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Time-dependent density functional theory based Ehrenfest dynamics with atom-centered basis func-
tions is developed in present work. The equation of motion for electrons is formulated in terms of
first-order reduced density matrix and an additional term arises due to the time-dependence of basis
functions through their dependence on nuclear coordinates. This time-dependence of basis functions
together with the imaginary part of density matrix leads to an additional term for nuclear force. The
effects of the two additional terms are examined by studying the dynamics of H2 and C2H4, and
it is concluded that the inclusion of these two terms is essential for correct electronic and nuclear
dynamics. © 2011 American Institute of Physics. [doi:10.1063/1.3615958]

I. INTRODUCTION

Born-Oppenheimer molecular dynamics (BOMD) and
extended Lagrangian molecular dynamics1–3 are extensively
used to describe processes when the systems are constrained
to the ground state or a certain excited state potential energy
surface. However, these methods cannot be applied to non-
adiabatic processes where several potential energy surfaces
are involved or where a rapidly varying time-dependent exter-
nal field is present. To properly describe these processes, sur-
face hopping method4–9 or Ehrenfest dynamics8–21 have been
developed. A detailed comparison of these two approaches
can be found in the review article by Hack and Trular.8 Fur-
thermore, surface hopping is found to be more appropriate
to describe reactions passing through close lying electronic
states while ending at well-separated states such as photoi-
somerisation, whereas Ehrenfest dynamics is more appropri-
ate to the statistical averages of the dynamics. However, one
must calculate the energies, nuclear forces of several involved
states and the non-adiabatic couplings between these states
in surface hopping method, which renders the method in-
tractable for large systems. On the other hand, in Ehrenfest
dynamics, electrons follow the time-dependent Schrödinger
equation and the nuclei move on an averaged potential surface
that involves several electronic states. It is thus conceptually
simpler and can be readily applied to larger systems.

For a many-electron system such as atoms and molecules,
approximations have to be employed to solve the time-
dependent Schrödinger equation. Time-dependent density
functional theory (TDDFT) (Ref. 22) has shown to be a rea-
sonably good method by mapping a time-dependent interact-
ing many-electron system to a non-interacting system. In prin-
ciple TDDFT is not applicable to the case involving nuclei
motions,23 and instead, multi-component TDDFT (Refs. 24
and 25) should be used. Nonetheless, TDDFT based Ehren-

a)Author to whom correspondence should be addressed. Electronic mail:
ghc@everest.hku.hk.

fest dynamics still provides an attractive method to deal with
non-adiabatic processes.

TDDFT-based Ehrenfest dynamics has been imple-
mented mostly in methods employing plane wave basis
set.10–14 Whereas the electron dynamics and the nuclear
forces are readily evaluated using plane wave basis set, pseu-
dopotential has to be adopted to describe core electrons. On
the other hand, the methods employing atom-centered basis
functions, e.g., Gaussian functions and Slater functions, are
more efficient for finite systems such as atoms or molecules.
In the present work, a TDDFT-based Ehrenfest dynamics em-
ploying atom-centered Gaussian basis set is developed. Com-
pared with previous works,15, 19, 21 we propagate the first-order
reduced single electron density matrix in time domain to-
gether with the movement of basis functions. This makes
linear-scaling or order-N (O(N)) (Refs. 26–28) implemen-
tation of Ehrenfest dynamics possible. Furthermore, nuclear
forces can also be formulated readily in terms of density ma-
trix and the imaginary part of density matrix is shown to con-
tribute to the nuclear forces due to the moving basis set. The
resulting Ehrenfest dynamics is applied to simulate the dy-
namics of H2 and C2H4.

