogeneous stationary states of the whole
network. If the size of the network is very large, the calculation of the
eigenvalues of the coupling matrix of the network or the centralized
adaptive strategies may be too difficult or costly to implement, even
if it is possible at all. Recently, synchronization of complex networks
is investigated without global information on the underlying network
via decentralized adaptive coupling, suggesting two effective local
adaptive strategies, i.e., vertex-based strategy and edge-based strategy
[22]–[24].

In this brief, by introducing local adaptive strategies to both cou-
pling strengths and feedback gains, we develop a decentralized adap-
tive pinning-control scheme for cluster synchronization of undirected
complex dynamical networks without using any global information
on the underlying network. Generally speaking, this brief extends the
centralized adaptive strategies in [20] and [21] to the decentralized
case and extends the decentralized adaptive complete synchronization
in [22]–[24] to the decentralized adaptive cluster synchronization.
In contrast to the centralized adaptive strategies developed in [20]
and [21], each node only acquires the state information from its
neighbors and only selects those few nodes that have the information
of their desired heterogeneous stationary states. This is a significant
improvement upon the existing centralized algorithms. Different from
the known results on adaptive complete synchronization in [22]–[24],
we investigate the adaptive cluster-synchronization problem here.
The cluster-synchronization problem cannot be viewed as a simple
collective form for the independent complete synchronization prob-
lems. This is because, unlike complete synchronization, each node is
affected not only by the nodes in the same cluster but also by the
nodes in different clusters, which have different synchronized states;
therefore, there is no guarantee that a node will definitely synchronize
with the nodes in the same cluster. In order to achieve cluster synchro-
nization, unlike the traditional definition of the coupling matrix of the
network, inhibitory coupling is introduced to the coupling matrix in
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IEEE TRANSACTIONS ON CYBERNETICS, VOL. 43, NO. 1, FEBRUARY 2013 395

our network. Thus, the decentralized adaptive algorithms derived in
[22]–[24] cannot solve the cluster-synchronization problems formu-
lated here. To overcome this difficulty, unlike the results presented
in [22]–[24], pinning control for cluster synchronization of complex
dynamical networks is investigated here, and local adaptive strategies
are introduced to only parts of edges in the graph, which calls for a
more delicate treatment.

II. PROBLEM STATEMENT

Consider a network G consisting of N linearly and diffusively
coupled identical nodes described by an n-dimensional dynamical
system

ẋi(t) = f (xi(t), t) +

N∑
j=1,j �=i

cijaij (xj(t)− xi(t)) ,

i = 1, . . . , N (1)

where xi = [x1
i , . . . , x

n
i ]

T ∈ Rn is the state vector of the ith node,
f : Rn × [0,+∞) → Rn is a continuous map, and cij > 0 denotes
the coupling strength between node i and node j, i, j = 1, . . . , N .
With aii = −

∑N

j=1,j �=i
aij , the matrix A = (aij) ∈ RN×N repre-

sents the coupling configuration of this network. Define the matrix of
the weighted coupling configuration of the network as follows:

B =

⎡
⎢⎢⎣

c11a11 c12a12 · · · c1na1n

c21a21 c22a22 · · · c2na2n

...
...

. . .
...

cn1an1 cd2ad2 · · · cndand

⎤
⎥⎥⎦ ∈ RN×N

where ciiaii = −
∑N

j=1,j �=i
cijaij , i, j = 1, . . . , N .

Suppose that d nonempty subsets (clusters) {G1, . . . , Gd} is a par-
tition of the index set {1, 2, . . . , N}, where ∪d

l=1Gl = {1, 2, . . . , N}
and Gl �= ∅. A network with N nodes is said to realize d-cluster
synchronization if limt→∞ ‖xi(t)− xj(t)‖ = 0 for all i and j in
the same cluster and limt→∞ ‖xi(t)− xj(t)‖ > 0 for all i and j in
different clusters.

The problem of pinning control for d-cluster synchronization is to
directly control a small fraction of nodes in network (1) to achieve
limt→∞

∑d

l=1

∑
i∈Gl

‖xi(t)− xl(t)‖ = 0, where xl(t) is the de-
sired state of the lth cluster Gl, which satisfies

ẋl(t) = f (xl(t), t) , l = 1, . . . , d (2)

where xl(t) can be an equilibrium, a limit cycle, or even a chaotic
attractor. The controlled network is described as follows:

ẋi(t) = f (xi(t), t) +

N∑
j=1,j �=i

cijaij (xj(t)− xi(t))

+hici (xî(t)− xi(t)) , i = 1, . . . , N (3)

where î is the subscript of the subset for which i ∈ Gî. If node i is
selected to be pinned, then hi = 1; otherwise, hi = 0.

