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Comparison between copper and cisplatin transport mediated by human copper 

transporter 1 (hCTR1) 

Xiubo Du,
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Copper transporter 1 (CTR1) is a transmembrane protein that imports copper(I) in yeast and mammalian cells. Surprisingly, the protein 

also mediates the uptake of platinum anticancer drugs, e.g. cisplatin and carboplatin. To study the effects of several metal-binding 

residues/motifs of hCTR1 on the transport of both Cu+ and cisplatin, we have constructed Hela cells that stably express a series of 

hCTR1 variant proteins including H22-24A, NHA, C189S, CT178, H139R and Y156A, and compared their abilities to regulate the 

accumulation and cytotoxicity of these metal compounds. Our results demonstrated that the cells expressing the hCTR1 mutants of 

histidine-rich motifs in the N-terminus (H22-24A, NHA) resulted in a higher basal copper level in the steady state compared to those 

expressing wild-type protein. However, the cellular accumulation of both copper and cisplatin in these variants was found on a  similar 

level to that of wild type when incubated with excess amounts of metal compounds (100 μM). The cells expressing hCTR1 variants of 

H139R and Y156A exhibit lower capacities towards accumulation of copper but not cisplatin. Significantly, cells with the C189S 

variant partially retained the ability of the wild-type hCTR1 protein to accumulate both copper and cisplatin, while cells expressing C-

terminus truncated variant of hCTR1 (CT178) absolutely abolished this ability, suggesting that this motif is crucial for the function of 

the transporter.  

Introduction 

Copper is an essential element for life. The reversible oxidation 

from Cu+ to Cu2+ renders its function as a critical cofactor for a 

variety of cellular process from oxidative phosphorylation, iron 

metabolism, free radical detoxification, neurotransmitter 

synthesis to connective tissue maturation.1, 2 However, excess 

copper exhibits toxic effects as a result of generating reactive 

oxygen species which could damage the cellular components, 

including protein and DNA.3, 4 Therefore, the copper homeostasis 

has to be tightly regulated to avoid toxic effects. All organisms 

from yeast to humans have developed sophisticated mechanisms 

by which the cellular accumulation, distribution and 

detoxification of copper are properly controlled.5, 6 Malfunctions 

of copper relevant translation may cause diseases such as 

neurodegenerative diseases7 and two inherited diseases, i.e. 

