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Bounds and Exact Values in Network Encoding Complexity with Two Sinks

Li Xu Guangyue Han

The University of Hong Kong The University of Hong Kong

email: xuli@hku.hk email: ghan@hku.hk

Abstract— For an acyclic directed network with multiple
pairs of sources and sinks and a set of Menger’s paths
connecting each pair of source and sink, it is well known that
the number of mergings among these Menger’s paths is closely
related to network encoding complexity. In this paper, we focus
on networks with two distinct sinks and we derive bounds
on and exact values of two functions relevant to encoding
complexity for such networks.

I. INTRODUCTION

Let G(V,E) denote an acyclic directed graph, where V
denotes the set of all the vertices (or points) in G and E
denotes the set of all the edges in G. In this paper, a path

in G is treated as a set of concatenated edges. For k paths

β1, β2, . . . , βk in G(V,E), we say these paths merge [3] at

an edge e ∈ E if

1) e ∈ ∩ki=1βi,
2) there are at least two distinct edges f, g ∈ E such that

f, g are immediately ahead of e on some βi, βj , i 6= j,
respectively.

We call e together with the subsequent concatenated edges

shared by all βi’s (until they branch off) merged subpath

(or simply merging) by all βi’s at e; see Fig. 1 for a quick

example.

For any two vertices u, v ∈ V , we call any set consisting

of the maximum number of pairwise edge-disjoint directed

paths from u to v a set of Menger’s paths from u to v. By

Menger’s theorem [6], the cardinality of Menger’s paths from

u to v is equal to the min-cut between u and v. Here, we

remark that Ford-Fulkerson algorithm [1] can find the min-

cut and a set of Menger’s paths from u to v in polynomial

time.

Assume that G(V,E) has l sources S1, S2, . . . , Sl and

l distinct sinks R1, R2, . . . , Rl. For i = 1, 2, . . . , l, let

ci denote the min-cut between Si and Ri, and let αi =
{αi,1, αi,2, . . . , αi,ci} denote a set of Menger’s paths from

Si to Ri. We are interested in the number of mergings among

paths from different αi’s, denoted by |G|M(α1, α2, . . . , αl).
The motivation for such consideration is more or less obvious

in transportation networks: mergings among different groups

of transportation paths can cause congestion, which may

either decrease the whole network throughput or incur unnec-

essary cost. The connection between the number of mergings

and the encoding complexity in computer networks, however,

is a bit more subtle, which can be best illustrated by the

following two examples in network coding theory (for a brief

introduction to this theory, see [10]).

The first example is the famous “butterfly network” [5].

As depicted in Fig. 2(a), for the purpose of transmitting
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β3
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D

Fig. 1. Paths β1, β2 merge at edge A → B and at merged subpath (or
merging) A → B → C → D, and paths β1, β2, β3 merge at edge B → C.

messages a, b simultaneously from S to R1, R2, network

encoding has to be done at node C. Another way to interpret

the necessity of network coding at C (for simultaneous

transmission to R1 and R2) is as follows: If transmission

to R2 is ignored, Menger’s paths S → A → R1 and

S → B → C → D → R1 can be used to transmit messages

a, b from S to R1; if transmission to R1 is ignored, Menger’s

paths S → B → R2 and S → A → C → D → R2 to

transmit messages a, b to R2. For simultaneous transmission

to R1 and R2, merging by these two groups of Menger’s

paths at C → D becomes a “bottle neck”, therefore network

coding at C is required to avoid the possible congestion.

The second example is concerned with two sessions of

unicast in a network [8]. As shown in Fig. 2(b), S1 is to

transmit message a to R1 using Menger’s path S1 → A →
B → E → F → C → D → R1. And S2 is to transmit

message b to R2 using two Menger’s paths S2 → A →
B → C → D → R2 and S2 → E → F → R2. Since

mergings A → B, C → D and E → F become bottle

necks for simultaneous transmission of messages a and b,
network coding at these bottle necks, as shown in Fig. 2(b), is

performed to ensure the simultaneous message transmission.

Generally speaking, for a network with multiple groups of

Menger’s paths, each of which is used to transmit a set of

messages to a particular sink, network encoding is needed at

mergings by different groups of Menger’s paths. As a result,

the number of mergings is the number of network encoding

operations required in the network. So, we are interested in

the number of mergings among different groups of Menger’s

paths in such networks.

For the case where all sources in G are in fact identical,

M∗(G) is defined as the minimum number of mergings over

all possible Menger’s path sets αi’s, i = 1, 2, . . . , l, and

M∗(c1, c2, . . . , cl) is defined as the supremum of M∗(G)
over all possible choices of such G. It is clear that M∗(G)
is the least number of network encoding operations required
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Fig. 2. (a) Network coding on the butterfly network (b) Network coding
on two sessions of unicast

for a given G, and M∗(c1, c2, . . . , cl) is the largest such

number among all such G. As for M∗, the authors of [2]

use the idea of “subtree decomposition” to first prove that

M∗(2, 2, . . . , 2
︸ ︷︷ ︸

l

) = l − 1.

