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On Exponential Almost Sure Stability of
Random Jump Systems

Chanying Li, Member, IEEE, Michael Z. Q. Chen, Member, IEEE, James Lam, Fellow, IEEE, and
Xuerong Mao, Senior Member, IEEE

Abstract—This paper is concerned with a class of random
jump systems represented by transition operators, which includes
switched linear systems with strictly stationary switching signals
in infinite modes space as its special case. A series of necessary and
sufficient conditions are established for almost sure stability of
this class of random jump systems under different scenarios. The
stability criteria obtained are further extended to Markov jump
linear systems with infinite states, and hence a unified approach to
describing the almost sure stability of MJLSs is addressed under
this context. All the results in the work are developed for both the
continuous- and discrete-time systems.

Index Terms—Almost sure stability, Markov processes, random
jump systems.

I. INTRODUCTION

I N real-world applications, linear time-invariant models are
generally insufficient to describe fully, or even nearly ac-

curately, the behavior of dynamic systems found in industries
when the systems are affected by abrupt changes or component
failures. Indeed, many systems exhibit random behavior which
can be well modeled by certain classes of stochastic switched
systems or piecewise deterministic systems. These models con-
sist of a set of subsystems, each associated with a mode, whose
operation being governed by a switching signal that specifies
the active mode at any time. These switched system models
are commonly used to model the robot systems, vehicle sys-
tems, and large-scale flexible structures for space stations, for
instance.
Stability analysis of switched systems has attracted tremen-

dous attention in recent years. Abundant fundamental results
have emerged in this active area [1], [2], [6], [13], [15], [24],
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[32], [34]. Among these works, Bolzern et al. [6] derive the
necessary and sufficient condition for the almost sure stability
of continuous-time Markov jump linear systems (MJLSs), Lin
and Antsaklis [24] represent a survey of recent results on var-
ious stability of switched linear systems, and Xiong et al. [34]
establish a criterion for testing the robust stability of MJLSs
with uncertain switching probabilities in terms of linear ma-
trix inequalities. Moreover, there are various research directions
related to switched or jump systems such as the stabilization
and filtering [16], [22], [31], [35], [36] problems, model reduc-
tion [33] and state estimation [23]. In this paper, we restrict
our attention to almost sure stability of random jump systems.
This kind of systems encompasses a very important class of
switched systems, namely, Markov jump linear systems. It is
well known that even if all the subsystems are almost surely ex-
ponentially stable, stability may fail for the trajectories of the
random jump systems with probability one. Conversely, pos-
sessing some unstable subsystems does not mean divergence
of the jump systems with positive probability. This interesting
phenomenon brings about more significant difficulties and chal-
lenges in stability analysis even for linear jump systems. Al-
though random jump systems with finite modes have been ex-
tensively studied and have achieved remarkable development
in the literature, random jump systems with general mode space
are rarely studied. Some works on MJLSs with infinite modes
are [7], [10] and [17]. As mentioned in [19], increasing the
number of subsystems from finite to infinity may cause totally
different properties of the jump systems. For example, mean
square stability and stochastic stability are no longer equivalent
for the MJLSs with infinite modes, while the two concepts are
the same in the case where the modes are finite (see [12], [18]).
Indeed, a “good” switching rule which stabilizes the trajectories
of random jump systems could “get lost” in a large enough space
which consists of infinite modes. Our emphasis in this work is
placed on random jump systems with infinite modes.
In this paper, we consider a class of autonomous dynamic sys-

tems that jump randomly according to some switching rules. It is
worth pointing out that switched linear systems with strictly sta-
tionary switching signals belong to the class of dynamic systems
treated in this work. The systems under consideration are rep-
resented as transition operators in a normed matrix space which
may contain uncountably infinitely many elements. A number
of necessary and sufficient conditions for the exponentially al-
most sure stability (EAS-stability) of this class of random jump
systems are established under different scenarios. The stability
criteria obtained are in fact based on checking the contractivity
of the jump systems after a finite number of switches have been
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applied. Both continuous- and discrete-time jump systems cases
are presented in this paper. It turns out that these results are
not only applicable to switched linear systems with stationary
switching signals, but also can be extended to MJLSs.
There are plenty of works devoted to the study of almost sure