Wilson’s and Menkes’ diseases, which were attributed to copper 

hyperaccumulation and deficiency respectively.8   

 Although the cellular copper uptake can be carried out by 

divalent metal transporter 1 (DMT1),9 the majority of copper 

acquisition is mediated by copper transporter 1 (CTR1),10 which 

transports cuprous copper (Cu+). Extracellular copper was 

suggested to exist with an oxidation state of +2 and reduced to 

Cu+ probably by membrane-associated reductases prior to 

translocation across the cellular membrane via CTR1.11 CTR1 is 

a membrane protein with three transmembrane domains, an 

extracellular N-terminus and an intracellular C-terminus. Three 

monomers of CTR1 form a channel-like pore, through which Cu+ 

is transferred across the membrane probably via a series of trans-

chelation reactions between sulfur- (Met and Cys) or nitrogen- 

(His) containing residues located at the inner face of the pore.12-14 

In addition to CTR1, the low affinity copper transporter CTR2, 

which mainly located intracellularly with a small fraction on 

plasma membrane, may account for some of the copper import.15  

 Copper transporter 1 (hCTR1) was also found to modulate the 

influx of Pt(II) based anti-cancer drugs such as cisplatin and 

carboplatin.16, 17 Elevated expression levels of human CTR1 

(hCTR1) in the human ovarian carcinoma cell were associated 

with increased cellular uptake of cisplatin, especially at the initial 

stage.18 Similar to copper, cisplatin also rapidly down-regulated 

hCTR1 in cultured human ovarian carcinoma cells by inducing 

internalization of the protein from the plasma membrane, which 

may contribute to the resistance of the drug.19 In spite of the 

importance of CTR1 protein in the uptake and resistance of 

cisplatin, the molecular details of CTR1–mediated cisplatin 

transport remain unclear. Considering both Cu(I) and Pt(II) are 

soft acids which shares same preference on the binding to soft 

ligands including methionine, such a residue on hCTR1 may be 

important for the transport of both Cu+ and cisplatin. Indeed, 

previous studies indicated that deletion of either the N-terminus 

of hCTR1 (amino acids 1-45) or the 40MXXXXM45 motif 

eliminated the ability of hCTR1 to transport copper and partially 

reduced the capacity to transport cisplatin.20 The Met-rich motif 

(150MXXXM154) located at the second transmembrane domain 

(TM2) was also shown to be critical for copper transport.21 

However, the role of this methionine(Met)-rich motif on cisplatin 

transport was contradictively reported: Mutations of Met150 and 

Met154 absolutely abolished the ability of exogenous hCTR1 to 

stimulate cisplatin uptake in small cell lung cancer cells 

(SCLC).22 On the contrary, cisplatin uptake was significantly 

enhanced in hCTR1-variant-transfected mouse embryo 

fibroblasts in which both alleles of CTR1 had been knocked out 

(MEF ctr1-/-).23 Furthermore, the fluorescence resonance energy 

transfer (FRET) assay of the interactions between yeast CTR1 

monomers showed that copper enhanced the FRET in a manner 

correlated with cellular copper uptake, while cisplatin did not 

change the FRET.24 Mutation of G167, which is located at the 

third transmembrane domain of hCTR1 and involved in helix 

packing of the protein, impaired cellular uptake of copper but not 

cisplatin.22 These results indicated that although hCTR1 

transports both Cu+ and cisplatin, the underlying machanisms 
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may differ due to the distinct ligand selectivity, reactivity and 

structure-dependence between copper and cisplatin. 

 
Fig. 1 Schematic diagram showing the topology of hCTR1 The 

residues or motifs which have been mutated, are highlighted in magenta. 

All histidine and tyrosine residues were mutated to alanine except H139, 

which was mutated to arginine, while cysteine was mutated to serine. 

 Besides methionine residues, other metal-binding amino acids, 

e.g. histidine and cysteine residues may also play important roles 

in the uptake of copper and cisplatin by hCTR1. To further 

investigate the molecular mechanism of hCTR1-meidated 

transport of these metal compounds, a series of mutant hCTR1 

expressing constructs were made and introduced into Hela cells, 

and  their effects on cellular resistances and accumulation of both 

copper and cisplatin in these stably transfected cells were 

measured and compared. The role of histidine-rich motifs in the 

N-terminus was investigated by mutation of histidine residues in 

H22-24 and H5, 6, 22-24 to alanine (H22-24A and NHA). In one 

hCTR1 variant, His139 in TM2 was mutated to arginine (H139R) 

since this residue was proposed to form stacked rings with 

Met150 and Met154 which provide chelation environment for 

copper transport.13 Two C-terminal variants C189S and CT178 

(Deletion of C-terminal fragment 179KAVVVDITEHCH) were 

constructed to investigate the role of cysteine residue since it is a 

soft ligand and suppose to coordiate with both Cu(I) and Pt(II) 

compounds. Tyr156 is located in the putative extracellular loop 

near TM2. Although not considered as a metal-binding residue, it 

may play a structrual role in copper entry into the transmembrane 

pathway.25 To further elucidate the role of this residue on hCTR1 

function, the Y156A variant was also constructed. All residues 

and motifs selected for mutation study were highlighted in Fig. 1. 

Experimental 

Materials 

Hela cells were purchased from American Type Culture 

Collection (ATCC, Manassas, VA). Cisplatin, carboplain, 

transplatin, fetal bovine serum (FBS) and Geneticin (G418) were 

purchased from Sigma (Sigma-Aldrich) and used withour further 

process. The platinum drugs were dissolved in OPTI-MEM 

medium (Invitrogen) to a final concentration of 10 mM prior to 

usage. Mouse anti-HA primary antibody was obtained from Cell 

Signaling Technology, Inc. (Danvers, MA). Rabbit anti-CTR1 

primary antibody, HRP conjugated anti-mouse and anti-rabbit 

secondary antibody were purchased from Santa-Cruz 

Biotechnology, Inc. RIPA lysis buffer was purchased from Pierce 

Biotechnology. Other chimicals are purchased from either Sigma 

or USB. All water used are from Millipore. 

Construction of wild-type and mutant pcDNA3.1-HA-hCTR1 
expression vectors 

The wild-type full length hctr1 gene was amplified from the 

plasmid harboring human ctr1 cDNA (kindly provided by Prof. 

D.J. Thiele26) by PCR using the forward primer: 5′-

TTATTAAAGCTTATGGATCATTCCCACCATATG-3′ and the 

reverse primer: 5′-TTATTACTCGAGTTACTAATGGCAAT-

GCTCTGTGATATC-3′, by which the Nde І and Xho І restriction 

sites were introduced at the 5′- and 3′-ends of the PCR product, 

respectively. After restriction cleavage, the PCR product was 

inserted into pcDNA3.1-HA vector (a gift from Prof. Marie C.M. 

Lin, the University of Hong Kong), which was digested with the 

same restriction enzymes. All mutant pcDNA3.1-HA-hCTR1 

expression vectors were generated using Phusion Site-Directed 

Mutagenesis Kit (Finnzymes) with primers summarized in Table 

S1. PCR reactions were performed with Phusion hot star high-

fidelity DNA polymerase and with plasmid pcDNA3.1-HA-

hCTR1 as the template (for the NHA mutant, H22-24A was used 

as a template). All plasmids were confirmed to be correct by 

DNA sequencing. 

Cell Culture 

Hela cells were maintained in Dulbecco’s modified Eagle’s 

Medium (DMEM) supplemented with 10% FBS, 100 U/ml 

penicillin G, 100 µg/ml streptomycin, and cultured at 37 oC, 5% 

CO2 incubator. 