Although their idea seems to be difficult to generalize to oth-

er parameters, it does allow us to gain deeper understanding

about the topological structure of the graphs achieving l− 1
mergings for this special case. It was first shown in [4] that

M∗(c1, c2) is finite for all c1, c2 (see Theorem 22 in [4]), and

subsequentlyM∗(c1, c2, . . . , cl) is finite for all c1, c2, . . . , cl.
For the case where all sources in G are distinct, M(G)

is defined as the minimum number of mergings over all

possible Menger’s path sets αi’s, i = 1, 2, . . . , n, and

M(c1, c2, . . . , cl) is defined as the supremum of M(G) over

all possible choices of such G. In [8], a tight upper bound

for the encoding complexity of a network with two unicast

sessions is given, as a result of a more general treatment (to

networks with two multicast sessions) by the authors. It is

easy to see that for networks with multiple unicast sessions,

M with appropriate parameters can serve as an upper bound

on network encoding complexity. It was first conjectured

that M(c1, c2, . . . , cl) is finite in [9]. More specifically the

authors proved that (see Lemma 10 in [9]) if M(c1, c2) is

finite for all c1, c2, then M(c1, c2, . . . , cl) is finite as well.

Here, we remark that we have rephrased the work in [2], [4],

[9], since all of them are done using very different languages

from ours.

In [3], we have shown that for any c1, c2, . . . , cl,
M(c1, c2, . . . , cl),M∗(c1, c2, . . . , cl) are both finite, and we

further studied the behaviors of M,M∗ as functions of the

min-cuts. In this paper, we focus our attention on the case

when l = 2. More specifically, we give tighter bounds on

M(c1, c2) and M∗(c1, c2), and exact values of them for

certain special parameters c1, c2.

To be consistent, we adopt the notational convention in [3].

For a path γ in G, let a(γ), b(γ) denote the starting point

and the ending point of γ, respectively; let γ[s, t] denote the

subpath of γ with the starting point s and the ending point

t. For two distinct paths γ, π in G, we say γ is smaller than

π (or, π is larger than γ) if there is a directed path from

b(γ) to a(π); if γ, π and the connecting path from b(γ) to

a(π) are subpaths of path β, we say γ is smaller than π
on β. Note that this definition also applies to the case when

paths degenerate to vertices/edges; in other words, in the

definition, γ, π or the connecting path from b(γ) to a(π) can

be vertices/edges in G, which can be viewed as degenerated

paths. If b(γ) = a(π), we use γ ◦ π to denote the path

obtained by concatenating γ and π subsequently.

We say αi is reroutable if there exists a different set of

Menger’s paths α′
i from Si to Ri. And we say G is reroutable

(with respect to α1, α2, . . . , αl) if some αi, i = 1, 2, . . . , l,
is reroutable, otherwise G is said to be non-reroutable. Note

that for a non-reroutable G, since the choice of αi’s is

unique, so we often write |G|M(α1, α2, . . . , αl) as |G|M
for notational simplicity. For the case l = 2, G is said to be

a (c1, c2)-graph if every edge in G belongs to certain path

in α1 or α2 (or, in loose terms, α1 and α2 “cover” the whole

G).

For any m,n, consider the following procedure to

“draw” an (m,n)-graph: for “fixed” edge-disjoint paths

ψ1, ψ2, . . . , ψn from S2 to R2, we extend edge-disjoint paths

φ1, φ2, . . . , φm from S1 to merge with ψ-paths until we reach

R1. More specifically, the procedure of extending φ-paths is

done step by step, and for each step, we choose to extend

one of the φ-paths to merge with one of the ψ-paths. Thus

for each step, we have mn “strokes” to choose from the

following set

{(φ1, ψ1), (φ1, ψ2), . . . , (φm, ψn−1), (φm, ψn)},
where (φi, ψj) means further extending path φi to merge

with path ψj , while ensuring the new merged subpath is larg-

er than any existing merged subpaths on path ψj . Apparently,

the procedure, and thus the graph, is uniquely determined

by the sequence of strokes (see Example 3), which will be

referred to as a merging sequence of this (m,n)-graph. It is

also easy to see that any (m,n)-graph can be generated by

some merging sequence.

Example 1.1: Consider the following two graphs in Fig. 3

(here and hereafter, all the mergings are represented by solid

dots instead). Listing the elements in the merging sequence,

graph (a) can be described by [(φ1, ψ2), (φ2, ψ1)], or al-

ternatively [(φ2, ψ1), (φ1, ψ2)]. When the context is clear,

we often omit φ, ψ in the merging sequence for notational

simplicity. For example, graph (b) can be described by

a merging sequence [(1, 1), (2, 1), (2, 2), (3, 2)]. Note that

it cannot be described by [(1, 1), (2, 1), (3, 2), (2, 2)], since

(3, 2) (or, more precisely, the merging corresponding to

(3, 2)) is larger than (2, 2) on ψ2.