In this brief, an adaptive pinning-control scheme is developed for
cluster synchronization of network (3). The approach is to use a decen-
tralized method, i.e., each node only needs the state information of its
neighbors and only selects those few nodes that have the information of
their desired states. The main advantage of the proposed scheme over
the existing centralized algorithms is that it does not need to acquire or
use state information from all nodes in the network.

III. DECENTRALIZED ADAPTIVE

PINNING-CONTROL SCHEME

A. Algorithm Description

The proposed adaptive strategy for node i is designed as

ẋi(t) = f (xi(t), t) +

N∑
j=1,j �=i

cij(t)aij (xj(t)− xi(t))

+ hici(t) (xî(t)− xi(t))

ċij(t) =hijaijkij (xi(t)− xj(t))
T P (xi(t)− xj(t))

ċi(t) =hiki (xi(t)− xî(t))
T P (xi(t)− xî(t)) (4)

where cij(0) = c > 0, ci(0) ≥ 0, and a positive-definite diagonal
matrix P = diag{p1, . . . , pn}. The positive constants kij = kji and
ki are the weights of the adaptive laws for parameters cij(t) and ci(t),
respectively. If nodes i and j are in the same cluster, then hij = 1;
otherwise, hij = 0. Clearly, the adaptive parameters cij(t) for node i
only contain the state information of its neighbors.

B. Main Results and Theoretical Analysis

The following assumption and lemmas are needed for our main
result.

Assumption 1 [20], [25], [26]: For any x, y ∈ Rn, t ∈ [0,+∞),
the nonlinear map f(x, t) : Rn × [0,+∞) → Rn is uniformly con-
tinuous in t and satisfies

(x−y)TP{[f(x, t)−f(y, t)]−Δ(x−y)}≤−ω(x−y)T(x−y) (5)

for a diagonal matrix Δ = diag{δ1, . . . , δn} and a positive constant
ω > 0.

It is assumed in [21] that, for an N ×N symmetric matrix

A =

⎡
⎢⎢⎣
A11 A12 · · · A1d

A21 A22 · · · A2d

...
...

. . .
...

Ad1 Ad2 · · · Add

⎤
⎥⎥⎦ (6)

where A = (aij) ∈ RN×N , each block Auv = (zij) ∈
Rku×kv (u, v = 1, . . . , d) is a zero-row-sum matrix, i.e.,∑kv

j=1
zij = 0, and each block Auu = (sij) ∈ Rku×ku satisfies

sii = −
∑ku

j=1,j �=i
sij , where sij = sji ≥ 0(i �= j) and ku and kv

are the numbers of nodes in the subsets u and v, respectively.
Note also that, unlike the traditional definition of the coupling

matrix of the network, the element aij with i ∈ Gu and j ∈ Gv in
(6) may be negative here, which is called an inhibitory coupling [21].
This provides a mechanism to desynchronize two nodes belonging to
two different clusters.

Lemma 1 [20]: If L = (lij) ∈ RN×N is a symmetric irreducible
matrix with lii = −

∑N

j=1,j �=i
lij , lij = lji ≥ 0(i �= j), then, for any

matrix E = diag(e, 0, . . . , 0) with e > 0, all eigenvalues of the matrix
(L−E) are negative.

Lemma 2 [21]: For any x ∈ Rp, y ∈ Rq , and matrix M =
(mij) ∈ Rp×q , xTMy ≤ (1/2)max[p, q] ·maxi,j |mij |(xTx+
yTy).

Lemma 3: Let matrix A be given as in (6). Then, under the adaptive
strategy (4)

B = (aijcij(t)) =

⎡
⎢⎢⎣
B11 B12 · · · B1d

B21 B22 · · · B2d

...
...

. . .
...

Bd1 Bd2 · · · Bdd

⎤
⎥⎥⎦ ∈ RN×N
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is a symmetric matrix, in which each block Buv(u, v = 1, . . . , d)
is a zero-row-sum matrix and each block Buu is with aiicii(t) =

−
∑ku

j=1,j �=i
aijcij(t), aijcij(t) = ajicji(t) ≥ 0(i �= j), where ku is

the number of nodes in the subset u.
Proof: If nodes i and j are not in the same cluster, then, by

the adaptive strategy (4), one has ċij(t) = 0. If nodes i and j are in
the same cluster, then, by the adaptive strategy (4), one has ċij(t) =
ċji(t). Therefore, B is a symmetric irreducible matrix. Similar to (6),
each block Buv(u, v = 1, . . . , d) is a zero-row-sum matrix, and each
block Buu is with aiicii(t) = −

∑ku

j=1,j �=i
aijcij(t), aijcij(t) =

ajicji(t) ≥ 0(i �= j), where ku is the number of nodes in the
subset u.

