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H∞ Model Reduction for Positive Systems

Ping Li James Lam Zidong Wang

Abstract— This paper is concerned with the model reduction
of positive systems. For a given stable positive system, our
attention is focused on the construction of a reduced-order
model in such a way that the positivity of the original system is
preserved and the error system is stable with a prescribed H∞

performance. Based upon a system augmentation approach, a
novel characterization on the stability with H∞ performance
of the error system is first obtained in terms of linear matrix
inequality (LMI). Then, a necessary and sufficient condition
for the existence of a desired reduced-order model is derived
accordingly. A significance of the proposed approach is that
the reduced-order system matrices can be parametrized by a
positive definite matrix with flexible structure, which is fully
independent of the Lyapunov matrix; thus, the positivity con-
straint on the reduced-order system can be readily embedded
in the model reduction problem. Finally, a numerical example is
provided to show the effectiveness of the proposed techniques.

I. INTRODUCTION

In many practical systems, there is such a kind of systems

whose state variables are confined to be positive. Such

systems are frequently encountered in various fields, for

instance, biomedicine, pharmacokinetics, chemical reactions,

industrial engineering, social science and economics. These

systems belong to the class of positive systems, whose state

variable and output are always positive (at least nonnegative)

whenever the initial state and the input are positive [1] [2].

Positivity of the system state for all times will bring about

many new issues, which cannot be solved in general by using

well-established methods for general linear systems, mainly

due to the fact that positive systems are defined on cones

rather than linear spaces. Therefore, the study on this kind

of systems has drawn the attention of many researchers in

recent years [3] [4] [5] [6].

Mathematical modeling of positive systems, such as

molecular dynamics, industrial wastewater treatment, and

chemical reactors, often results in complex high-order mod-

els, which will bring serious difficulties to analysis and syn-

thesis of positive systems, irrespective of the computational

resources available [7]. Therefore, in practical applications,

it is necessary to replace high-order models by reduced ones

with respect to some given criterion. In fact, such a topic

is actually a model reduction problem in control area, and

has received considerable attention in the past decades [8]

[9] [10] [11] [12] [13] [14]. Amongst the many optimality
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criteria for approximation, one is based on the H∞ norm

of the associated error system. The characterization of H∞

model reduction solution was first proposed in [15], and

many important results have been reported for various kinds

of systems, such as stochastic systems [16] and switched

systems [17] [18]. Very recently, based on the methods

of balanced truncation and matrices inequalities, the model

reduction problem for positive systems has been investigated

in [19] and [20], respectively. It should be pointed out that

traditional approaches developed for general linear systems,

including the widely adopted projection approach and simi-

larity transformation [16] [21], are no longer applicable for

positive systems in general, since they cannot guarantee the

positivity of the reduced-order system. This indicates that

conventional approaches, if used to construct a reduced-order

system, may generate a meaningless approximation for the

actual system whose state is always positive all the time.

Indeed, the introduction of positivity of the reduced-order

system will lead to new difficulties, which cannot be easily

dealt with by existing approaches. Therefore, it is necessary

to develop new approaches to the H∞ model reduction prob-

lem for positive systems with positivity preserved. However,

such a problem has not been well studied in the literature,

and still remains as a challenging open issue.

In the present work, we are concerned with the H∞ model

reduction problem for positive systems. More specifically,

for a given positive linear continuous-time system, the aim

is to construct a positive lower-order system such that the

H∞ norm of the difference between the original system and

the desired lower-order one satisfies a prescribed H∞ norm

bound constraint. Based on a system augmentation approach,

the associated error system is first represented as a singular

system form, and a novel characterization on the stability of

the error system under the H∞ performance is derived in the

form of LMI. Then, a necessary and sufficient condition for

the existence of a desired reduced-order system is proposed,

and an iterative LMI approach is developed to compute the

reduced-order system matrices. It is well worth pointing out

that the approach developed in this paper has the advantage

that the reduced-order system matrices can be parametrized

by a positive definite matrix with flexible structure, which

is fully independent of the Lyapunov matrix. Such a char-

acterization will greatly facilitate the parametrization with

positivity constraints.

The rest of this paper is organized as follows. Section

II gives some notations and preliminaries. In Section III, a

novel characterization on the stability and the H∞ analysis

of the error system is developed, and an iterative LMI

algorithm is formulated to construct a reduced-order system.
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A numerical example is given in Section IV to show the

applicability of the results obtained. Finally, we summarize

our results in Section V.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Notation: Let R be the set of real numbers; Rn denotes the

n-column real vectors; Rn×m is the set of all real matrices of

dimension n×m. R
n×m
+ represents the n×m dimensional

matrices with nonnegative components and Rn
+ , R

n×1
+ .