II. BOUNDS

A. An upper bound on M(m,n)

Consider a non-reroutable (m,n)-graph G with two

sources S1, S2, two sinks R1, R2, a set of Menger’s paths

φ = {φ1, φ2, . . . , φm} from S1 to R1, and a set of Menger’s

paths ψ = {ψ1, ψ2, . . . , ψn} from S2 to R2.
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Fig. 3. Two examples of merging sequences

Consider the following procedure on G. Starting from

S1, go along path φi until we reach a merged subpath,

we then go against the associated ψ-path (corresponding

to the merged subpath just visited) until we reach another

merged subpath, we then go along the associated φ-path,

. . . Continue this procedure (of alternately going along φ-

paths or going against ψ-paths until we reach a merged

subpath) in the same manner as above, then the fact that G
is non-reroutable and acyclic guarantees that eventually we

will reach R1 or S2. By sequentially listing all the terminal

vertices of any merged subpaths visited, such a procedure

produces a φi-AA-sequence. Apparently, there are m φ-AA-

sequences.

Similarly, consider the following procedure on G. Starting

fromR2, go against path ψj until we reach a merged subpath,

we then go along the associated φ-path (corresponding to the

merged subpath just visited) until we reach another merged

subpath, we then go against the associated ψ-path, . . . Con-

tinue this procedure in the same manner, again, eventually,

we are guaranteed to reach R1 or S2. By sequentially listing

all the terminal vertices of any merged subpaths visited, such

a procedure produces a ψj-AA-sequence. Apparently, there

are n ψ-AA-sequences.

The length of an AA-sequence is defined to be the number

of merged subpaths visited during the procedure. Then one

checks that the number of mergings in G is half the sum of

the lengths of all AA-sequences.

Example 2.1: Consider the graph in Fig. 4. Let “⇒” and

“⇐” denote “going along” and “going against”, respectively.

By sequentially listing the terminal vertices of merged sub-

paths visited during the procedure, two φ-AA-sequences can

be represented by S1 ⇒ a(γ1) ⇐ S2 and S1 ⇒ a(γ2) ⇐
b(γ1) ⇒ a(γ5) ⇐ b(γ4) ⇒ R1. Similarly, two ψ-AA-

sequences can be represented by R2 ⇐ b(γ3) ⇒ R1 and

R2 ⇐ b(γ5)⇒ a(γ3)⇐ b(γ2)⇒ a(γ4)⇐ S2.

One also checks that the number of mergings in G is 5,

which is half of (1 + 4 + 1 + 4), the sum of lengths of all

AA-sequences.

Lemma 2.2: 1. The shortest φ-AA-sequence ( or ψ-AA-

S1

S2

R1

R2

φ1

φ2

ψ1 ψ2

γ1

γ2

γ3

γ4

γ5

Fig. 4. An example of AA-sequences

sequence) has length at most 1.

2. The longest φ-AA-sequence (or ψ-AA-sequence) has

length at most mn.

Proof: 1. Suppose, by contradiction, that the shortest

φ-AA-sequence has length at least 2. Pick any φ-path,

say φi0 . Assume that φi0 first merges with ψj0 at merged

subpath γi0,j0 . Since the φi0 -AA-sequence has length at

least 2, there exists a φ-path, say φi1 , such that φi1 has a

merged subpath, say ξi1,j0 , smaller than γi0,j0 on ψj0 . Now

assume that φi1 first merges with ψj1 at merged subpath

γi1,j1 , then similarly there exists a φ-path, say φi2 , such

that φi2 has a merged subpath, say ξi2,j1 , smaller than

γi1,j1 on ψj1 . Continue this procedure in the similar man-

ner to obtain ψj2 , γi2,j2 , φi3 , ξi3,j2 , ψj3 , γi3,j3 , φi4 , ξi4,j3 , . . .
Apparently, there exists k < l such that il = ik. One then

checks that

φik[a(γik,jk), a(ξil,jl−1
)] ◦ ψjl−1

[a(ξil,jl−1
), a(γil−1,jl−1

)]

◦φil−1
[a(γil−1,jl−1

), a(ξil−1,jl−2
)]◦ψjl−2

[a(ξil−1,jl−2
), a(γil−2,jl−2

)]

◦ · · ·◦φik+1
[a(γik+1,jk+1

), a(ξik+1,jk)]◦ψjk[a(ξik+1,jk), a(γik,jk)]

constitutes a cycle, which contradicts the assumption that G
is acyclic.

A parallel argument can be applied to the shortest ψ-AA-

sequence.