Lemma 4: Let matrix A be given as in (6). Then

N∑
i=1

(xi − xî)
TP

N∑
j=1,̂i=ĵ,j �=i

aijcij(xi − xj)

=
1

2

N∑
i=1

N∑
j=1,j �=i

hijaijcij(xi − xj)
TP (xi − xj).

Proof: The proof is similar to that of Lemma 2 in [27].
Lemma 5 [28]: If a scalar function V (x, t) satisfies the following

conditions, then V̇ (x, t) → 0, as t → ∞.

a) V (x, t) is lower bounded.
b) V̇ (x, t) is negative semidefinite.
c) V̇ (x, t) is uniformly continuous in t.

Note that Lemma 5 is, in fact, an extension of Barbalat’s Lemma.
More details about Lemma 5 can be seen in , Lemma 4.3 (Lyapunov-
like Lemma)[28].

Theorem 1: Consider network (1), where each node is steered by
the adaptive strategy (4). Suppose that Assumption 1 holds and at least
one node in each cluster is selected to be controlled. Let matrix A be
given as in (6). Then, all clusters asymptotically synchronize to their
given heterogeneous stationary states, namely

lim
t→∞

d∑
l=1

∑
i∈Gl

‖xi(t)− xl(t)‖ = 0.

Proof: Define the Lyapunov functional candidate as

V (t) =
1

2

N∑
i=1

(xi − xî)
TP (xi − xî)

+
1

2

N∑
i=1

N∑
j=1,j �=i

(cij −m)2

2kij
+

(ci −m)2

ki
(7)

where the positive constant mIku > (δr + (d− 1)maxu,v[ku, kv]
maxi,j |aijcij |)Iku(Huu −Buu)

−1.
Differentiating V (t) gives

V̇ (t)=

N∑
i=1

x̃T
i P [f(xi, t)−f(xî, t)]+

N∑
i=1

hi(ci−m)x̃T
i P x̃i

−
N∑
i=1

x̃T
i P

[
N∑

j=1,j �=i

aijcij(x̃i−x̃j)+hicix̃i

]

+
1

2

N∑
i=1

N∑
j=1,j �=i

hijaij(cij−m)(x̃i−x̃j)
TP (x̃i−x̃j)

≤
N∑
i=1

x̃T
i P

[
Δx̃i−

N∑
j=1,j �=i

aijcij(x̃i−x̃j)−hicix̃i

]

−
N∑
i=1

ωx̃T
i x̃i+

N∑
i=1

hi(ci−m)x̃T
i P x̃i

+
1

2

N∑
i=1

N∑
j=1,j �=i

hijaij(cij−m)(x̃i−x̃j)
TP (x̃i−x̃j)

=−
N∑
i=1

ωx̃T
i x̃i+

n∑
r=1

pr

[
m

d∑
u=1

xurT(Buu−Huu)x
ur

]

+

n∑
r=1

pr

[
δr

d∑
u=1

xurTxur+

d∑
u=1

∑
v �=u

xurTBuvx
vr

]

≤
n∑

r=1

pr

d∑
u=1

xurT(mBuu−mHuu+δrIku)x
ur

−
N∑
i=1

ωx̃T
i x̃i+

n∑
r=1

pr(d−1)

×

[
max
u,v

[ku, kv]max
i,j

|aijcij |
d∑

u=1

xurTxur

]
(8)

where xr=[xr
1, . . . , x

r
N ]T = [x1r, . . . , xur, . . . , xdr]

T ∈ RN , xur ∈
Rku is the vector in the uth cluster, and H = diag{H11,H22, . . . ,
Hdd}. According to (6), at least one node in each cluster is selected to
be controlled, and from Lemma 1 and Lemma 3, it can be verified that
(Buu −Huu) is negative definite. Since the positive constant mIku >
(δr+(d−1)maxu,v[ku, kv]maxi,j |aijcij |)Iku(Huu−Buu)

−1, one
has V̇ (t) ≤ −

∑N

i=1
ωx̃T

i x̃i. Thus, V̇ (t) is negative semidefinite.
From the definition of V (t), it is obvious that V (t) is lower bounded.
According to Assumption 1 and (8), V̇ (t) is uniformly continu-
ous in t. Therefore, Lemma 5 can be applied here. It is obvious
that V̇ (t) = 0 if and only if x̃i = 0, i = 1, 2, . . . , n. The set S =

{x̃ ∈ RNn, c ∈ RN , c̃ ∈ RN2
: x̃ = 0, c = c0, c̃ = c̃0}, where c =

[c1, c2, . . . , cN ]T, c̃ = [c̃11, c̃12, . . . , c̃NN ]T, and c0 and c̃0 are pos-
itive constant vectors, is the largest invariant set contained in M =
{V̇ (t) = 0} for system (4). According to Lemma 5, the trajectories
of the system (4) converge asymptotically to the set S, i.e., x̃ → 0,
c → c0, and c̃ → c̃0 as t → ∞.