stability of MJLSs. However, most of these earlier work have
only considered the case where the Markovian switching signal
takes values in a finite state space. For example, the works [11]
and [25] offered the sufficient conditions for almost sure sta-
bility of MJLSs of finite states. A well-known fact is that all the
states of a finite and irreducible Markov process are recurrent
and hence admit a stationary probability distribution. However,
this fails for most Markov processes defined on infinite state
space. Since the existence of stationary probability distribution
is a crucial factor in [4] and [6] to establish the stability criteria,
we focus our attention on the switching signal which is a pos-
itive Harris process on a general metric space. A set of neces-
sary and sufficient conditions for exponentially almost sure sta-
bility of both continuous- and discrete-timeMJLSs with general
metric state space are obtained in the paper. As will be seen in
the technical development in this work, several existing results
on finite modes switched linear systems become the corollaries
of our work. From this point of view, one of the important con-
tributions in this work is to give a unified approach to describing
the almost sure stability ofMJLSs. Besides, some new scenarios
on random jump systems are studied and the stability criteria are
established correspondingly. These contractivity criteria for cer-
tain cases can be calculated by Monte Carlo algorithms, which
are proposed by [4] and [6].
The rest of the paper is organized as follows. Sections II and

III discuss the EAS-stability of a class of random jump sys-
tems which includes switched linear systems with stationary
switching signals as special case. Section IV provides results
on the uniform exponentially almost sure stability (UEAS-sta-
bility) of MJLSs. All the results are developed on both the con-
tinuous- and discrete-time settings. The conclusion of this work
is drawn in Section V.

II. EAS-STABILITY OF CONTINUOUS-TIME JUMP SYSTEMS

We will formulate the EAS-stability problems in Section II-A
for the continuous-time case. Sections II-B, II-C and II-D will
provide some necessary and sufficient conditions for exponen-
tially almost sure stability of random jump systems under dif-
ferent scenarios.

A. Problem Settings

Let be a complete probability space, and
be a measurable semiflow pre-

serving probability , which is defined as follows:
i) is measurable;
ii) is identity;
iii) ;

where . Also define the nonnegative integer by
. Denote the set of all real matrices by , and

let be a Banach space with metric induced by
the norm , where refers to any matrix norm. A map

from to is called cocycle over
if

(1)

with , where is the unit matrix in . Moreover,
let be a differentiable stochastic process taking values in

and let its derivative be a càdlàg (right-continuous with
finite left-hand limits) process with infinite many jumps. It is
well known (cf. [29]) that a càdlàg process is measurable and
has at most countable discontinuity points with probability one,
denote the discontinuity instants of on time by random
sequence , with for convention. Assume

for any . Let
be the holding time, which is the period

of time that the process remains at some value after
the th jump. Thus, for each trajectory, remains at the
position for a length of time and jumps to the
value of at the instant .
Now, consider the autonomous dynamic system:

(2)

where the state and is defined by (1). Then,
system (2) is a random jump system. A classical example for
system (2) is the linear jump system

(3)

with the initial value and the switching signal being a
strictly stationary process.
We are interested in finding a necessary and sufficient con-

dition for exponentially almost sure stability of system (2) in
terms of the jump instants. For this, we naturally assume the ex-
pectation of exists for any nonnegative integer , and
let and for
function .
Definition 2.1: The random jump system is said to be almost

surely exponentially stable (EAS-stable) if there is a random
such that for any initial

a.s. (4)

B. Nonstationary and Nonergodic Case

Stationarity and ergodicity are two common requirements in
studying the kind of random jump systems discussed in this
paper. A stochastic process is said to be stationary (or strictly
stationary) if its joint probability distribution does not change
when shifted in time or space. And ergodicity is used to describe
a dynamic system which has the same behavior averaged over
time as averaged over space (cf. [20]). However, we would like
to consider firstmore general settings without these two require-
ments under which a criterion can be established. To this end,
the following assumptions are made.
C1) and are

in .
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C2) Let the process

(or ) have (covariance)
spectrum with continuity at the origin and possess finite
expected values and covariances.