2. By contradiction, suppose that a φ-AA-sequence has no

less than mn+1 mergings. Then by the pigeonhole principle,

at least two of the mergings are associated with the same pair

of φ-path and ψ-path. As in the proof of Lemma 2.7 in [3],

one can check that G is reroutable, which is a contradiction.

A parallel argument can be applied to the longest ψ-AA-

sequence.

Improving the upper bound mn(m+ n)/2 derived in [3],

the following theorem immediately follows from the fact that

the number of mergings in G is half the sum of the lengths

of all AA-sequences that

Theorem 2.3:

M(m,n) ≤ mn(m+ n− 2)/2 + 1.
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B. An upper bound on M∗(m,m)

Consider two non-reroutable (m,m)-graphG(1), G(2). For

j = 1, 2, assume that G(j) has one source S(j), two

sinks R
(j)
1 , R

(j)
2 . Let φ(j) = {φ(j)1 , φ

(j)
2 , . . . , φ

(j)
m } denote

the set of Menger’s paths from S(j) to R
(j)
1 and ψ(j) =

{ψ(j)
1 , ψ

(j)
2 , . . . , ψ

(j)
m } denote the set of Menger’s paths from

S(j) to R
(j)
2 . Without loss of generality (see Proposition 3.6

of [3]), we assume that, for 1 ≤ i ≤ m, paths φ
(j)
i and ψ

(j)
i

share a subpath starting from S(j).

Now, consider the following procedure of concatenating

G(1) and G(2):

1) reverse the direction of each edge in G(1) to obtain

a new graph Ĝ(1) (for 1 ≤ i ≤ m, path φ
(1)
i in

G(1) becomes path φ̂
(1)
i in Ĝ(1) and path ψ

(1)
i in G(1)

becomes path ψ̂
(1)
i in Ĝ(1));

2) split S(1) into m copies S
(1)
1 , S

(1)
2 , . . . , S

(1)
m in Ĝ(1)

such that paths φ̂
(1)
i and ψ̂

(1)
i have the same ending

point S
(1)
i ; split S(2) into m copies S

(2)
1 , S

(2)
2 , . . . , S

(2)
m

in G(2) such that paths φ
(2)
i and ψ

(2)
i have the same

starting point S
(2)
i ;

3) for 1 ≤ i ≤ m, identify S
(1)
i and S

(2)
i .

Obviously, such procedure produces a (m,m)-graph with

two distinct sources R
(1)
1 , R

(1)
2 , two distinct sinks R

(2)
1 , R

(2)
2 ,

a set of Menger’s paths {φ̂(1)1 ◦ φ
(2)
1 , φ̂

(1)
2 ◦ φ

(2)
2 , . . . , φ̂

(1)
m ◦

φ
(2)
m } from R

(1)
1 to R

(2)
1 and a set of Menger’s paths {ψ̂(1)

1 ◦
ψ
(2)
1 , ψ̂

(1)
2 ◦ ψ(2)

2 , . . . , ψ̂
(1)
m ◦ ψ(2)

m } from R
(1)
2 to R

(2)
2 ; see

Fig. 5 for an example. We then have the following lemma,

whose proof is omitted due to the space limit.

Lemma 2.4: The concatenated graph as above is a non-

reroutable (m,m)-graph with the number of mergings equal

to |G(1)|M + |G(2)|M +m.

This following theorem then immediately follows.

Theorem 2.5:

M(m,m) ≥ 2M∗(m,m) +m.

It follows from Theorem 2.3 and 2.5 that

Theorem 2.6:

M∗(m,m) ≤ (m− 1)2(m+ 1)/2.

Here, we remind the reader that, by Proposition 3.6 in [3],

M∗(m,n) =M∗(m,m) for any m ≤ n.

C. A lower bound on M∗(m,m)

In this section, we will construct a non-reroutable (m,m)-
graph F(m,m) with one source S, two sinks R1, R2, a set

of Menger’s paths φ = {φ0, φ1, . . . , φm−1} from S to R1,

a set of Menger’s paths ψ = {ψ0, ψ1, . . . , ψm−1} from S to

R2 and (m− 1)2 mergings for any positive integer m, thus

giving a lower bound on M∗(m,m).
The graph F(m,m) can be described as follows: for each

0 ≤ i ≤ m − 1, paths φi and ψi share a maximal subpath

starting from S, say Qi. After Qm−1, path φm−1 does not

merge any more, directly “flowing” to R1; after Q0, path

ψ0 does not merge any more, directly “flowing” to R2.