For a matrix A ∈ Rm×n, aij denotes the element located

at the ith row and the jth column. Matrix A is said to be

nonnegative if ∀(i, j) aij > 0; it is said to be positive,

if ∀(i, j) aij > 0, ∃(i, j) aij > 0. In view of the fact

that the definitions of nonnegative and positive matrices are

equivalent, except when a nonnegative matrix is identically

zero which is the degenerate case and is of no interest,

we do not distinguish these two throughout this paper, that

is, we consider that these two conditions are equivalent in

general cases. A matrix A ∈ Rn×n is called Metzler, if

all its off-diagonal elements are positive, that is, ∀ (i, j) ,
i 6= j, aij > 0. I represents the identity matrix with

appropriate dimension; For any real symmetric matrices P,
Q, the notation P ≥ Q (respectively, P > Q) means that the

matrix P −Q is positive semi-definite (respectively, positive

definite).

The notation L2 [0,∞) represents the space of square

Lebesgue integrable functions over [0,∞) with the usual

norm || · ||
2
. For a transfer function matrix G(s), ‖G‖

∞

represents the H∞ norm of G(s). In addition, Her (M) ,
MT + M is defined for any matrix M ∈ Rn×n; associated

with a set of matrices Ai ∈ Rn×n, i = 1, 2, . . . , N,
diag

(

A1 A2 . . . AN

)

is defined as

diag
(

A1 A2 . . . AN

)

,







A1 . . . 0
...

. . .
...

0 . . . AN






.

The superscript “T ” denotes matrix transpose and the symbol

# is used to represent a matrix which can be inferred by sym-

metry. Matrices, if their dimensions are not explicitly stated,

are assumed to have compatible dimensions for algebraic

operations.

Consider the following linear asymptotically stable sys-

tem:






ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),
x(0) = x0,

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input

vector which belongs to L2 [0,∞), y(t) ∈ Rq is the output

or measurement vector. Furthermore, A, B, C and D are

real constant matrices with appropriate dimensions. System

(1) is said to be a positive linear system if for all x0 ∈ Rn
+

and all input u(t) ∈ Rm
+ , we have x(t) ∈ Rn

+ and y(t) ∈ R
q
+

for t > 0.
The following lemma provides a well-known characteri-

zation of positive linear systems.

Lemma 1 ([1]): The system in (1) is positive if and only

if A is Metzler, B, C and D are positive.

In this paper, we aim at approximating system (1) by a

reduced-order stable system described by






ẋr(t) = Arxr(t) + Bru(t),
yr(t) = Crxr(t) + Dru(t),
xr(0) = xr0,

(2)

where xr(t) ∈ Rnr is the state vector of the reduced-order

system (2) with 0 < nr < n, and yr(t) ∈ Rq. Ar, Br, Cr

and Dr are matrices to be determined later.

For the stable system in (1), the transfer function from

input u(t) to output y(t) is given by

Guy(s) = C (sI − A)
−1

B + D. (3)

Traditionally, the H∞ model reduction problem was formu-

lated by finding a reduced-order system (2), such that

‖Guy − Guyr
‖
∞

< γ, (4)

where

Guyr
(s) = Cr (sI − Ar)

−1
Br + Dr (5)

is the transfer function of system (2) from u(t) to yr(t), and

γ > 0 is a prescribed scalar.

However, such a specification is not sufficient for positive

systems, since as an approximation of system (1), it is

naturally desirable that system (2) should also be positive,

like system (1) itself. That is, in addition to the H∞ perfor-

mance in (4), the positivity should also be preserved when

considering the model reduction problem for the positive

system in (1). To ensure the positivity of system (2), if

follows from Lemma 1 that Ar should be Metzler, Br, Cr

and Dr should be positive.

For convenience, denote set S , {(Ar, Br, Cr, Dr) :
Ar is Metzler, Br, Cr and Dr are positive}.

Let x̂(t) =
[

xT (t), xT
r (t)

]T
and e(t) = y(t)−yr(t). Then,

from (1) and (2), we obtain the associated error system as
{

˙̂x(t) = Âx̂(t) + B̂u(t),

e(t) = Ĉx̂(t) + D̂u(t),
(6)

where

Â =

[

A 0
0 Ar

]

, B̂ =

[

B
Br

]

,

Ĉ =
[

C −Cr

]

, D̂ = D − Dr.