Remark 2.1: Recall that the (covariance) spectrum of a non-
stationary process is defined by [27] as a function of some vari-
able in , as a matter of fact, if process is weakly
stationary (the first and second moments do not vary with re-
spect to time, see [20]), it must have a (covariance) spectrum.
This is because a sufficient condition for to possess a (co-
variance) spectrum is that

exists, where

(5)

is the covariance. Here, the bar above an expression stands for
the complex conjugate.
To facilitate the proof of the main result in this section, we

need several lemmas. The first is in fact the continuous-time
Multiplicative Ergodic Theorem, which provides a key tool in
proving all the main theorems in this section.
Lemma 2.1 [28, Theorem B.3]: Let be a measurable

cocycle with values in such that

are in . There is with such that
for all , and the following properties hold if

:
i) exists.
ii) Let be the eigenvalues of
(where , the are real and may
be ), and the corresponding eigenspaces.
Let , , and

, we have ,

Remark 2.2: If the semiflow is ergodic, and are con-
stant almost everywhere.
Based on Multiplicative Ergodic Theorem, the following

simple lemma is established.
Lemma 2.2: Under Assumption C1), let

, a.s. If there is a subsequence
such that

a.s. (6)

then the system in (2) is EAS-stable. Further, if is ergodic, the
convergence rate in (4) is a constant.

Proof: From the assumption of the lemma, we have

a.s. (7)

Since the limit of exists as by Assump-
tion C1) and Lemma 2.1, from (7), we have for any

a.s. (8)

which means system (2) is EAS-stable. Further, if is ergodic,
by Remark 2.2 and (8), there are a positive integer and a set
of constants such that

a.s.

which implies the convergence rate is a constant.
We still need a mean ergodic theorem for a class of non-sta-

tionary processes and several technical lemmas.
Lemma 2.3 [27, Theorem 2]: For the class of discrete pa-

rameter stochastic processes , which have (covariance)
spectra, the continuity of the latter at the origin is a sufficient
condition for the mean square convergence of

to zero, where and defined by (5) is finite.
Now, it is ready to represent the sufficient condition for EAS-

stability of system (2) under Assumptions C1)–C2).
Lemma 2.4: Let , a.s.. Then, the

system in (2) under C1)–C2) is EAS-stable if

Proof: With system (2), for any and

which immediately gives

(9)

Now, since satisfies Assumption C2), by
Lemma 2.3, we have

in mean square
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where . Hence, for ,

in probability

(10)
Since , a.s. and

, there is a subsequence such that

(11)

By (10), we can take a further subsequence from such
that (see [3, Th. 20.5(ii)])

a.s.

and similarly a further subsequence from such that

a.s.

Thus, for any , there is an integer such that if

a.s. (12)

Note that , then

and similarly

Hence, by (12), we immediately obtain that for all ,

a.s.

which implies

a.s. (13)

since by the definition of . Consequently,

a.s.