Then the rest of the graph can be determined how paths

S(1)

S(2)

R
(1)
1R

(1)
1

R
(1)
2R

(1)
2

R
(2)
1R

(2)
1

R
(2)
2R

(2)
2

Fig. 5. Concatenation of two (3, 3)-graphs

φ0, φ1, . . . , φm−2 merge with ψ1, ψ2, . . . , ψm−1. In more

detail, for a given m, we define

U ={Ui,j = i(2m− i− 2) + j : 0 ≤ i ≤ m− 2,

1 ≤ j ≤ m− i− 1}
and

V ={Vi,j = i(2m− i− 3) + (m− 1) + j : 0 ≤ i ≤ m− 3,

1 ≤ j ≤ m− i− 2}.
It can be checked that all Ui,j’s, Vi,j ’s are distinct and

U ∪ V = {1, 2, . . . , (m− 1)2}.
Now we define a mapping f : {1, 2, . . . , (m − 1)2} 7→
{(i, j) : 0 ≤ i, j ≤ m− 1} by

f(k) =

{

(i, j) if k = Ui,j

(m− 1− j,m− 1− i) if k = Vi,j

Then a merging sequence of the rest of the graph can be

defined as

Ω = [Ωk : Ωk = f(k), 1 ≤ k ≤ (m− 1)2].

For example, F(4, 4), as illustrated in Fig. 6, is determined

by the merging sequence

Ω = [(0,1),(0,2),(0,3),(2,3),(1,3),(1,1),(1,2),(2,2),(2,1)].

Now, we prove that

Lemma 2.7: F(m,m) is non-reroutable.

Proof: Let z = m − 1. Recall that for each i =
0, 1, . . . , z, the maximal subpath shared (starting from S) by

φi and ψi is labeled as Qi. And for each i, j = 0, 1, . . . , z,

label each merging (i, j) in the merging sequence as Pi,j (it

can be easily checked that no two mergings share the same

label).

We only prove that there is only one possible set of

Menger’s paths from S to R1. The uniqueness of Menger’s
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Fig. 6. Graph F(4, 4) with 9 mergings

path set from S to R2 can be established using a parallel

argument.

Let α1 be an arbitrary yet fixed set of Menger’s paths

from S to R1. It suffices to prove that α1 is non-reroutable.

Note that each path in α1 must end with either Qz → R1

or Pi,z−i → R1, i = 0, 1, . . . , z − 1 (here and hereafter,

slightly abusing the notations “→” and “←”, for paths (or

vertices) A1, A2, . . . , Ak, we use A1 → A2 → · · · → Ak or

Ak ← · · · ← A2 ← A1 to denote the unique path consisting

of A1, A2, . . . , Ak and the unique path from Ai to Ai+1 for

all i). In α1, label the Menger’s path ending with Pi,z−i →
R1 as the i-th Menger’s path for 0 ≤ i ≤ z − 1, and the

Menger’s path ending with Qz → R1 as the z-th one.

It is obvious that in F(m,m), there is only one path

ending with Qz → R1, which implies that the z-th Menger’s

path in α1 is “fixed” (as S → Qz → R1); or, more rigor-

ously, for any set of Menger’s paths α′
1, the z-th Menger’s

path in α′
1 is the same as the z-th one in α1. So, for the

purpose of choosing other Menger’s paths, all the edges on

S → Qz → R1 are “occupied”. It then follows that, in α1,

P0,z must “come” from P0,z−1; more precisely, in α1, P0,z−1

is smaller than P0,z on the 0-th path and there is no other

merging between them on this path. Now, all the edges on

P0,z−1 → P0,z → R1 are occupied.

Inductively, only considering unoccupied edges, one can

check that for 0 ≤ i ≤ z − 2, Pi,z−i must come from

Pi,z−i−1; in other words, for 0 ≤ i ≤ z − 2, the i-th
Menger’s path must end with Pi,z−i−1 → Pi,z−i → R1.

It then follows that the (z− 1)-th Menger’s path must come

from Pz−1,2 ← Pz−1,3 ← · · · ← Pz−1,z ← Qz−1; so, the

(z−1)-th Menger’s path is fixed as S → Qz−1 → Pz−1,z →
Pz−1,z−1 → · · · → Pz−1,2 → Pz−1,1 → R1.

We now proceed by induction on j, j = z−2, z−3, . . . , 1.

Suppose that, for j + 1 ≤ i ≤ z, the i-th Menger’s path is

already fixed (and hence the edges on these paths are all

occupied), and for 0 ≤ i ≤ j, the i-th Menger’s path ends

with Pi,j−i+1 → Pi,j−i+2 → · · · → Pi,z−i → R1 (so,

the edges on these paths are all occupied). Only considering

the unoccupied edges, one checks that for 0 ≤ i ≤ j − 1,

Pi,j−i+1 must come from Pi,j−i. It then follows that the

j-th Menger’s path, which ends with Pj,1 → Pj,2 → · · · →
Pj,z−j → R1, must come from Pj,z−j+1 ← Pj,z−j+2 ←
· · · ← Pj,z ← Qj . So, the j-th Menger’s path can now be

fixed as S → Qj → Pj,z → Pj,z−1 → · · · → Pj,z−j+1 →
Pj,1 → Pj,2 → · · · → Pj,z−j → R1. Now, for j ≤ i ≤ z,

the i-th Menger’s path is fixed, and for 0 ≤ i ≤ j−1, the i-th
Menger’s path must end with Pi,j−i → Pi,j−i+1 → · · · →
Pi,z−i → R1.