Plasmid transfection and establishment of stable cells 

One day prior to transfection, 1×106 cells in 2 ml DMEM medium 

were plated so that cells will be 90% confluent at the time of 

transfection. To make the transfection complex, the plasmid (2 

μg) was diluted with 100 μl OPTI-MEM medium, followed by 

addition of FuGENE HD transfection reagent (4 μl). After 

incubation at room temperature for 15 minutes, the transfection 

complex was added to the cells in a drop-wise manner. An 

enhanced green fluorescent protein (EGFP) expressing plasmid, 

pcDNA3.1-EGFP (a gift from Prof. Marie C.M. Lin, The 

University of Hong Kong) was transfected into the non-

transfected cells under the same conditions, and the transfection 

efficiency was evaluated by monitoring the expression of EGFP 

under fluorescence microscope. 

 To establish stable cells, cells after 24 hours of transfection 

were passaged to fresh DMEM/FBS medium containing 0.7 

mg/ml geneticine (G-418) with the dilution of 1:8. Growth 

medium was renewed every 2-3 days and those dead cells were 

removed. Cells trasfected with different plasmid were cultured in 

the presence of G418 for 3-4 weeks until no more dead cells were 

found and EGFP expression was observed in >95% cells 
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transfected with EGFP expressing plasmid.  

Cell extracts and western blotting 

After washing three times with PBS, the cell pellets were lyzed in 

50-100 μl RIPA lysis buffer (50 mM Tris-HCl pH 7.4, 150 mM 

NaCl, 1% NP-40, 0.25% Na-deoxycholate and 1% cocktail 

protease inhibitor) by vortexing and the supernatant was collected 

by centrifugation (13 000 rpm, 30 min, 4 °C). The total protein 

concentration was determined by BCA protein assay kit 

(Novagen). Total protein extracts (20 μg) were separated over a 

12.5% tris-glycine gel and electro-blotted onto the PVDF 

membrane using the Semi-Dry transfer unit Hoefer TE 77 

(Amersham). The membrane was blocked with TBS-tween (50 

mM Tris-HCl, 150 mM NaCl, 0.1% Tween-20, pH 7.5) 

supplemented with 5% non-fat milk (blocking buffer) at room 

temperature for one hour and then incubated with appropriate 

primary antibody diluted in the blocking buffer at room 

temperature for one hour. After washed with TBS-tween buffer 

for three times for 10 mins each, the blot was incubated with 

corresponding horseradish peroxidase-conjugated secondary 

antibody with shaking at room temperature for another one hour. 

The bolt was washed again with TBS-tween buffer three times for 

10 mins each. The signal was detected by chemiluminescent ECL 

system for horseradish peroxidase. 

Biotinylation of cell surface proteins 

To label the cell surface proteins, biotinylation of cells was 

carried out using the thiol-cleavable, cell-impermeable Sulfo-

NHS-SS-biotin reagent (Pierce). Other than stated, all procedures 

were carried out in ice. Before biotinylation, cells were placed in 

ice for 15 minutes, the culture medium was removed and the cells 

were washed once with DMEM containing HEPES buffer (25 

mM) and three times with PBS containing 1.0 mM MgCl2 and 0.1 

mM CaCl2. Cells were then incubated with 1.27 mM Sulfo-NHS-

SS-biotin reagent dissolved in biotinylation buffer (10 mM 

triethanolamine, 150 mM NaCl, 2 mM CaCl2, pH 7.5) for 30 min. 

Biotinylation was quenched by incubation with glycine (100 mM 

dissolved in PBS with 1.0 mM MgCl2 and 0.1 mM CaCl2) for 30 

min, this step was repeated. Cells were lyzed in a lysis buffer (50 

mM Tris-HCl, 1% Triton-X-100, 150 mM NaCl and 5 mM 

EDTA, pH 7.5) by vortexing for 10 mins followed by incubation 

for one hour. The supernatant was collected by centrifugation (13 

000 rpm, 30 mins, 4 oC). The supernatant (10%) was partially 

retained for protein concentration determination and the rest was 

incubated with streptavidin- agarose (Pierce) at the ratio of 100 μl 

agarose per 900 μl of supernatant at 4 °C for overnight. The 

unbound proteins were removed by centrifugation (500 rpm, 5 

mins, 4 °C) and the agarose was washed three times with lysis 

buffer and twice with wash buffer 1 (50 mM Tris-HCl, 0.1% 

Triton-X-100, 150 mM NaCl and 5 mM EDTA, pH 7.5) and once 

with wash buffer 2 (50 mM Tris-HCl, pH 7.5). Proteins were 

eluted with 150 mM dithiothreitol (DTT) diluted in SDS-PAGE 

loading buffer and separated with SDS-PAGE and hCTR1 variant 

proteins were detected using an anti-HA antibody by western 

blotting as described above. 