(14)
where the right-hand side (RHS) of (14) exists because of (11).
Since Assumption C1) holds, then, by Lemma 2.2, system (2)
is EAS-stable.
For satisfying Assumption

C2), we can similarly obtain (13) and prove the lemma.
The following lemma gives a necessary condition for EAS-

stability of system (2) under Assumptions C1)–C2).
Lemma 2.5: The system in (2) under C1)–C2) is not EAS-

stable if

(15)

Proof: Suppose the condition in (15) is satisfied. In the
proof of Lemma 2.4, we know that either or

satisfying Assumption C2) can lead
to (14). Thus,

a.s. (16)

Now, let be the th column of unit matrix , and let

(17)

Denote as the matrix formed by
augmenting the vectors , then

Hence, by (16) and the fact that , we
have

(18)

As a result, at least one with initial value
cannot converge to 0. System (2) is not EAS-stable.
By the above arguments, we immediately obtain the neces-

sary and sufficient condition for EAS-stability of system (2)
under Assumptions C1)–C2).
Theorem 2.1: Let , a.s.. Then, the

system in (2) under C1)–C2) is EAS-stable if and only if

(19)

Proof: It is easy to see that Theorem 2.1 is a straightfor-
ward conclusion of Lemmas 2.4 and 2.5.
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C. Stationary but Nonergodic Case

An important case is that with being measure-
preserving, which yields the process to be
a strictly stationary process. In most cases, map are also
ergodic. Now, we give another assumption instead of ergodicity
on this set map to obtain a necessary and sufficient condition of
EAS-stability.
C3) Let for some measurable function

and be a measure-preserving map for each
. Also let the inverses of exist and

where

and .
Remark 2.3: As a matter of fact, measure-preserving maps

(cf. [20]) in Assumption C3) implies the stationarity
of as we desired. We will see in the sub-
sequent proof that the factor we used directly is the stationarity.
This implies that any stationary process is appli-
cable to our case. Also, under Assumption C3), ergodicity in
wide sense of (mean-square ergodic in the first
moment) is deduced by Lemma 2.7.
Lemma 2.6: If for some measurable function
and is a measure-preserving map for each ,

then both and for any positive
integer are strictly stationary processes.

Proof: Let be some integer. For
and real number , define

Since , for any integer ,

(20)

For any , let . Then,
by (20), we have for all . Hence,

(21)

Conversely, if satisfies (21), there is a such that
and for all , which

obviously gives

Thus, by (20) again, . Conse-
quently,

which implies by the definition of that

Since is a measure-preserving map, we have

. As a result,

which means that is strictly stationary.
Now, by the definition of , we have

which, under Assumption C3), yields . Since
, then

for some measurable . Similarly, we cab also prove that
process is strictly stationary.
Then, we could establish a mean square convergence result

under Assumption C3).
Lemma 2.7: Under Assumption C3), for any integer ,

we have

Proof: Since is strictly stationary by
Lemma 2.6, for any

Note that is a real matrix, as a result,

(22)
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Denote as the characteristic function, which means
if and if for some give set

. Now, we estimate the items in the RHS of (22) by (23)

(23)

Note that for ,

(24)

and for

(25)

(26)

where ex-
ists in (25) by Assumption C3). Then, we immediately obtain
by (24) and (26) that

and

Consequently, for any , we have inequalities (27) and
(28)

(27)

(28)

Then, by (27), the first term in the RHS of (23) satisfies (29),
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(29)

where the last inequality follows from Assumption C3) and the
fact that is strictly stationary. For the second term in
the RHS of (23), by (27) and (28), it is less than or equal to

Similarly, the remaining two terms in the RHS of (23) are also
no more than . Hence, by (23)

for any

Then according to (22) and Assumption C3), we have

which completes the proof.
The stability criterion of system (2) under Assumptions C1)

and C3) is given as follows.
Theorem 2.2: Let be integrable and .

The system in (2) under Assumption C1) and C3) is EAS-stable
if and only if there is an integer such that

(30)

Proof: First, we prove the sufficiency. Let be the integer
such that . Note that Lemma 2.7 implies the
existence of a subsequence such that

a.s.

Furthermore, is strictly stationary by
Lemma 2.6, then, with probability 1,

(31)

Note that is also strictly stationary, there is a positive
random variable with such that

a.s.

Since and almost surely,

a.s.