It follows from the above inductive argument that for 1 ≤
i ≤ z, the i-th Menger’s path is fixed, and the 0-th Menger’s

path must end with P0,1 → P0,2 → · · · → P0,z → R1.

One then checks that the P0,1 must come from Q0, which

implies that the 0-th Menger’s path is fixed as S → Q0 →
P0,1 → P0,2 → · · · → P0,z → R1. The proof of uniqueness

of Menger’s path set from S to R1 is then complete.

The above lemma then immediately implies that

Theorem 2.8:

M∗(m,m) ≥ (m− 1)2.

D. A lower bound on M(m,n)

Consider the following (m,m)-graph E(m,m) with

sources S1, S2, sinks R1, R2, a set of Menger’s paths φ =
{φ1, φ2, . . . , φm} from S1 to R1, a set of Menger’s paths

ψ = {ψ1, ψ2, . . . , ψm} from S2 to R2, and a merging

sequence Ω = [Ωk : 1 ≤ k ≤ 2m2 − 3m+ 2], where

Ωk =







([j − i]m, i+ 1) if k = 2i(m− 1) + j
for (0 ≤ i ≤ m− 1, 1 ≤ j ≤ m− 1)
or (i = m− 1, j = m)

(m− i, [i− j + 2]m) if k = (2i+ 1)(m− 1) + j
for 0 ≤ i ≤ m− 2, 1 ≤ j ≤ m− 1

where, for any integer t, [t]m denotes the least positive

residue of t modulo m. For a quick example, see E(3, 3)
in Fig. 7(a), whose merging sequence is

Ω =[(1, 1), (2, 1), (3, 1), (3, 3), (3, 2), (1, 2), (2, 2), (2, 1),

(2, 3), (3, 3), (1, 3)].

Then, one can check (proof omitted here due to the space

limit)

Lemma 2.9: E(m,m) is non-reroutable.

Consider a non-reroutable (k,m)-graph H(k,m) with

sources S′
1, S

′
2, sinks R′

1, R
′
2, a set of Menger’s paths

φ′ = {φ′1, φ′2, . . . , φ′k} from S′
1 to R′

1, a set of Menger’s

paths ψ′ = {ψ′
1, ψ

′
2, . . . , ψ

′
m} from S′

2 to R′
2. For a fixed

merging sequence of H(k,m), assume, without loss of

generality, that the first element is (φ′1, ψ
′
m). Next, we

will “concatenate” E(m,m) and H(k,m) to obtain a new

graph. In the following, by splitting a set of Menger’s

paths φ = {φ1, φ2, . . . , φm} from S1 to R1, we mean

splitting S1 into m copies S
(1)
1 , S

(2)
1 , . . . , S

(m)
1 , and R1 into

R
(1)
1 , R

(2)
1 , . . . , R

(m)
1 such that each newly obtained φi has

starting point S
(i)
1 and ending point R

(i)
1 ; see Fig. 7(b) for

an example.
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(a) (b)

S1

R1

S
(1)
1

S
(2)
1

S
(3)
1

R
(1)
1

R
(2)
1

R
(3)
1

S2 S2

R2 R2

φ1

φ2

φ3

Fig. 7. (a) Graph E(3, 3) with 11 mergings (b) Split φ-paths in E(3, 3)

The concatenating procedure can be described as follows:

1) split φ, ψ, φ′ and ψ′;

2) delete all edges on φ1 and all edges on ψm, each of

which is larger than (φ1, ψm) to obtain new φ1 and

ψm;

3) delete all edges on φ′1 and all edges on ψ′
m, each of

which is smaller than (φ′1, ψ
′
m) to obtain new φ′1 and

ψ′
m;

4) concatenate φ1 and φ′1 to obtain φ1◦φ′1 (so, necessarily,

ψm and ψ′
m are concatenated and we obtain ψm◦ψ′

m);

5) for i = 1, 2, . . . ,m−1, concatenate ψi and ψ′
i to obtain

ψi ◦ ψ′
i ;

6) identify all the starting points of ψi ◦ ψ′
i, for i = 1, 2,

. . . ,m, and then all the ending points; identify all the

starting points of φ1 ◦ φ′1, φ2, φ3, . . . , φm, φ′2, φ′3, . . . ,
φ′k, and then all the ending points.

For example, in Fig. 8, we concatenate E(2, 2) and a non-

reroutable (2, 2)-graph to obtain a (3, 2)-graph. We have the

following lemma, whose proof is omitted due to the space

limit.

Lemma 2.10: The concatenated graph as above is a non-

reroutable (k+m−1,m)-graph with the number of mergings

equal to |E(m,m)|M + |H(k,m)|M − 1.