II. METHOD

A. Basic equations

For a mixed quantum-classical system where the elec-
trons are moving in a mean field, such as that of Hartree-Fock
(HF) approximation or density-functional theory (DFT),29, 30

the Lagrangian can be written as21

L =
∑
A

1

2
MA

�̇R2
A − UN +

∑
i

〈ϕi |i ∂

∂t
|ϕi〉 − Eelec, (1)

where MA and �RA are the mass and position of nucleus A, UN

is the potential energy of nuclei including nucleus-nucleus re-
pulsion energy and the external potential, ϕi is the ith occu-
pied molecular orbital and Eelec is the electronic energy. With
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the nuclear coordinates { �RA} and the molecular orbital wave-
functions {ϕi} as the basic variables, we have the following
equations of motion for nuclei and electrons:

d

dt

∂L

∂ϕ̇i

= ∂L

∂ϕi

⇒ i
∂ϕi

∂t
= helecϕi, (2)

d

dt

∂L

∂ �̇RA

= ∂L

∂ �RA

⇒ MA
�̈RA = −∂UN

∂ �RA

− ∂Eelec

∂ �RA

, (3)

where helec in Eq. (2) is the effective one-electron Hamilto-
nian determined by the form of Eelec. It can be seen that Eq. (2)
is just the time-dependent Hartree-Fock (TDHF) or Kohn-
Sham (TDKS) equation for electronic part. Using the fact that
helec is Hermitian, the orthonormality condition for molecular
orbitals {ϕi} can be satisfied automatically at any time if they
are orthonormal at the initial time. As in most quantum chem-
istry calculations, the molecular orbitals are expanded with
atom-centered basis functions such as Gaussian functions or
Slater functions:

ϕi(�r, t) =
∑

μ

c
μ i

(t)χμ(�r − �RAμ
(t)), (4)

where {cμi} are the molecular orbital coefficients and χμ is
the atomic orbital. Using the nuclear coordinates { �RA} and
the molecular orbital coefficients {cμi} as the basic variables,
we can have the following equations:15

iSĊAO + iBCAO = FAOCAO, (5)

MA
�̈RA = −∂UN

∂ �RA

− T r

(
∂h

∂ �RA

+ 1

2

∂G

∂ �RA

)
PAO

− ∂EXC

∂ �RA

+ T r(S−1FAOPAOB+
A +PAOFAOS−1BA)

+ iT rPAO(C+
A − CA + B+S−1BA − B+

A S−1B),

(6)

where CAO is the molecular orbital coefficient matrix in
atomic orbital, FAO is the Fock matrix in atomic orbital, S is
the overlap matrix, h is the one-electron part of the Fock ma-
trix, G is the Coulomb matrix, Exc is the exchange-correlation
(XC) energy in DFT, PAO is the density matrix in atomic or-
bital representation. Note that adiabatic approximation31 is al-
ready adopted for the XC energy in Eqs. (5) and (6). The B,
BA, and CA matrices are defined as follows:

(BA)μν =
〈
χμ

∣∣∣∣ ∂χν

∂ �RA

〉
, Bμν =

〈
χμ

∣∣∣∣ ∂χν

∂t

〉

=
∑
A

(BA)μν · �vA,

(CA)μν =
〈
∂χμ

∂t

∣∣∣∣ ∂χν

∂ �RA

〉
=

∑
B

〈
∂χμ

∂ �RB

∣∣∣∣ ∂χν

∂ �RA

〉
· �vB, (7)

where �vA is the velocity of nucleus A. Equation (5) is just the
TDKS equation in matrix form with an additional contribu-
tion due to the moving basis set. The RHS of Eq. (6) is the
expression for forces acting on nuclei, where the fourth term

is due to the dependence of basis functions on nuclear coor-
dinates, and the last term stems from the imaginary part of
the density matrix as well as the moving basis functions. For
ground state density matrix, which is real, the last term on the
RHS of Eq. (6) vanishes. In addition, the ground state density
matrix satisfies FAOPAOS = SPAOFAO and the nuclear force
in Eq. (6) becomes

�FA = −∂UN

∂ �RA

− T r

(
∂h

∂ �RA

+ 1

2

∂G

∂ �RA

)
PAO

−∂EXC

∂ �RA

+ T r

(
S−1FAOPAO

∂S

∂ �RA

)
. (8)

This is just the expression for the ground state nuclear force in
DFT used in BOMD. Unlike the formulation for the nuclear
force used in some previous extended Lagrangian molecular
dynamics3 or Ehrenfest dynamics,19 the nuclear force from
the present formulation is invariant with respect to unitary
transformation of basis functions. This is because that for the
extended Lagrangian molecular dynamics proposed in Ref. 3,
the density matrix in orthogonal basis functions is chosen as
basic variables and the results of the dynamics and the nu-
clear force would thus depend on how the basis functions
are orthogonalized. For the Ehrenfest dynamics proposed in
Ref. 19, the basic equations are not derived from the La-
grangian and the derivative of the density matrix in orthogonal
basis functions with respect to nuclear coordinate are not in-
cluded in the derivation of nuclear forces. On the other hand,
the molecular orbitals are chosen as basic variables and the
results of the dynamics as well as the nuclear forces will not
depend on unitary transformation of basis functions with the
present formalism.