Moreover, for the system in (2),

then by using a similar argument as that for Lemma 2.2, we can
prove the remaining part of sufficiency.
To prove the necessity, suppose for all in-

teger . Hence,

In fact, from [21, Th. 1], we know that the limit inferior can be
replaced by limit, and we rewrite the above inequality as

Since is integrable, the proof of [21, Th. 2] implies
that there is a random variable with

(32)

such that

a.s. (33)

Note that, by (32), there is a set with such
that on . This immediately yields by (33) that

a.s.

which implies the system in (2) is divergent on . Thus, if the
system in (2) is almost surely stable, there must exist an integer

such that (30) holds.
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D. Stationary and Ergodic Case

In this subsection, we will provide a necessary and sufficient
condition for EAS-stability of system (2) with ergodicity of map
.
C4) Let for some measurable function
and be a measure-preserving and ergodic map
for each .

To derive the result, we need two technical lemmas. The
first lemma relax the condition of Birkhoff–Khinchin Theorem
([20]) to admit the expected value being minus infinite.
Lemma 2.8: Under Assumptions C4), if ,

we have

a.s. (34)

Proof: By Assumption C4) and Lemma 2.6, the process

is strictly stationary and ergodic; hence, if ,
the Birkhoff–Khinchin Theorem yields (34). So, we only need
to consider the case . For any functions
and , let . Since for any real number

by the Birkhoff–Khinchin Theorem, we have

a.s. (35)

Since

by (35), we immediately have

a.s.

(36)
Now, let in the RHS of (36), we obtain (34) again

by noting that

which completes the proof.
Lemma 2.9 [8, Lemma 3.4]: Let be an ergodic strictly

stationary sequence of matrices in . If is
finite and that, almost surely,

then the top Lyapunov exponent

associated with the sequence is strictly negative.
Now, the stability criterion of system (2) under C1) and C4)

is represented by
Theorem 2.3: Let and . The

system in (2) under Assumptions C1) and C4) is EAS-stable if
and only if there is an integer such that (30) holds.

Proof: Since is measure-preserving and er-
godic, by Lemma 2.6, is ergodic and hence

(37)

This together with Lemma 2.8 implies the sufficiency by a sim-
ilar argument as that of Theorem 2.2.
For the necessity, note that if system (2) is EAS-stable, similar

to (18), we have by (37) that

a.s.

which implies . Then, by Lemma 2.9

and hence the lemma is proved
Corollary 2.1: Let the semiflow be ergodic. Then, the

system in (2) under Assumption C1) is EAS-stable with con-
stant convergence rate if and only if there is a finite such
that

(38)

Proof: Let satisfy . Then there is
some integer such that

(39)

Consequently, by Assumption C1)

(40)

Let for all , then for all , and
hence

(41)

is measure-preserving and ergodic since is measure-pre-
serving and ergodic. Obviously, , then by
Theorem 2.3, system (2) is EAS-stable. Further, by the same
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arguments as those for Lemma 2.2, we know the convergence
rate is a constant.
Conversely, assume that system (2) is EAS-stable. Let
defined by (39), where can be taken as any constant,

then from (40), (41) and Theorem 2.3, we know that the neces-
sity is true.
Remark 2.4: By Corollary 2.1, we can immediately deduce

[5, Th. 3.2], where the system is linear and switched as in (3).

III. EAS-STABILITY FOR DISCRETE-TIME JUMP SYSTEMS

For the fixed probability space , let be a measur-
able map preserving and a measurable
function to the real matrices. Write

Consider the dynamic system:

(42)

where the state and the expected values of
exist for all . Now, we present the definition of EAS-
stability for discrete-time dynamic systems as follows.
Definition 3.1: The random system in (42) is said to be EAS-

stable if there is a random such that for any initial
and initial distribution ,

a.s.