We are now ready for the following theorem, which gives

us a lower bound on M(m,n).
Theorem 2.11:

M(m,n) ≥ 2mn−m− n+ 1.

Proof: Without loss of generality, assume that m ≤ n.

For 1 ≤ m′ ≤ m and 1 ≤ n′ ≤ n, we will iteratively

construct a sequence of non-reroutable (m′, n′)-graphs with

2m′n′ −m′ − n′ + 1 mergings, which immediately implies

the theorem.

First, for any k, L(1, k), a non-reroutable (1, k)-graph can

be given by specifying its mergings sequence

Ω = [(1, 1), (1, 2), . . . , (1, k)].

Next, consider the case 2 ≤ m ≤ n. Assume that for any

m′ ≤ n′ such that m′ ≤ m, n′ ≤ n, however (m′, n′) 6=

S1S1

R1

R1

S2S2

R2

R2

S′
1

R′
1

S′
2

R′
2

ψ1 ψ2

φ1

φ2φ2

ψ′
1 ψ′

2

φ′1

φ′2

φ′2

φ1 ◦ φ′1
ψ1 ◦ ψ′

1 ψ2 ◦ ψ′
2

Fig. 8. Concatenation of E(2, 2) and a non-reroutable (2, 2)-graph

(m,n), we have constructed a non-reroutable (m′, n′)-graph,

which is effectively a non-reroutable (n′,m′)-graph as well.

We obtain a new (m,n)-graph through the following proce-

dure:

1) if m = n, concatenate E(m,m) and an already

constructed non-reroutable (1,m)-graph.

2) if m < n, concatenate E(m,m) and an already

constructed non-reroutable (n−m+ 1,m)-graph.

For the first case, according to Lemma 2.10, the obtained

graph is non-reroutable (m,m)-graph with the number of

mergings

(2m2 − 3m+ 2) +m− 1 = 2m2 − 2m+ 1.

Similarly, for the second case, the obtained graph is a non-

reroutable (m,n)-graph with the number of mergings

(2m2−3m+2)+(2(n−m+1)m−(n−m+1)−m+1)−1
= 2mn−m− n+ 1.

We then have established the theorem.

Example 2.12: To construct a non-reroutable (4, 6)-graph

with 39 mergings, one can concatenate E(4, 4) and a non-

reroutable (3, 4)-graph, which can be obtained by con-

catenating E(3, 3) and a non-reroutable (2, 3)-graph. The

latter can be obtained by concatenating E(2, 2) and a non-

reroutable (2, 2)-graph. Finally, a non-reroutable (2, 2)-graph

can be obtained by concatenating E(2, 2) and L(1, 2). One

readily checks that the number of mergings in the eventually

obtained graph is

|E(4,4)|M+|E(3,3)|M+|E(2,2)|M+|E(2,2)|M+|L(1,2)|M−4
= 22+ 11+ 4+ 4+ 2− 4 = 39.

Remark 2.13: It has been established in [4] that

m(m− 1)/2 ≤M∗(m,m) ≤ m3.

Summarizing all the four bounds we obtain, we have

(m− 1)2 ≤ M∗(m,m) ≤ (m− 1)2(m+ 1)/2,

2mn−m− n+ 1 ≤ M(m,n) ≤ mn(m+ n− 2)/2 + 1.
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III. EXACT VALUES

In this section, we give exact values of M and M∗ for

certain special parameters.

Theorem 3.1:

M(3, 3) = 13.

Sketch of the proof: Consider any non-reroutable (3, 3)-
graph. Using an exhaustive approach, one checks the longest

AA-sequence in this graph has length at most 7. So, by

Lemma 2.2, we have

M(3, 3) ≤ (7 + 7 + 1 + 7 + 7 + 1)/2 = 15.

It follows from Theorem 2.11 thatM(3, 3) ≥ 13, and we

can obtain a non-reroutable (3, 3)-graph with 13 mergings

by concatenating E(3, 3) and L(1, 3).
We next showM(3, 3) cannot be 15 or 14. Note that any

non-reroutable graph having 15 mergings implies that its (φ-

AA-sequence; ψ-AA-sequence) have lengths (7, 7, 1; 7, 7, 1),
respectively, while 14 mergings implies that its (φ-AA-

sequences; ψ-AA-sequences) have lengths (7, 6, 1; 7, 6, 1),
(7, 7, 1; 7, 5, 1) or (7, 7, 1; 6, 6, 1), respectively. We call such

implications the AA-sequence requirements. The idea is that

we can first preprocess to eliminate many cases by checking

if the AA-sequence requirements are satisfied, then we can

exhaustively investigate all the remaining cases to prove

M(3, 3) cannot be equal to 14 or 15. The detailed proof is

rather tedious and lengthy, and thus omitted. �

Remark 3.2: Through exhaustive searching, we are able

to compute exact values of M and M∗ with some small

parameters:M∗(4, 4) = 9, M∗(5, 5) = 16, M∗(6, 6) = 27,

M(3, 4) = 18, M(3, 5) = 23, M(3, 6) = 28, M(4, 4) =
27.