Cell survival assay 

Cell proliferation was measured by XTT assay (Roche). Around 

five thousand cells stably expressing variant hCTR1 proteins in 

100 μl growth medium were plated into the wells of a 96-well 

tissue culture plate. After overnight incubation, cells were 

exposed to the drugs of different concentrations. To measure cell 

sensitivities towards cisplatin, cells were cultured in 100 μl 

OPTI-MEM medium containing 0-400 μM cisplatin for 10 mins. 

Subsequently, the drug containing cultural medium with the drug 

was removed and the cells were washed once with pre-warmed 

PBS and further cultured in 100 μl fresh culture medium for 

another 4-5 days. To measure cell sensitivities towards CuSO4, 

cells were continually cultured in 100 μl OPTI-MEM medium in 

the presence of different concentrations of CuSO4 (0-200 μM) for 

96 hours. And the medium with the metal ion was then removed 

and the cells were washed once with pre-warmed PBS and further 

cultured in 100 μl fresh culture medium for another 24 hours.  

 To prepare the XTT labeling mixture (Cell Proliferation Kit 

II), XTT labeling reagent was mixed with the electron-coupling 

reagent at 50:1 immediately prior to usage. XTT labeling mixture 

(50 μl) were added to each well and incubated at 37 °C for 4-24 

hours. The absorbance at 495 nm was measured with a reference 

wavelength at 695 nm. The survival curve was generated by 

plotting the absorbance (A495-A695) versus the metal 

concentrations. 

Cellular metal ions accumulation 

Cells stably expressing variant hCTR1 proteins were seeded in 6-

well plates one day prior to the expreiment. After 24 hours, cells 

were exposed to either CuSO4 (100 μM) for 1 hour or platinum-

containing agents (cisplatin, transplatin or carboplatin, 100 μM) 

for 10 mins by the addition of metal/drug containing OPTI-MEM 

medium. The medium was removed after incubation and cells 

were washed three times with ice-cold PBS. Cells were colleted 

and washed with ice-cold PBS once. For each sample, half of the 

cells were lyzed using RIPA buffer and the total protein 

concentration was measured by BCA protein assay kit. The 

remaining cells were digested with 65% nitric acid (50 μl) at 65 

°C for overnight to thoroughly dissolve all cellular debris. The 

mixture was diluted in the following day with buffer containing 

0.1% Triton X-100, 1.4% nitric acid and 2 ppb Tl. Metal 

concentrations were determined by inductively coupled plasma 

mass spectroscopy (ICP-MS, 7500a Agilent technologies) and 

were normalized with total protein concentration. 

Results and discussion 

HA-hCTR1 Expression in Transfected Cells 

The effects of the wild-type and hCTR1 mutants on cellular 

uptake and toxicity of copper and platinum-containing drugs were 

investigated using cisplatin-sensitive Hela cell line.27 A series of 

stably transfected Hela cell lines harboring the wild-type or 

mutant hCTR1 including H22-24A, NHA, H139R, Y156A, 

C189S and CT178 were established. An HA-tag was added to the 

N-termini of these proteins to facilitate the detection of proteins 

by Western blot. The expression of exogenous hCTR1 in the 

stably transfected cells was confirmed by western blot using 
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antibodies against the HA-tag and the internal region of human 

CTR1 (Fig. 2). A band migrating at ~ 40 kDa was detected by 

both anti-HA and anti-CTR1 antibodies corresponding to hCTR1 

expressed from the transfected plasmid. This is in agreement with 

previous reports28, 29 that hCTR1 was N- and O-glycosylated at 

Asn-15 and Thr-27 respectively, with a molecular weight of ca. 

37 kDa for the mature protein. Therefore, the exogenous HA-

hCTR1 expressed from the introduced plasmids was successfully 

glycosylated. 

 

 
Fig. 2 Western blot analysis of exo-hCTR1 expressed in total cell 

lysates (A) and cell surface (B) The antibody against the β-subunit of 

Na+, K+-ATPase was used as the loading control and marker for 

membrane fraction. 

 As shown in Fig. 2B, the successful biotinylation of hCTR1 

proteins indicated that both the wild-type and different mutants of 

hCTR1 were correctly localized on the plasma membrane, as was 

the β-subunit of Na+/K+-ATPase, a plasma membrane marker. 

The expression levels of hCTR1 variants were comparable to the 

wild-type protein and also migrated at ~ 40 kDa, corresponding to 

the HA-tagged monomer as observed previously.30, 31 Based on 

these studies, we found that all the residues or motifs examined in 

this study are not critical determinants for the correct cellular 

distribution of hCTR1. 

hCTR1 Regulation of Copper Uptake and Cytotoxicity 

The basal copper level was tested by incubation of cells 

transfected with hCTR1 variant plasmids in DMEM medium in 

the presence of ca. 0.3 μM copper ions. The basal copper level in 

hCTR1-transfected cells was found to be 2.4-fold higher than that 

in the empty vector transfected cells as shown in Fig. 3A, in 

agreement with previous studies that over-expression of hCTR1 

in mammalian cells stimulated copper uptake.21, 32 Hela cells 

expressing hCTR1 variants of H139R reduced basal copper levels 

by 22% with regards to that in the wild-type protein expressed 

cells (Hela/hCTR1). Deletion of the C-terminal fragment 
179KAVVVDITEHCH exhibits similar effects to the C189S and 

Y156A variant in terms of copper uptake, which reduced basal 

copper levels by ~60%. Unexpectedly, the basal copper 

accumulation levels in the cells expressing the N-terminal 

variants increased by 1.2-fold and 1.5-fold for H22-24A and 

NHA respectively in comparison with that in the wild-type 

hCTR1 expressed cells (Fig. 3A). 