Obviously, condition in (4) is equivalent to

‖Gue(s)‖∞ < γ, (7)

where

Gue(s) = Ĉ
(

sI − Â
)

−1

B̂ + D̂ (8)

is the transfer function from u(t) to e(t). In addition, the

stability of system (1) and (2) is naturally equivalent to that

of system (6).

Based on the above discussion, the problem of positivity-

preserving H∞ model reduction for positive systems in (1)

to be addressed in this paper is formulated as follows.
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Problem PP-H∞-MR (Positivity-Preserving H∞ Model

Reduction): Given a disturbance attenuation level γ > 0,
construct a system (2) such that the following two require-

ments are fulfilled simultaneously.

(1) (Ar, Br, Cr, Dr) ∈ S.

(2) The error system in (6) is asymptotically stable and

satisfies the H∞ performance ‖Gue‖∞ < γ.

The following result gives a fundamental characterization

on the stability of (6) with H∞ performance, which will be

used later.

Lemma 2 ([21]): The error system in (6) is asymptoti-

cally stable and satisfies ‖Gue‖∞ < γ, if and only if there

exists a matrix P̂ > 0, such that






Her
(

ÂT P̂
)

P̂ B̂ ĈT

# −γI D̂T

# # −γI






< 0, (9)

where P̂ is usually referred to as the Lyapunov matrix.

III. MAIN RESULT

In this section, we aim to construct a positive lower-order

system such that the H∞ norm of the difference between

the original positive system and the desired lower-order one

satisfies a prescribed H∞ norm bound constraint. To achieve

this, we first present a novel characterization on the stability

and the H∞ performance of (6) by means of a system

augmentation. Then, a necessary and sufficient condition for

the existence of a desired reduced-order system is proposed,

and an iterative LMI approach is developed to compute the

reduced-order system matrices.

A. Novel Stability and H∞ Performance Characterization

In this subsection, we first represent system (6) by means

of a system augmentation approach, which will facilitate the

parametrization on the positivity constraint. Then, a novel

characterization on the stability and the H∞ performance of

(6) is developed in terms of linear matrix inequality, which

will play a key role for the computation of the reduced-order

system matrices.

Define

Gr =

[

Ar Br

Cr Dr

]

,

which collects the representation for the system matrices

in (2) into one matrix. We further make the following

definitions:

Ā =

[

A 0
0 0

]

, B̄ =

[

B
0

]

, C̄ =
[

C 0
]

, D̄ = D,

F̄ =

[

0 0
I 0

]

, M̄ =

[

0 I
0 0

]

,

N̄ =

[

0
I

]

, H̄ =
[

0 −I
]

,

which are entirely in terms of the state space matrices for

system (1), then we have

Â = Ā + F̄GrM̄, B̂ = B̄ + F̄GrN̄ ,

Ĉ = C̄ + H̄GrM̄, D̂ = D̄ + H̄GrN̄ .

Although the system matrices in (2) are encapsulated into

Gr, one can see that it is still embedded with two other

matrices. In addition, when applying Lemma 2, we have

that Gr is still coupled with the Lyapunov matrix P̂ , which

makes them hard to solve. More significantly, such a problem

will become more difficult and arduous, in particular when

additional constraints on Gr are taken into account.

To overcome these difficulties, we introduce an auxiliary

variable ϑ̂(t) = GrM̄x̂(t)+GrN̄u(t) as a state component,

and choose x(t) =
[

x̂T (t) ϑ̂T (t)
]T

as a new state

variable. Then the error system in (6) can be equivalently

described by the following descriptor system:

{

Eẋ(t) = Ax(t) + Bu(t),
e(t) = Cx(t) + Du(t),

(10)

where

E =

[

I 0
0 0

]

, A =

[

Ā F̄
GrM̄ −I

]

,

B =

[

B̄
GrN̄

]

, C =
[

C̄ H̄
]

, D = D̄.