All the results presented below can be worked out by a sim-
ilar argument as those of the continuous-time case employing
multiplicative ergodic theorem for discrete-time system (cf. [28,
Th. 1.6]) and their proofs are omitted for brevity. Now, we list
a series of assumptions in the following and then present sev-
eral necessary and sufficient conditions for almost sure stability
under different assumptions.
D1) is in .
D2) Let the process (or

) have (covariance)
spectrum with continuity at the origin and possess finite
expected values and covariances.

D3) Let the inverses of exists and

where

and .
D4) The map is ergodic.
Theorem 3.1: The system in (42) under Assumptions

D1)–D2) is EAS-stable if and only if

Theorem 3.2: Let be integrable. The system in
(42) under Assumptions D1) and D3) is EAS-stable if and only
if there is an integer such that

(43)

Theorem 3.3: Let . The system in (42)
under Assumptions D1) and D4) is EAS-stable with constant
convergence rate if and only if there is an integer such
that (43) holds.

IV. UEAS-STABILITY OF MJLSS

We now extend our results for the random jump systems
in the previous sections to MJLSs with the switching signal
taking values in some general metric spaces. First, we establish
a necessary and sufficient condition for uniformly exponen-
tially almost sure stability of a continuous-time MJLSs in
Section IV-A. Then, the discrete-time MJLSs will be discussed
in Section IV-B.

A. Continuous-Time MJLSs

In this section, we will apply the previous results to the fol-
lowing MJLS:

(44)

where , is a switching signal, which is assumed
to be a stationary Markov process with right continuous and fi-
nite left-hand limits trajectory, taking values in a general metric
state space ( is the Borel -field of ), and ,

. As Section II, we can define the jump instants of
by with and assume for any

. Let be the holding time such that .
Note that the convergence rate in Definition 2.1 is a random

variable and the switching rule is fixed, we now give a further
definition on uniform exponentially almost sure stability.
Definition 4.1: The random jump system is said to be uniform

exponentially almost surely stable (UEAS-stable) if there is a
constant such that (4) holds for any initial and initial
distribution .
First, we consider the simple case where is a countable state

space, say . Let be a transition probability
matrix with the property that for all and

a family of rates. Now, construct an
-valued continuous-time Markov process with rates
and transition probability matrix by (for example, [30]):
i) the trajectory of is piecewise constant and right
continuous,

ii)
on .

Obviously, is a stationary Markov process (all the
Markov processes mentioned hereafter are also assumed to be
time-homogeneous). Let , then is an
embedded Markov chain of with transition probability
matrix . Now, system (44) turns out to be a Markov jump
linear system (MJLS). Let denote the state transition
matrix of system (44) over time interval . Obviously, it is a
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random matrix. Also, let be the expected value with respect
to distribution .
To establish the main result in this section, we first provide

three lemmas. The first lemma indicates that if the rates of the
Markov process are bounded from below, the ratio of
jump time and the natural number cannot be arbitrarily
large.
Lemma 4.1: If the rates of Markov process sat-

isfy for some constant , then
, a.s.

Proof: Since given , is exponentially distributed
with parameter , we have

(45)

which yields . Hence, it can be immediately
obtained that for any ,

(46)

Furthermore, since by (45), we have

Consequently,

(47)

Now, note that by the definition of

which implies that the process is mutually inde-
pendent. Note that by (46), . Then, from (47)
we obtain

a.s.

Moreover, since the rates ; hence,

which completes the proof.
The following lemma establishes the Strong Law of Large

Numbers (SLLN) for the state transition matrix at jump
instances.
Lemma 4.2: If is a -irreducible and -recurrent

Markov process with transition probability matrix and rates
for some ,

then for any initial distribution , there is a distribution
such that

a.s.