 To measure the rates of copper accumulation, cells transfected 

with variant hCTR1 expressing vectors were exposed to 100 μM 

CuSO4 for 1 h. Similar to basal copper accumulation experiment, 

the cells expressing the wild-type hCTR1 enhanced copper 

uptake by 2-fold compared with the empty vector transfected 

cells (Fig. 3B). The cells expressing the H139R and Y156A 

variants reduced the rates of copper accumulation by 34% and 

39%, respectively. Deletion of the 12 amino acids in the C-

terminus (179KAVVVDITEHCH) disrupted copper transport, 

whereas the single mutation of Cys189 retained 83% capacity of 

copper transport. However, the copper accumulation in the H22-

24A and NHA expressing cells are only slightly higher than that 

in the wild-type protein transfected cells. 

 To examine the expression of hCTR1 variants on the cellular 

sensitivity towards copper toxicity, the IC50 values of CuSO4 in 

these transfected cells were further measured by the XTT method. 

Cells were exposed to increasing concentrations of CuSO4 for 96 

hrs prior to measurement. The cells expressing the wild-type 

hCTR1 was 4.3-fold more sensitive to copper than those cells 

transfected with an empty vector (IC50 16.1 μM versus 69.4 μM, 

Fig. 3C and 3D). Cells expressing the H22-24A and NHA 

showed slightly more sensitive to copper than the wild-type 

hCTR1 expressed cells, with IC50 of 14.3 and 10.6 μM, 

respectively. Mutations of either His-139, Tyr-156 and Cys-189 

reduced the cell sensitivities towards copper, indicating that  

these residues in hCTR1 are important for copper transport. 

Among all hCTR1 variants, truncation of C-terminus (CT178) 

rendered the transfected cells the most insensitive for copper 

accumulation, in agreement with our pervious results that the 

deletion of the C-terminal disabled copper uptake. Theses results 

clearly demonstrated that higher copper accumulation in hCTR1 

variant transfected cells would lead to higher cytotoxicity. 

 

 
Fig. 3 Effects of mutations of hCTR1 on copper uptake and 

sensitivity towards the cytotoxicity of copper in Hela cells (A) Total 

basal copper accumulation in cells cultured in DMEM. (B) Total copper 

accumulation upon exposure to 100 μM CuSO4 for 1 hour. (C) Survival 

rates of Hela cells harboring empty vector (); the wild-type hCTR1 (); 

H22-24A (▲); NHA (▼); H139R (); Y156A (◄); C189S (►) and 

CT178 (), after 96 h continuous exposure to increasing concentrations 

of CuSO4 (20 μM -200 μM). (D) IC50 of CuSO4 with Sigmoidal fitting. 

Error bars represent standard derivations from four independent 

experiments. The asterisk (*) indicates p<0.05 as determined by the 

Student's t test, compared with the wild-type hCTR1. 

 Based on the result above, it seems the His-139, Tyr-156 and 

Cys-189 residues were partially involved in the transport of Cu+ 

ions, while the intact C-terminus is crucial for the normal 

function of hCTR1 on copper transport. However, the role of two 

His-rich motifs (3HXHH and 22HHH) at the N-terminus of 

hCTR1 in uptake of copper of basal and excess level seems 

controversial. Hela cells expressing variants of H22-24A and 

NHA, especially NHA, exhibited obviously higher basal copper 
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accumulation compared with cells expressing the wild-type 

hCTR1, while no such effect was observed when extra copper 

ions (100 μM) were added to the cultural medium. It was 

believed that the extracellular free or protein bound Cu2+ ions 

were reduced by unidentified reductases or reducing agents (e.g. 

ascorbate) at the cell surface to Cu+ prior to being transferred 

across the membrane via hCTR1. Our preliminary study showed 

that Cu2+ bound to hCTR1 via the two His-rich motifs with 

moderate affinity (Kd =9.8 μM) (unpublished data). It is likely 

that at lower copper concentrations (DMEM contains ~ 0.3 μM 

Cu), binding of Cu2+ to the His-rich motifs might inhibit the 

reduction of Cu2+ to Cu+ and subsequently reduce the 

accumulation of copper in cells. Under copper replete conditions, 

the excess copper would result in the system less sensitive 

towards the effects of the His-rich motifs.  