Remark 1: A major obstacle for the construction of the

reduced-order system in (2) is that it should be positive,

which results in the additional constraints on the system

matrices Ar, Br, Cr, and Dr. Focusing on this, one can

see that the advantage of the above manipulations lies in the

following aspects. First, these system matrices are assembled

to a single matrix Gr, which will be convenient for the syn-

thesis consideration. Second, by means of system augmenta-

tion approach in (10), Gr is successfully extracted from the

middle of two matrices, and can be further parametrized by a

free positive definite matrix, which will be shown later. Such

an approach will introduce the flexibility to the construction

of Gr, in particular when Gr has some certain constraints.

Theorem 1: Given the system matrices Ar, Br, Cr and

Dr. Then the following statements are equivalent:

(i) The error system in (6) is asymptotically stable, and

satisfies ‖Gue‖∞ < γ.

(ii) There exist matrices P̂ > 0, X > 0 such that

Ξ ,







Her
(

A
T
P

)

P
T (I + J)B C

T

# ̥ − γI D
T

# # −γI






< 0,

(11)

where

̥ = −B
T
J

T
(

P + P
T
)

JB,

with

P =

[

P̂ 0
− 1

2
XGrM̄

1

2
X

]

,

I =

[

I 0
0 I

]

, J =

[

0 0
0 I

]

.
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Proof: (ii)⇒(i). Suppose there exist matrices P̂ > 0, X >
0 such that (11) holds. Define a nonsingular matrix

T ,









I 0 0 0
GrM̄ GrN̄ 0 I

0 I 0 0
0 0 I 0









.

Pre- and post-multiplying (11) by TT and T , respectively,

we have

Ξ̄ , TT ΞT =











Her
(

ÂT P̂
)

P̂ B̂ ĈT P̂ F̄

# −γI D̂T 0
# # −γI H̄
# # # −X











< 0.

(12)

Based on Lemma 2, the third leading principal submatrix

of Ξ̄ indicates that the error system in (6) is asymptotically

stable, and satisfies ‖Gue‖∞ < γ, which completes this part

of the proof.

(i)⇒(ii). If the error system in (6) is asymptotically stable,

and satisfies ‖Gue‖∞ < γ, then it follows from Lemma 2 that

there exists a matrix P̂ > 0, such that

Θ =







Her
(

ÂT P̂
)

P̂ B̂ ĈT

# −γI D̂T

# # −γI






< 0.

Then, for any matrix S > 0, there exists a sufficiently large

scalar α > 0 such that

−αS −





P̂ F̄
0
H̄





T

Θ−1





P̂ F̄
0
H̄



 < 0. (13)

By choosing X = αS and applying Schur complement

equivalence to (13), we have

Ξ = T−T Ξ̄T−1 < 0,

which completes the whole proof. ¤

Remark 2: Although the conditions in (9) and (11) are

equivalent, it should be pointed out that the LMI formulation

in (11) has some advantages over the one in (9). First,

with the LMI characterization in (11), the reduced-order

system matrices, or Gr equivalently, are not coupled with

the Lyapunov matrix P̂ any more, but can be parametrized

by a positive definite matrix X , which is fully independent

of P̂ . Second, it follows from (13) that, if the error system

in (6) is asymptotically stable and satisfies ‖Gue‖∞ < γ, the

existence of X will be naturally guaranteed. Finally, one can

see that the structure of X is rather flexible. To be specific,

from the proof of ((ii)⇒(i)), we have that X takes the form

X = αS, where S can be any positive definite matrix with α
being sufficiently large. The freedom on the structure of X
will greatly facilitate the synthesis considered in this paper

when additional constraints on Gr are imposed, which will

be shown subsequently.

B. Synthesis of Positive Reduced-Order System

This subsection is devoted to the synthesis of the reduced-

order system in (2). Based on the analysis in Subsection

III-A, a necessary and sufficient condition for the existence

of a solution to Problem PP-H∞-MR is obtained. Then, an

iterative LMI approach is developed to compute the reduced-

order system matrices accordingly.

Theorem 2: Problem PP-H∞-MR is solvable, if and only

if there exists a matrix P̂ > 0, a diagonal matrix X > 0,
matrices U, V, L1, L2, L3 and L4 such that

L =

[

L1 L2

L3 L4

]

∈ S, (14)

Ξ (U, V ) ,









Ξ11 P̂ F̄ + M̄T LT Ξ13 C̄T

# −X LN̄ H̄T

# # Ξ33 D̄T

# # # −γI









< 0,

(15)

where

Ξ11 = Her
(

ĀT P̂
)

− Her
(

UT LM̄
)

+ UT XU,

Ξ13 = P̂ B̄ − M̄T LT V − UT LN̄ + UT XV,

Ξ33 = −Her
(

V T LN̄
)

+ V T XV − γI.