(48)

Proof: Since is -irreducible and -recurrent, we
know that the embedded Markov chain is irreducible and
recurrent. Hence, there is a unique invariant measure for .
Moreover, by -positive recurrence, possesses a unique
stationary probability with for all , where is
the th component of .
Note that , , it can be

concluded that the invariant measure of satisfies (see
[9])

(49)

Hence, the embedded Markov chain is an irreducible and
positive recurrent chain taking values on a countable state space,
which means that is a probability distribution defined by the
lemma.
Now, since

where the first inequality follows from

Thus, SLLN holds for (see [26, Th.
17.0.1]) and the case

can be treated similarly as Lemma 2.8 and yields (48).
Note that the stability criteria in Section II are all derived for

some given initial distributions, to apply the previous results in
the current case where the initial distribution is arbitrary, we
need the following lemma:
Lemma 4.3: Let be a Q-irreducible and Q-recurrent

Markov process with state space . If, for some initial dis-
tribution of ,

a.s. (50)

then, for all initial distribution , (50) still holds.
Proof: First, note that when the initial distribution of

is

a.s. (51)

because of (50). Now, for any , let
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where denotes the probability of events conditional on the
chain beginning with . Hence, by (51)

(52)

Define its transition function for the time-homogeneous
by

where and is the -field generated by .
Then, for any , from the Chapman–Kolmogorov property,
we have

where the last equality follows from the fact that the inverse of
exists and

Consequently,

(53)

Thus, for any and any initial distribution , by the
Markov property and (53), we have

a.s.

which means is a martingale process. Further-
more, note that , by themartingale convergence
theorem, for any initial distribution ,
exists almost surely. And hence by Lebesgue’s dominated con-
vergence theorem, given

(54)

where denotes the expected value with respect to .
Now, since is -irreducible and -recurrent, if there

is a real constant such that for some ,
then we have

where “i.o.” means “infinitely often.” Hence, for the initial dis-
tribution ,

Therefore, there is a random sequence such that

a.s.

Consequently, by (54), for all we have

Hence, by (52) we know that and, for the initial distribu-
tion

This shows that for any initial distribution , (51) still holds and
hence leads to (50).
Remark 4.1: The conclusion of Lemma 4.3 also holds for the

case where is a general metric state space. The analysis before
(54) works well and what remains is just to show that
for some constant if and
if , respectively, where

(For the definition of -measure, see [26]). The
arguments of the remainder are similar to those in the above
proof.
Theorem 4.1: Let be a countable state space and

. If is a Q-irreducible and Q-pos-
itive recurrent Markov process with transition probability
matrix and bounded rates for
some , the MJLS (44) is UEAS-stable if
and only if there is an integer such that

(55)

where is the distribution satisfying .
Proof: First, we prove the sufficiency. By the conditions

of the theorem, we know that possesses a unique sta-
tionary probability distribution , which is assumed to be the
initial distribution at this point. Hence, turns out to be
a strictly stationary process. To apply the results in Section II,
let , which is a cocycle as we discussed before.
Thus, the system (44) coincides with (2). By Lemmas 4.1 and
4.2, , a.s. and for all

a.s.

From Lemma 2.2, we know that (4) holds when the initial dis-
tribution of is , and hence holds for all initial distributions
by Lemma 4.3. The UEAS-stability is thus proved.
The necessity part is obvious by Theorem 3.3 as

is strictly stationary and ergodic if the ini-
tial distribution is chosen as .
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Remark 4.2:
i) The condition guarantees as
almost surely.

ii) For irreducible Markov process with finite state
space , all the conditions in Theorem 4.1 are satisfied
automatically. Hence, system (44) with switching signal

being finite and irreducible Markov process is
EAS-stable if and only if there is an integer such
that (55) holds, which is the result of [6, Th. 3].