The equation of motion (EOM) for electrons can be read-
ily expressed through the first-order density matrix. For fixed
basis functions, the EOM for electrons can be written as

iṖOR = [FOR, POR], (9)

where POR and FOR are the corresponding density matrix and
Fock matrix in orthonormal basis set, respectively. Using the
following relations for POR and the overlap matrix S together
with Eq. (5),

S = (S1/2)+S1/2, POR = S1/2PAO(S1/2)+

= S1/2CAOnC+
AO(S1/2)+, (10)

the EOM for electrons based on POR takes the following form:

iṖOR = (FOR + iD)POR − POR(FOR − iD+),

D = Ṡ1/2S−1/2 − (S−1/2)+BS−1/2. (11)

From the relation: Ṡ1/2S−1/2 + S1/2Ṡ−1/2 = 0, D matrix
is shown to be anti-symmetric. Equation (11) can thus be writ-
ten as

iṖOR = [FOR + iD, POR]. (12)

As FOR + iD is Hermitian, the idempotency condition
for POR can be preserved as long as the initial density matrix
is idempotent. Depending on the way of orthogonalization of
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atomic orbitals, Ṡ1/2 can be calculated differently. In the case
of Löwdin orthonormalization, we have2, 19

Ṡ1/2 =
∑
A

dS1/2

d �RA

· �vA

=
∑
A

∑
ij

si

1

σ
1/2
i + σ

1/2
i

(
sT
i

dS

d �RA

sj

)
sT
j · �vA, (13)

where si and σ i are the ith eigenvector and eigenvalue of the
overlap matrix S, respectively. In the case of Cholesky trans-
formation, Ṡ1/2 and S−1/2 are both upper triangular matrices
and hence Ṡ1/2S−1/2 is also upper triangular matrix. D matrix
is an anti-symmetric matrix and can thus be determined by

Dij =
{

[−(S−1/2)+BS−1/2]ij i > j ,

−Dji i < j.
(14)

It is worth noting that the results of Eq. (12) may be dif-
ferent with Löwdin orthonormalization or Cholesky transfor-
mation. This difference only arises from numerical errors in
solving Eq. (12) since it is equivalent to Eq. (5), whose accu-
rate solution does not depend on how the basis functions are
orthogonalized. In our implementation, Cholesky transforma-
tion is adopted and Eq. (14) is used to calculate the D matrix.

B. Numerical solution

For the electronic part, any numerical method designed
for Eq. (9) can also be applied to Eq. (12). In the present work,
we adopt the exponential midpoint method (EMM) (Ref. 32)
to solve Eq. (12). In EMM, the density matrix is calculated as

POR(t + �t) = e−i(FOR(t+�t/2)+iD(t+�t/2))�t

×POR(t)ei(FOR(t+�t/2)+iD(t+�t/2))�t , (15)

To calculate the Fock matrix at time t + �t/2, one can
either use extrapolation or evaluate the density matrix at time
t + �t/2. Based on our experience, a higher accuracy can
be achieved by first calculating the density matrix at time t

+ �t/2 by applying the following equation:

POR(t + �t/2) = e−i(FOR(t)+iD(t))�t/2

×POR(t)e−i(FOR(t)+iD(t))�t/2, (16)

andPOR(t + �t/2) is in turn used to evaluate the Fock ma-
trix FOR(t + �t/2). Furthermore, higher order methods such
as Magnus method32 could also be used to solve Eq. (12).
The exponential of FOR + iD is calculated by diagonalizing
FOR + iD. The dimension of this matrix is not large since
the atomic orbital is used as basis set. Otherwise, alternative
methods such as Lancoz method32 have to be used.