In this case, the system matrices of (2) can be given as

Gr = X−1L. (16)

Proof: By expanding (11), we have










Her
(

ĀT P̂
)

− M̄T GT
r XGrM̄ P̂ F̄ + M̄T GT

r X

# −X
# #
# #

P̂ B̄ − M̄T GT
r XGrN̄ C̄T

XGrN̄ H̄T

−N̄T GT
r XGrN̄ − γI D̄T

# −γI









< 0. (17)

Sufficiency: It follows from (14) and X > 0 diagonal, we

have that Ar Metzler, Br, Cr and Dr positive. From (16),

we have L = XGr. Substituting this into (15), and observing

that, for any U and V,

−ΦT GT
r XGrΦ

≤ −ΦT GT
r XGrΦ + (Ψ − GrΦ)

T
X (Ψ − GrΦ)

= −Her
(

ΨT XGrΦ
)

+ ΨT XΨ,

where

Φ =
[

M̄ 0 N̄
]

, Ψ =
[

U 0 V
]

, (18)

we obtain that (17) holds, which further indicates that (11)

holds. According to Theorem 1, this completes the suffi-

ciency proof.

Necessity: If Problem PP-H∞-MR is solvable, then for

the given error system in (6), it follows from Theorem 1 that

there exists a matrix P̂ > 0, and a diagonal matrix X > 0
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such that (11) holds, or equivalently, (17) holds. Then, by

choosing U = GrM̄ and V = GrN̄ , we have that

−ΦT GT
r XGrΦ = −Her

(

ΨT XGrΦ
)

+ ΨT XΨ,

where Φ and Ψ are defined in (18). Substituting this into

(17), and letting L = XGr, one has that (15) holds. This

completes the whole proof. ¤
Remark 3: From the proof in Theorem 2, one can see

that the construction matrix Gr is not coupled with P̂ , but

can be parametrized by X, which makes the construction

specification for Gr ∈ S possible. More specifically, due to

the fact that the structure of X is rather flexible, we can

designate X to be a positive diagonal matrix. As a matter

of fact, X can be chosen as a positive diagonal matrix, or

even a positive scalar matrix, whereas no conservatism will

be introduced consequently.

Let us explain the conditions in Theorem 2 from a

computational perspective. Obviously, the condition in (14)

can be viewed as a set of LMIs, which can be readily verified

by standard software. Now, we turn to inequality (15), which

is generally not a linear matrix inequality with respect to the

parameters P̂ , X, U, V and L. However, it can be easily

observed that if U and V are held fixed, then it becomes an

LMI problem with respect to the other remaining parameters.

Note that the LMI problem is convex and can be efficiently

solved if a feasible solution exists [22]. This leaves a natural

problem about how to choose U and V properly. Define a

scalar α satisfying

Ξ (U, V ) < αΠ, (19)

where

Π = diag
(

I 0 I 0
)

(20)

and Ξ (U, V ) is defined in (15). Inspired by [23], it follows

from the proof of Theorem 2 that α will achieve its minimum

when U = X−1LM̄ and V = X−1LN̄, which leads to an

iterative approach to solve inequality (15).

Now, we are in a position to develop the following iterative

LMI algorithm:

Algorithm 1 (ILMI Approach):

1) START: Set j = 1. For a given H∞ performance level

γ, compute the initial matrices U1 and V1 such that the

following auxiliary system,
{

˙̄x(t) = Āx̄(t) + F̄ ϑ̄(t) + B̄u(t),
e(t) = C̄x̄(t) + H̄ϑ̄(t) + D̄u(t),

(21)

with ϑ̄(t) = U1x̄(t) + V1u(t) is asymptotically sta-

ble and the transfer function Tue(s) from u(t) to

e(t) satisfies ‖Tue‖∞ < γ.
2) For fixed Uj and Vj , solve the following convex

optimization problem for the parameters in Ω ,
{

P̂ > 0, X > 0 is diagonal, L1, L2, L3 and L4

}

:

α∗

j := min
Ω

αj s.t.







L =

[

L1 L2

L3 L4

]

∈ S

Ξ (Uj , Vj) < αjΠ
.

Denote the corresponding value of X and L as Xj and

Lj , respectively.

3) If α∗

j ≤ 0, then a desired parametric matrix Gr is

obtained as Gr := X−1
j Lj . STOP. If not, then go to

next step.