Effects of hCTR1 on Initial Influx of Platinum-based Drugs 

The effects of hCTR1 on the influx of platinum containing drugs 

were examined similarly by comparing the cellular platinum 

accumulation between Hela and Hela/hCTR1 cell lines. Since the 

major contribution of hCTR1 to cisplatin uptake occurred in the 

initial phase of cisplatin influx,33 here we determined the initial 

influx of platinum drugs by exposing cells to cisplatin, 

carboplatin or transplatin at the concentration of 100 μM for 10 

mins. The cell associated platinum contents were measured by 

ICP-MS and the results were summarized in Fig. 4. Hela cells 

expressing exogenous hCTR1 resulted in a 2.2-fold increase in 

platinum accumulation compared with cells transfected with an 

empty vector under identical conditions. Such effects are even 

more pronounced for carboplatin, i.e. a 2.9-fold increase of 

platinum contents in Hela cell was observed due to the expression 

of exogenous hCTR1. In contrast, the platinum contents were 

almost the same for the two types of cells when exposed to 

transplatin, indicating that hCTR1 did not stimulate the cellular 

accumulation of transplatin. The initial influx of transplatin in 

Hela/hCTR1 cells is 1.1-fold higher than that of cisplatin, while 

the initial influx of carboplatin is 58% of that of cisplatin. Our 

results demonstrated that transplatin entered cells via hCTR1-

independent pathway, in agreement with a previous report that re-

expression of hCTR1 in mouse embryo fibroblasts ctr1-/- cells did 

not stimulate the cellular accumulation of transplatin.23 

 
Fig. 4 Pt-associated with Hela cells transfected with an empty vector 

or hCTR1 expression vector, error bars represent standard 

derivations from six separate cultures. The asterisk indicates p<0.05 as 

determined by the Student's t test.  

hCTR1 Regulation of Cisplatin Uptake and Cytotoxicity 

The effects of the expression of hCTR1 variant proteins on the 

initial influx of cisplatin in Hela cells were examined by exposing 

cells to 100 μM cisplatin for 10 min and the cell associated 

platinum contents were measured. As shown in Fig. 5A, C189S- 

transfected cells significanly inhibited platinum uptake with 42% 

of the incremental increase in platinum content produced by the 

wild-type hCTR1. Notably, C-terminal truncation (CT178) 

impaired the cisplatin transport function of hCTR1 (Fig. 5A), 

whereas the platinum content increased by 1.1-fold compared 

with that for the empty vector transfected cell, or 7.3% of the 

incremental increase in that produced by the wild-type hCTR1. 

However, it was found that cells expressing either of hCTR1 

variants of H22-24A, NHA, H139R and Y156A preserved 

cisplatin transport function of hCTR1. 

 The effects of 10 mins exposure to increasing amounts of 

cisplatin on the growth rate of Hela cells transfected with hCTR1 

variant plasmids during a subsequent period of 4 days were 

investigated (Fig. 5B). As expected, the expression of the wild-

type hCTR1 increased the sensitivity of Hela cells to cisplatin by 

a factor of 2.1-fold, with the IC50 decreased from 193.1±9.6 to 

92.4±5.9 μM (Fig. 5C). Consistent with their abilities to enhance 

cisplatin uptake to a similar extent to the wild-type protein, 

expression of either H22-24A, NHA, H139R or Y156A variants 

increased cisplatin cytotoxicity by 1.9-, 2.1-, 1.7- and 2.1-folds, 

with IC50 of 102.9±12.1, 90.4±5.6, 115.2±5.2 and 93.9±4.1 μM, 

respectively. However, expression of either C189S or CT178 

rendered Hela cells less sensitive to platinum compared with that 

of the wild-type hCTR1, with the IC50 values of 131.2±20.1 and 

165.8±9.3 μM, respectively. Significantly, the correlation 

between cisplatin accumulation and cytotoxicity of the drug 

among hCTR1 variants expressed cells was noted, demonstrating 

that the drug accumulated by the exogenous hCTR1 was 

successfully transferred to the critical targets such as DNA.  

 
Fig. 5 Effects of mutations of hCTR1 on cisplatin accumulation and 

sensitivity towards the cytotoxicity of cisplatin in Hela cells (A) Total 

platinum accumulation upon exposure to 100 μM cisplatin for 10 mins. 

(B) Survival rates of Hela cells harboring empty vector (); the wild-type 

hCTR1 (); H22-24A (▲); NHA (▼); H139R (); Y156A (◄); 

C189S (►) and CT178 (), after exposure to increasing concentrations 

of cisplatin for 10 mins and then cultured in normal media for 96 hrs. (C) 

IC50 of cisplatin determined with Sigmoidal fitting. The error bars 

represent standard derivations from four independent experiments. The 

asterisk  indicates p<0.05 as determined by the Student’s t test, compared 

with the wild-type hCTR1. 