One of the most popular methods for nuclear motion in
molecular dynamics is the velocity Verlet method:33

�vA(t) = �vA(t − �t) + 1

2MA

[ �FA(t) + �FA(t − �t)]�t,

(17)

FIG. 1. The total energy and dipole moment of a translational H2 molecule.

�RA(t + �t) = �RA(t) + �vA(t)�t + 1

2

�FA(t)

MA

(�t)2. (18)

From Eq. (17) it can be seen that the nuclear velocity at
time t depends on nuclei forces at the same time, while nuclei
forces at time t depend in turn on nuclear velocity at time t
according to Eqs. (6) and (7). In our implementation, we use
the following form of nuclear velocity to evaluate matrices B
and CA in Eqs. (6) and (7) at time t:

�v′
A(t) = �vA(t − �t) +

�FA(t − �t)

MA

�t. (19)

The error should be negligible since this additional force
term is relatively small. Furthermore, typical time step for
nuclear movement is ∼0.5 fs, while it is ∼0.01 fs for elec-
trons. To achieve high efficiency, the same strategy as in
Ref. 19 is used. Three time steps are adopted in the propa-
gation of nuclear and electron motions: tN , te, and tNe, which
are the time step for nuclear movement, the time step for elec-
tron propagation, and the time step within which positions of
the nuclei are fixed, respectively. Specifically, tN is the time
step used in Eqs. (17) and (18), te is the time step used in
Eqs. (15) and (16). The change of nuclear coordinates during
the propagation of electron movement within time step tN is
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FIG. 2. The total energy and dipole moment of a vibrating H2 (a: Results with small time step, b: results with large time step, dot line: including both the D
term and the additional force term, dash line: including only the D term, solid line: neglect both the D term and the additional force term).

taken into account at a time step of tNe to reduce the number
of calculations of all the related matrices and integrals, es-
pecially the two-electron integrals. In the propagation of the
electron motion from t to t + �tN , the nuclear velocities at
intermediate time are required to evaluate the D matrix (see
Eq. (14)). In our implementation, the velocities within tNe

are held as constants and calculated with a formula similar
to Eq. (19) at the midpoint of the time step tNe.

III. RESULTS AND DISCUSSION

Eqs. (6), (7) and (12) are solved and implemented based
on methods described in previous section in our in-house
LODESTAR software package.34 In previous Ehrenfest dynam-
ics implementations with atom-centered basis functions,19 the
D term in Eq. (12) and the last term on the RHS of Eq. (6) are
neglected. However, the computational effort for these two
terms is relatively small compared to that for two-electron
integrals, since only evaluation of the overlap matrix and its
derivatives as well as matrix multiplications are involved. To
demonstrate the effect of the two terms, we study the trans-
lational and vibrational motion of a H2 molecule. In the fol-
lowing calculations, 6-31G basis set is used, and local den-
sity approximation (LDA) (Refs. 35 and 36) is adopted for
the XC energy. The ground state density matrix is set as the

initial density matrix which commutes with the initial ground
state Fock matrix. However, if the initial velocities of the nu-
clei are nonzero, the D term becomes nonzero and the time
derivatives of the density matrix at the initial time are thus
nonzero as well. When the D matrix is neglected, the time
derivative of the density matrix at the initial time will be zero.
To demonstrate this, we simulate the translational motion of
H2. The inter-nuclear distance is fixed at 1.1 Å and the initial
kinetic energy of nuclei is set as 0.2178 a.u., and the nuclei
are moving in the same direction as the molecular axis. The
total energy and dipole moment along the molecular axis are
calculated and plotted in Fig. 1. It can be seen that the total en-
ergy is not conserved and the dipole moment is nonzero when
the D term is included. One would expect the total energy
to be conserved from the derivation of the basic equations.
However, it should be noted that the inter-nuclear distance is
fixed in this simulation in order to investigate the effect of
translational motion alone. The total energy is thus not con-
served in this simulation. If the inter-nuclear distance is al-
lowed to change due to the nonzero nuclear force, the total
energy is then conserved. On the other hand, with the D term
in Eq. (12) being neglected, the total energy is conserved and
the dipole moment is always zero. The result shown in Fig. 1
demonstrates that the translational movement would cause the
change of the electron states in the present formulation. This
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FIG. 3. The potential energy surface with respect to the torsional angle.
This figure is only used to indicate why the total energy is not conserved
in BOMD.