4) If
∣

∣

(

α∗

j − α∗

j−1

)

/α∗

j

∣

∣ < δ1, where δ1 is a prescribed

tolerance, then go to next step. If not, update Uj+1 and

Vj+1 as

Uj+1 := X−1
j LjM̄, Vj+1 := X−1

j LjN̄ .

Set j := j + 1, then go to Step 2.

5) A solution to Problem PP-H∞-MR may not exist.

STOP.

We give some remarks on Algorithm 1 before ending this

section.

Remark 4: The problem in Step 1 is convex, which can

be regarded as a state-feedback H∞ control problem. Fur-

thermore, if there are no matrices U1 and V1 such that

system (21) is stable and satisfies ‖Tue‖∞ < γ, then we can

conclude immediately that there does not exist a solution to

Problem PP-H∞-MR. In addition, it follows from Lemma 2

that finding U1 and V1 is equivalent to finding Q̄ > 0, W1

and V1 such that




Her
(

ĀQ̄ + F̄W1

)

B̄ + F̄ V1 Q̄C̄T + WT
1 H̄T

# −γI D̄T + V T
1 H̄T

# # −γI



 < 0

(22)

holds, then U1 can be obtained as U1 = W1Q̄
−1, and V1 can

be given directly from (22).

Remark 5: It can be easily seen that α∗

j is monotonically

decreasing with respect to j, that is, α∗

j+1 ≤ α∗

j . If α∗

j does

not converge to a positive scalar, then α∗

j will eventually be

negative after running Algorithm 1 with sufficient iterations,

which corresponds to the stopping criterion in Step 3, and

further indicates that there exists a feasible solution to Prob-

lem PP-H∞-MR. Thus, the nonconvergent case is trivial, and

we only need to consider the convergent situation.

IV. ILLUSTRATIVE EXAMPLE

In this section, we present an illustrative example to

demonstrate the applicability of the proposed results.

Consider a positive system in (1) with parameters as

follows:

A =





−2.0 0.8 1.5
0.6 −1.6 0
0.4 0 −1.5



 , B =





0.4
0
0



 ,

C =
[

1 0 0
]

, D = 0.5.

It can be easily verified that this positive system is asymp-

totically stable, and we assume that the H∞ performance

level is prescribed as γ = 0.155. The aim of this example is

to construct a positive first-order system in the form of (2)

to approximate the original system.

By implementing Algorithm 1 via Yalmip [24], an initial

value of U1 and V1 in Step 1 can be obtained from (22) as

U1 =

[

0 0 0 −0.5
1.0 0 0 0

]

, V1 =

[

0
0.5

]

.
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Subsequently, it can be found that the conditions in Theorem

2 are feasible with the following solution:

X = 103 ×

[

0.7357 0
0 2.2793

]

,

L = 103 ×

[

−0.6934 0.0002
0.4167 1.4903

]

.

Then, according to (16), a desired positive first-order model

in (2) can be readily obtained with the system matrices given

as
[

Ar Br

Cr Dr

]

=

[

−0.9425 0.0003
0.1828 0.6538

]

,

that is,
{

ẋr(t) = −0.9425xr(t) + 0.0003u(t),
yr(t) = 0.1828xr(t) + 0.6538u(t).

It can be easily verified that the H∞ performance of the

associated error system is 0.1538, which is less than the

prescribed H∞ norm bound γ = 0.155. This is also demon-

strated in Figure 1, which gives the singular value plot of

the associated error system.

10
−2

10
−1

10
0

10
1

10
2

0.125

0.13

0.135

0.14

0.145

0.15

0.155

Frequency (rad/s)

Fig. 1: Singular value plot of associated error system.

V. CONCLUSION

In this paper, we have presented a model reduction

approach that preserves positivity and stability with H∞

performance of positive systems. In particular, we have

proposed a novel characterization on the stability and H∞

performance of the associated error system by means of a

system augmentation method, which ensures the separation

of the reduced-order system matrices to be constructed from

the Lyapunov matrix. Based on this new characterization,

a necessary and sufficient condition for the existence of a

desired reduced-order system has been established in terms

of matrix equalities, and an iterative LMI approach has been

developed to solve the condition. Finally, the effectiveness

of the proposed method has been illustrated by a numerical

example. The approach adopted in this paper can be applied

to tackle problems involving some constraints on elements

of the required system matrices, such as positivity and

boundedness.
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