Thus, one has the result of Theorem 1. This completes the proof of
Theorem 1.

Remark 1: Under the assumption that there is at least one single
controller in each cluster, Assumption 1 and (6) hold, and d-cluster
synchronization of complex networks was established in [21], where,
however, the adaptive parameter at each node requires the state in-
formation from all nodes and the information on the heterogeneous
stationary states over the whole network. Unlike the protocol in [21],
each node in protocol (4) only has the state information of its neighbors
and only selects those few nodes that have the information on the
heterogeneous stationary states.

C. Complete Synchronization Case

When there is only one cluster in the network, the protocol (4) can
also be used to realize complete synchronization of the network. The
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adaptive strategy for node i in this case can be rewritten as

ẋi(t) = f (xi(t), t) +

N∑
j=1,j �=i

cij(t)aij (xj(t)− xi(t))

+ hici(t) (x(t)− xi(t))

ċij(t) = aijkij (xi(t)− xj(t))
T P (xi(t)− xj(t))

ċi(t) =hiki (xi(t)− x(t))T P (xi(t)− x(t)) . (9)

The graph Laplacian of the connected network naturally satisfies (6).
Corollary 1: Consider network (1) with a single cluster, where each

node is steered by the adaptive strategy (9). Suppose that the whole
network is connected, Assumption 1 holds, and at least one node is
selected to be controlled. Then, all nodes asymptotically synchronize
to the given homogeneous stationary state, namely

lim
t→∞

‖xi(t)− x(t)‖ = 0.

Proof: This is a special case of Theorem 1.

IV. SIMULATION RESULTS

In this section, numerical examples are given to verify and illustrate
the theoretical results. In the following simulations, each node is a
chaotic Chua circuit{

ẋ1 = 10 (x2 − x1 + f(x1))
ẋ2 = x1 − x2 + x3

ẋ3 = −15x2 − 0.0385x3

(10)

where

f(x1) =

{−bx1 − a+ b, x1 > 1
−ax1, |x1| ≤ 1
−bx1 + a− b, x1 < 1

where a = −1.27 and b = −0.68. The Chua circuit (10) has three
unstable equilibrium points: [1.8586, 0.0048,−1.8539]T, [0, 0, 0]T,
and [−1.8586,−0.0048, 1.8539]T.

A. Example 1: Three Clusters

Simulations were performed with protocol (4) applied to 90 nodes
grouped in three clusters. Each cluster is a homogenous small-world
network, which starts from a nearest neighbor lattice with 30 nodes
and an average degree k = 10. Two edges are randomly selected
and then swapped, forbidding duplicate connections, until p percent
of edges have been swapped. Through this reconnection, one can
obtain a homogeneous small-world network with a high clustering
coefficient and a short average path length without altering the con-
nection distribution of the original network [29]. In this example,
three homogeneous small-world clusters are generated randomly with
swapping probability p = 0.1, and they are linked by a few random
edges. The coupling matrix of the network satisfies (6). Initial states of
the 90 nodes were chosen randomly from the cube [−1, 1]× [−1, 1]×
[−1, 1]. The heterogeneous stationary states are the three unstable
equilibrium points of the Lorenz system (10). There is only one node
in each cluster that is chosen randomly to be controlled. The adaptive
parameters are set as cij(0)=1 and ci(0) = 0, the weights are kij=1
and ki = 1, and the matrix is P = diag{1, 1, . . . , 1}.

In Fig. 1, plots (a)–(c) show the convergence of states
on the x1-, x2-, and x3-axes, respectively; plot (d) shows
the mean square errors σi for the xi-axis, where σi =√

(1/(N − 1))
∑N

j=1
(xi

j − (1/N)
∑N

j=1
xi
j)

2
; plot (e) shows

the adaptive coupling strengths which eventually approach constants;

Fig. 1. Pinning control of 90 nodes under protocol (4).

and plot (f) shows the adaptive feedback gains which eventually
approach constants.