unphysical result arises from the initial density matrix used
in the calculation. When the system is in a translational mo-
tion, the ground state density matrix should commute with
FOR + iD instead of the Fock matrix alone! The time deriva-
tive of the molecular orbital on the LHS in Eq. (2) leads to
an explicit dependence of molecular orbital on the moving
nuclear coordinates. This shows that the D term is critical in
Ehrenfest dynamics with atom-centered basis functions. We
study further the vibrational motion of H2 with initial bond
length at 1.1 Å and zero initial nuclear velocity. To inves-
tigate the effect of D term and the last term of Eq. (6), we
performed the following calculations. A: Both terms are in-
cluded, B: only the D term is included; and C: both terms
are neglected. Two sets of time step are employed for all
three cases: {tN = 0.01 fs, tNe = 0.002 fs, te = 0.001 fs} and
{tN = 0.1 fs, tNe = 0.01 fs, te = 0.001 fs}. The calculated to-
tal energy and total dipole moment with respect to time are
plotted in Fig. 2. For small time step, the total energy is con-
served for case A where both D term and the last term of
Eq. (6) are kept, while energy is not conserved for both cases
B and C. In particular, energy drifts for case B in which only D
term is kept. For large time step, the performances for cases
A and C are similar in terms of total energy, while energy
drifts again for case B. As for the dipole moment, since the
centro-symmetry is kept during the vibrational motion of H2,
the total dipole moment should remain zero during the time
propagation. However, the calculated dipole moment is zero
only in the case of A. All these show the importance of D term
in Eq. (12) and the last term in Eq. (6).

To demonstrate the different behavior of Ehrenfest
dynamics and BOMD, we also simulate the rotation of
CH2 fragments around the C = C bond in C2H4. Very
small time steps are adopted here, {tN = 0.02 fs, tNe

= 0.001 fs, and te = 0.0001 fs}, to reduce the numerical
error. The initial velocities of carbon atoms are set as zero
and the initial speeds for the four hydrogen atoms are set
equal and along the direction perpendicular to the molecular
plane. When the initial kinetic energy is not large enough for

FIG. 4. The total energy and torsional angle (solid line: results of Ehrenfest
dynamics, dash line: results of BOMD).

the torsional angle φ around the C = C bond to exceed π /2,
the trajectories due to Ehrenfest dynamics and the BOMD
are almost the same. However, when the initial kinetic energy
is large enough, significant difference arises. This is easy to
understand since when φ equals to π /2, the ground state and
excited state are actually degenerate and Born-Oppenheim
dynamics is thus no longer applicable. Furthermore, the
self-consistent field (SCF) calculation in BOMD is difficult
to converge when φ is very close to π /2. Even with converged
results, the potential energy surface is not smooth at the point
φ = π /2 using spin restricted DFT or HF method37 so that
there is no well-defined nuclear force at this point. In the
simulation it is rare that the torsional angle φ is exactly equal
to π /2 at a certain time step and the total energy is, however,
not conserved when the torsional angle φ goes across π /2.
This can be understood from Fig. 3 and Eq. (17). When the
system goes from point A to point B, the change of the veloc-
ity is almost zero since the forces on point A and point B are
in opposite direction. However, the potential energy increases
so that the total energy will increase. On the other hand, when
the system goes from point C to point D, the total energy
will decrease for the same reason. This could be alleviated
by using smaller time step. However, when the time step is
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FIG. 5. The total energy, the electronic energy, the nuclear kinetic energy, and the total dipole moment of C2H4.