For the general case, where takes values in a metric
state space , we consider the simplest but a very important
class of Markov jump processes with a bounded generator (see
[14] for detailed construction). Intuitively speaking, the process
starts from a point and remains there for an ex-
ponentially distributed holding time with parameter ,
at which time it jumps to a new position according
to the Markov transition function . It then remains at
for another length of time , which is exponentially distributed
with parameter . The holding time is independent of
given . Then, it jumps to according to , and so

on. Obviously, is generated by the embeddedMarkov chain
with the transition function , where as

defined before. The stationary Markov processes taking values
on a countable state space that we discussed above belong to
this class.
We can obtain a similar result as that of Theorem 4.1 for the

class ofMarkov jump processes with bounded generator.
The proof idea is the same as that of Theorem 4.1, and the details
are omitted. In fact, recall that is Harris if and only if
there exists a nonzero -finitemeasure on its state space
such that for all ,

Now, let be positive Harris recurrent, by the construction
of , we have

for

where is defined above. Hence, is a Harris chain. More-
over, assume , it is easy
to see from [14] that the invariant measure of satisfies

(56)

where is the invariant probability distribution of . Then,
is a positive Harris chain. As a result, SLLN holds for .

Moreover, note that the holding times are constructed almost the
same as those of Markov processes taking values on a countable
state space, except that the set of parameters are uncountable,
the proof of Lemma 4.1 also works for the current case. Con-
sequently, , a.s.. By Remark 4.1, we
immediately deduce the following result.
Theorem 4.2: Let and the switching

signal be a Markov jump process with a bounded gen-
erator. If is positive Harris recurrent and the parame-
ters of the holding times ,
where are constants. Then, system (44) is
UEAS-stable if and only if there is an integer such that

(57)

where is defined by (56).

Remark 4.3: From the previous definitions of Markov pro-
cesses in this section, it is clear that the rates of
depend on the past states. That is, for the th jump, rate

is determined by state , where process
remains during the time interval . Thus, the contin-
uous-time MJLSs concerned with both Theorems 4.1 and 4.2
have the rates depending on the states (it is also the case for
the discrete-time MJLSs discussed in Section IV-B). Note that

is a first-order Markov process, for the linear systems
with random piecewise constant parameters following a high-
order Markov process rule, the stability properties can be dealt
with as well in principle by a similar approach.

B. Discrete-Time MJLSs

Finally, we study the discrete-time MJLS:

(58)

where , is a discrete-time switching signal taking
values in a general metric state space and ,

. Let denote the state transition matrix of system
(58) over time interval , where are integers. Now,
assume is a positive Harris chain, which means it pos-
sesses a stationary probability distribution . Coinciding with
the continuous-time case, we state the following result without
proof since the proof idea is the same while the techniques are
much easier.
Theorem 4.3: Let and the switching

signal be a positive Harris chain. Then, system (58) is
UEAS-stable if and only if there is an integer such that

(59)

where is the stationary probability distribution of .
Since an irreducible and positive recurrent chain taking

values on a countable state space is a positive Harris chain, we
obtain the following corollary from Theorem 4.3 directly.
Corollary 4.1: Let with being a count-

able state space and let the switching signal be an ir-
reducible and positive recurrent chain. Then, system (58) is
UEAS-stable if and only if there is an integer such that
(59) holds.
Remark 4.4: Every finite irreducible Markov chain is

positive recurrent, thus we can conclude that system (58)
with the switching signal being a finite and irreducible
Markov chain is UEAS-stable if and only if there is an integer

such that (59) holds, which reduces to the result of
[4, Proposition 3.4].

V. CONCLUSION

This paper has studied the exponentially almost sure stability
of random jump systems arising in modeling certain classes of
stochastic switched systems. The problem requires the modes
of the random jump systems to take values from a normed ma-
trix space. The solution was obtained by checking the contrac-
tivity of the jump systems after a finite number of switches being
applied. A series of necessary and sufficient conditions for ex-
ponentially almost sure stability of this class of random jump
systems were obtained for both the continuous- and discrete-
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time cases. These results were further extended to the Markov
jump linear systems with general metric state space and ob-
tained a series of necessary and sufficient conditions for ex-
ponentially almost sure stability of both continuous- and dis-
crete-time MJLSs, establishing a unified approach to describing
the almost sure stability of MJLSs.
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