B. Example 2: One Cluster

Simulations were performed by applying protocol (9) to a homo-
geneous network of 500 nodes with swapping probability p = 0.1
and an average degree k = 10[29]. The clustering coefficient of this
small-world network C = 0.4857. The average path length of this
small-world network L = 4.0652. Initial states of the 500 nodes
were chosen randomly from the cube [−1, 1]× [−1, 1]× [−1, 1]. The
homogeneous stationary state x̄ = [1.8586, 0.0048,−1.8539]. There
is only one node which is chosen randomly from the network to
be controlled. The adaptive parameters are set as cij(0) = 0.01 and
ci(0) = 0, the weights are kij = 1 and ki = 1, and the matrix is
P = diag{1, 1, . . . , 1}.

In Fig. 2, plots (a)–(c) show the convergence of states on the x1-,
x2-, and x3-axes, respectively; plot (d) shows the mean square errors
σi for the xi-axis; plot (e) shows the maximum adaptive coupling
strength which eventually tends to a constant; and plot (f) shows the
adaptive feedback gain which eventually tends to a constant.

For the same initial conditions of the states, we now make the
comparison of the control gains among the nonadaptive pinning-
control algorithm (3), the centralized pinning-control algorithm in
[20], and the decentralized pinning-control algorithm (9). To ensure
the fairness of the comparison, we select the same nodes to apply
the pinning control. We use a more reasonable index, i.e., the average
value of all the coupling strengths and feedback gains

Ave(c) =

N∑
i=1

((
N∑

j=1,j �=i

aijcij

)
+ hici

)
N∑
i=1

((
N∑

j=1,j �=i

aij

)
+ hi

)
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Fig. 2. Pinning control of 500 nodes under protocol (9).

to measure the control gains. Since the size of the network is very large,
we cannot assign different least coupling strengths or feedback gains
for different edges artificially for the nonadaptive pinning-control
algorithm (3). Therefore, we choose the same value for all the coupling
strengths and feedback gains when the nonadaptive pinning-control
algorithm (3) is applied, i.e., all the coupling strengths and feedback
gains are equal to the average value of all the coupling strengths and
feedback gains. We choose the control gain Ave(c) = 20 and 30 for
the nonadaptive pinning-control algorithm (3). The network cannot be
synchronized for the case of the control gain Ave(c) = 20 but can
be synchronized for the case of Ave(c) = 30. We then compare the
decentralized pinning-control algorithm (9) against the nonadaptive
pinning-control algorithm (3) with Ave(c) = 30 and the centralized
pinning-control algorithm in [20] in Fig. 3. It is demonstrated by
Fig. 3 that the practical average value of all the coupling strengths and
feedback gains of the decentralized adaptive case is much less than the
other two cases. The reason can be analyzed as follows. For a given
large complex network, it is difficult or impossible to know which
edges need larger coupling or control gains even if the initial states
of all nodes are known. Therefore, we cannot assign different least
coupling strengths or feedback gains for different edges in order to
satisfy the theoretical least coupling and control gains for the synchro-
nization of the network. For the nonadaptive algorithm, one optional
method is to assign a uniform coupling and control gain, which must be
larger than or equal to the largest value in the theoretical least coupling
and control gains for the synchronization of the network, to all the
coupling strengths or feedback gains so as to satisfy theoretical least
coupling and control gains for the synchronization of the network.
The centralized adaptive algorithm also has a common coupling and
control gain for all edges, which should be larger than or equal to the
largest value in the theoretical least coupling and control gains for the
synchronization of the network. However, the decentralized adaptive

Fig. 3. Comparison of the control gains.

algorithm can adjust each coupling strength or feedback gain to its
proper value through local interactions with neighbors, in which the
gains for some edges may be smaller than the largest value in the
theoretical least coupling and control gains for the synchronization of
the network. Therefore, it is reasonable that the practical average value
of all the coupling strengths and feedback gains of the decentralized
adaptive case is much less than the other two cases.

V. CONCLUSION

In this brief, we have investigated the pinning-control problem
for cluster synchronization of complex dynamical networks. By in-
troducing local adaptive strategies for both coupling strengths and
feedback gains, it was shown that the collective dynamics of the
underlying complex network can be controlled to its heterogeneous
stationary states without requiring global information of the network.
This is superior to the existing protocols for the same problem since
global information of the underlying network is not acquired or used.
Simulations have shown that, by employing the proposed decentralized
adaptive pinning-control scheme, it is possible to control the collective
dynamics of a complex network to the desired heterogeneous station-
ary states in different clusters with only weak coupling strengths and
small feedback gains, demonstrating a clear advantage of the approach
developed in this brief.
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