too small so that the torsional angle comes too close to π /2 at
certain time steps, the SCF convergence problem in BOMD
would show up. With Ehrenfest dynamics, such scenario
does not occur. The total energy and the torsional angle φ

calculated with BOMD and Ehrenfest dynamics are plotted
in Fig. 4 with an initial kinetic energy of 0.245 a.u. It can
be seen that the total energy of BOMD changes significantly
when φ goes across π /2, while the total energy is conserved
in the case of Ehrenfest dynamics. The torsional angle φ

in the BOMD simulations changes from 0 to π as long as
φ goes across π /2. However, with Ehrenfest dynamics, the
system rotates back once it crosses π /2 and the torsion angle
never reaches π . In another word, the CH2 fragment could
not be fully turned over in C2H4 in the Ehrenfest dynamics
simulations. This is probably due to that the excited state
has minimum at φ = π /2 and when φ goes across π /2, the
excited state has significant contribution in the electron state
so that the system could not be fully turned over. The total
energy, the electronic energy and nuclear kinetic energy
as well as the dipole moment along the C–C direction are
plotted in Fig. 5. It can be seen clearly that energy transfers
from nuclei to electrons at around 50 fs. As for the dipole
moment, although the system has a centro-symmetry center,
small oscillation of the dipole moment can be observed
before 50 fs. A large change in dipole moment happens when
the energy is transferred from nuclei to electrons.

IV. CONCLUSION

In the present work, the TDDFT based Ehrenfest dynam-
ics with atom-centered basis set is developed. The EOM for
electron is formulated in terms of the first-order density ma-
trix in orthonormal basis functions. Time-dependence of the
basis functions due to its dependence on the nuclear coordi-
nates is taken into account which results in a D term in the
EOM for electrons and an addition contribution to the nuclear
forces. This additional force term arises from the imaginary
part of the density matrix and the moving basis set. These two
additional terms can be easily implemented since they only
involve the derivatives of the overlap matrix with respect to
nuclear coordinate and simple matrix multiplication. To solve
the EOM numerically, the EMM approach is adopted for elec-
tron dynamics, and the velocity Verlet is applied for the mo-
tions of nuclei. The idempotency condition for the density ma-
trix can be kept with the EMM method. The same strategy as
in Ref. 19 is adopted for time steps of nuclei and electron dy-
namics to achieve high efficiency.

The effects of the D term and the additional force term are
studied by investigating translational and vibrational motions
of H2. The results indicates that it is critical to remove trans-
lational motion using Ehrenfest dynamics with atom-centered
basis functions and simulations including these two terms
provides much better conserved total energy and reasonable
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dipole moment for vibrational motion of H2. The rotation of
CH2 fragments along the C=C bond in C2H4 is studied to
demonstrate the difference between Ehrenfest dynamics and
BOMD. Significant difference arises if the initial kinetic en-
ergy is large enough for the torsional angle of rotation to ex-
ceed π /2. A jump in total energy happens each time when the
torsional angle of rotation goes across π /2 in BOMD simu-
lations, while total energy is conserved in Ehrenfest dynam-
ics simulations. Furthermore, CH2 fragment cannot be fully
turned over in C2H4 in Ehrenfest dynamics and energy trans-
fers from nuclei to electron. Small oscillation in the dipole
moment for this centro-symmetric system is observed before
the energy transfer and significant change in dipole moment
arises at the time of energy transfer.

One important advantage of our Ehrenfest dynamics for-
malism is the usage of first-order density matrix. Our earlier
work shows that O(N) calculation is possible for the time evo-
lution of the first-order density matrix.38 The O(N) algorithm
has been implemented at semiempirical39 and DFT levels.40

As both the electronic and nuclear dynamics are integrated in
time domain, it may thus be straightforward to develop O(N)
Ehrenfest dynamics method. The result O(N) Ehrenfest dy-
namics method can be possibly applied to complex systems,
for instance, charge transfer process in biological molecules.
As the molecular systems of our interests are ever complex,
the energy separations of the ground and excited states could
be much less compared to the thermal energy at room tem-
perature, the exact energy of a particular electronic state is no
longer important. Rather, we are interested in the statistical
average and fluctuation of energy or other physical proper-
ties. Ehrenfest dynamics is ideal to account for the statisti-
cal nature of electronic and nuclear motions. Therefore, O(N)
Ehrenfest dynamics is expected to be a potentially very useful
tool to evaluate the statistics properties of complex systems.
Work along this direction is in progress.
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