 Like in the case of copper, among all the variant forms of 

hCTR1 examined, only truncation at the C-terminus (CT178) 

completely abolished hCTR1 mediated cellular uptake of 

cisplatin, whereas the single mutation at Cys189 only partially 

reduced the cisplatin uptake. Therefore, the C-terminus of hCTR1 

is required for both the cellular uptake of copper and cisplatin. In 
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the absence of Cys189, the adjacent two His residues (H188 and 

H190) might serve as the coordination ligands for Cu(І) and 

probably Pt(II), as supported by the observation of Cu-N (His) 

coordination signal in the EXAFS spectra of hCTR1 when 

incubated with Cu+.13 According to our previous studies, cisplatin 

was presumed to be transported via hCTR1 in its monofunctional 

form (cis-[PtCl(NH3)2]
+).34 Thus, similar to Cu+, the 

monofunctional cisplatin is likely to pass through the pore created 

by three monomers of hCTR1 via a series of trans-chelation 

reactions between Met154 and Met150.13 The C-terminal Cys189 

(or 188HCH motif) may participate in the sequential trans-

chelation reactions, accepting copper and cisplatin from the upper 

ring probably formed by three Met150  and then handling them 

down.  

 The requirement of Met-rich motifs at the N-terminus of 

hCTR1 for cisplatin transport has been extensively studied,20 

however, the role of its His-rich motifs (3HXHH and 22HHH) was 

poorly understood.  We found mutations at the His-rich motifs 

did not affect the ability of hCTR1 to stimulate the cellular 

uptake of cisplatin, suggesting that these residues play a less 

important role in cisplatin transport. This is supported by the 

recent study showing that cisplatin binds predominately to the N-

terminus methionine residues but not histidine residues of 

hCTR1.34, 35 Recent electro-crystallographic analysis 

demonstrated that the second transmembrane helix of hCTR1 

serves as the key element lining the pore created by three 

monomers of hCTR1.13 Along the pore, Met154, Met150 and 

H139 were suggested to form three stacked rings which mediated 

copper influx through a series of trans-chelation reactions. 

Previously, intensive studies have demonstrated the importance 

of these three residues in hCTR1-mediated copper transport.20-22, 

25 We show here that the mutation of H139 to arginine decreased 

copper but not cisplatin accumulation in Hela cells, indicating 

that H139 of hCTR1 play little role in cisplatin transport, in 

agreement with a previous report that mutation of H139 to 

alanine (H139A) did not significantly affect its ability to transport 

cisplatin in Ctr1-/- MEF system.23 Similarly,  Y156 located at the 

second transmembrane segment plays an important role in the 

uptake of copper but not cisplatin in Hela cells. Previously, it was 

also observed an 80% reduction at the copper transport rate 

compared with that of the wild-type protein in Sf9 cells 

expressing the Y156A variant.25 This residue is located closely to 

Met154 and may structurally help to place Met154 appropriately. 

The discrepancy occurred for the these variants such in mediating 

copper and cisplatin uptake, possibly attributed to variation in the 

local structure or charge for these variant proteins. 

Conclusion 

The effect of hCTR1 mutations on cellular accumulation and 

sensitivity enhancement of cytotoxicity of both copper and Pt 

drugs was investigated. The necessity of the C-terminus of 

hCTR1 in cisplatin uptake was addressed in this report, which 

might shed light on the mechanism of cisplatin uptake. Our 

combined data suggested that despite of both copper and cisplatin 

passing through the trimeric pore of hCTR1 via a series of trans-

chelation reactions, the detailed molecular mechanism might be 

different. Further biological and structural investigations of the 

transport are therefore warranted. 

Acknowledgement 

This work was supported by RGC of Hong Kong (703808, 

HKU1/07C, 704909, 705310 and N_HKU75209), Croucher 

Foundation and the University of Hong Kong. We thank D.J. 

Thiele (University of Michigan) for the hCTR1 gene, and Marie 

C.M. Lin (University of Hong Kong) for pcDNA3.1-HA and 

pcDNA3.1-EGFP vectors, Z.J. Guo (Nanjing University) for 

helpful discussion. 

 
a Department of Chemistry, The University of Hong Kong, Hong Kong, 

China. Fax: (+852) 2857 1586; Tel: (+852) 2859 8974; E-mail: 

hsun@hku.hk 
b School of Life Sciences, Shenzhen University, Shenzhen, China.  

† Electronic Supplementary Information (ESI) available: [Primers used 

for generation of pcDNA3.1-HA-hCTR1 variants are listed in Table S1]. 

See DOI: 10.1039/b000000x/ 

 

 

1. D. W. Cox, Br. Med. Bull., 1999, 55, 544-555. 

2. C. D. Vulpe and S. Packman, Annu. Rev. Nutr., 1995, 15, 293-322. 

3. I. Fridovich, Science, 1978, 201, 875-880. 

4. B. Halliwell, Am. J. Med., 1991, 91, 14S-22S. 

5. M. C. Linder, N. A. Lomeli, S. Donley, F. Mehrbod, P. Cerveza, S. 

Cotton and L. Wotten, Adv. Exp. Med. Biol., 1999, 448, 1-16. 

6. M. C. Linder, L. Wooten, P. Cerveza, S. Cotton, R. Shulze and N. 

Lomeli, Am. J. Clin. Nutr., 1998, 67, 965S-971S. 

7. D. J. Waggoner, T. B. Bartnikas and J. D. Gitlin, Neurobiol. Dis., 

1999, 6, 221-230. 

8. P. C. Bull and D. W. Cox, Trends Genet., 1994, 10, 246-252. 

9. M. Arredondo, P. Munoz, C. V. Mura and M. T. Nunez, Am. J. 

Physiol. Cell Physiol., 2003, 284, C1525-1530. 

10. P. V. van den Berghe and L. W. Klomp, J. Biol. Inorg. Chem., 2010, 

15, 37-46. 

11. R. Hassett and D. J. Kosman, J. Biol. Chem., 1995, 270, 128-134. 

12. S. G. Aller and V. M. Unger, Proc. Natl. Acad. Sci. USA, 2006, 103, 

3627-3632. 

13. C. J. De Feo, S. G. Aller, G. S. Siluvai, N. J. Blackburn and V. M. 

Unger, Proc. Natl. Acad. Sci. USA, 2009, 106, 4237-4242. 

14. S. B. Howell, R. Safaei, C. A. Larson and M. J. Sailor, Mol. 

Pharmacol., 2010, 77, 887-894. 

15. J. Bertinato, E. Swist, L. J. Plouffe, S. P. Brooks and R. L'Abbe M, 

Biochem. J., 2008, 409, 731-740. 

16. A. K. Holzer, G. H. Manorek and S. B. Howell, Mol. Pharmacol., 

2006, 70, 1390-1394. 

17. X. Lin, T. Okuda, A. Holzer and S. B. Howell, Mol. Pharmacol., 

2002, 62, 1154-1159. 

18. A. K. Holzer, G. Samimi, K. Katano, W. Naerdemann, X. Lin, R. 

Safaei and S. B. Howell, Mol. Pharmacol., 2004, 66, 817-823. 

19. A. K. Holzer, K. Katano, L. W. Klomp and S. B. Howell, Clin. 

Cancer Res., 2004, 10, 6744-6749. 

20. C. A. Larson, P. L. Adams, D. D. Jandial, B. G. Blair, R. Safaei and 

S. B. Howell, Biochem. Pharmacol., 2010, 80, 448-454. 

21. S. Puig, J. Lee, M. Lau and D. J. Thiele, J. Biol. Chem., 2002, 277, 

26021-26030. 

22. Z. D. Liang, D. Stockton, N. Savaraj and M. Tien Kuo, Mol. 

Pharmacol., 2009, 76, 843-853. 

23. C. A. Larson, P. L. Adams, B. G. Blair, R. Safaei and S. B. Howell, 

Mol. Pharmacol., 2010, 78, 333-339. 

24. D. Sinani, D. J. Adle, H. Kim and J. Lee, J. Biol. Chem., 2007, 282, 

26775-26785. 

25. J. F. Eisses and J. H. Kaplan, J. Biol. Chem., 2005, 280, 37159-

37168. 

26. J. Lee, M. M. Pena, Y. Nose and D. J. Thiele, J. Biol. Chem., 2002, 

277, 4380-4387. 



7 

27. J. Zisowsky, S. Koegel, S. Leyers, K. Devarakonda, M. U. Kassack, 

M. Osmak and U. Jaehde, Biochem. Pharmacol., 2007, 73, 298-307. 

28. A. E. Klomp, B. B. Tops, I. E. Van Denberg, R. Berger and L. W. 

Klomp, Biochem. J., 2002, 364, 497-505. 

29. E. B. Maryon, S. A. Molloy and J. H. Kaplan, J. Biol. Chem., 2007, 

282, 20376-20387. 

30. J. F. Eisses and J. H. Kaplan, J. Biol. Chem., 2002, 277, 29162-

29171. 

31. Y. Guo, K. Smith, J. Lee, D. J. Thiele and M. J. Petris, J. Biol. 

Chem., 2004, 279, 17428-17433. 

32. I. S. Song, N. Savaraj, Z. H. Siddik, P. M. Liu, Y. J. Wei, C. J. Wu 

and M. T. Kuo, Mol. Cancer. Ther., 2004, 3, 1543-1549. 

33. C. A. Larson, B. G. Blair, R. Safaei and S. B. Howell, Mol. 

Pharmacol., 2009, 75, 324-330. 

34. X. Wang, X. Du, H. Li, D. S. Chan and H. Sun, Angew. Chem. Int. 

Ed. Engl., 2011, 50, 2706-2711. 

35. Z. Wu, Q. Liu, X. Liang, X. Yang, N. Wang, X. Wang, H. Sun, Y. Lu 

and Z. Guo, J. Biol. Inorg. Chem., 2009, 14, 1313-1323. 

 