Theorem 3.3:

M(m, 2) = 3m− 1.

Proof: We first show that M(m, 2) ≥ 3m − 1. Con-

sider the following (m, 2)-graph specified by the following

merging sequence (for a simple example, see Fig. 9(a)):

Ω = [Ωk : 1 ≤ k ≤ 3m− 1], where

Ωk =







(1, [i]2) if k = 3i− 2 for 1 ≤ i ≤ m
(i+ 1, [i]2) if k = 3i− 1 for 1 ≤ i ≤ m− 1
(i+ 1, [i+ 1]2) if k = 3i for 1 ≤ i ≤ m− 1
(1, [m+ 1]2) if k = 3m− 1

One checks that the above graph is non-reroutable with

3m− 1 mergings, which implies that M(m, 2) ≥ 3m− 1.

Next, we show that M(m, 2) ≤ 3m− 1. Consider a non-

reroutable (m, 2)-graph G with two sets of Menger’s paths

φ = {φ1, φ2, . . . , φm}, ψ = {ψ1, ψ2}.
Define

Ψ = {(λ, µ) : merging λ is smaller than merging µ on

some φ-path and there is no other merging between

them on this path}.
Note that for any (λ, µ) ∈ Ψ, λ, µ must belong to different

ψ-paths. We say (λ, µ) ∈ Ψ is of type I, if λ belongs to

(a) (b)

S1

S1

S2 S2

R1
R1

R2 R2

A

B

C

D

E

F

J

K

L

M

N

Fig. 9. (a) A non-reroutable (3, 2)-graph with 8 mergings (b) An example
of (5, 2)-graph

ψ1, and (λ, µ) ∈ Ψ is of type II, if λ belongs to ψ2. For

any two different elements (λ1, µ1), (λ2, µ2) ∈ Ψ. We say

(λ1, µ1) ≺ (λ2, µ2) if either (they are of the same type and

λ1 is smaller than λ2) or (they are of different types and λ1
is smaller than µ2). One then checks that the relationship

defined by ≺ is a strict total order.

Letting r denote the number of elements in Ψ, we define

Θ = (Θ1,Θ2, . . . ,Θr)

to be the sequence of the ordered (by ≺) elements in Ψ.

Now we consecutively partition Θ into t “medium-blocks”

B1, B2, . . . , Bt, and further consecutively partition each Bi

into gi “mini-blocks” Bi,1, Bi,2, . . . , Bi,gi such that

• for any i, j, the elements in Bi,j are of the same type.

• for any i, j, Bi,j is linked to Bi,j+1 in the following

sense: let (λ1, µ1) denote the element with the largest

second component in Bi,j and let (λ2, µ2) denote the

element with the smallest first component in Bi,j+1,

then µ1 = λ2.

• for any i, Bi,gi is not linked to Bi+1,1.

A mini-block is said to be a singleton if it has only one

element. We then have the following lemma.

Lemma 3.4: Between any two “adjacent” singletons

(meaning there is no singleton between these two singletons)

in a medium-block, there must exist a mini-block containing

at least three elements.

Letting g denote the number of mini-blocks in Θ and ri
denote the number of elements in medium-block Bi for any

i, we then have

g = g1 + g2 + · · ·+ gt,

r = r1 + r2 + · · ·+ rt.

Suppose there are k singletons in Θ, then by Lemma 3.4,

we can find (k − 1) mini-blocks, each of which has at least

three elements. Hence, for 1 ≤ i ≤ t,

ri ≥ 1 ·k+3 · (k− 1)+2 · [gi−k− (k− 1)] = 2gi− 1, (1)
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which implies

r =

t∑

i=1

ri ≥
t∑

i=1

(2gi − 1) = 2g − t. (2)

For any two linked mini-blocks Bi,j and Bi,j+1, let

(λ1, µ1) denote the element with the largest second com-

ponent in Bi,j , and let (λ2, µ2) denote the element with the

smallest first component in Bi,j+1. By the definition (of two

mini-blocks being linked), µ1 = λ2, which means Bi,j and

Bi,j+1 share a common merging. Together with the fact that

each element in Ψ is a pair of mergings, this further implies

that the number of mergings in G is

|G|M = 2r − (g − t). (3)

Notice that λ1, µ1, µ2 belong to the same φ-path, and

furthermore, there exists only one φ-path passing by both

an element (more precisely, passing by both its mergings) in

Bi,j and an element in Bi,j+1. So, m, the number of φ-paths

in G can be computed as

m = r − (g − t). (4)

It then follows from (2), (3), (4) and the fact t ≥ 1 that

m = r − g + t ≥ (2g − t)− g + t = g (5)

and furthermore

|G|M = 2r−g+t = 2m+g−t ≤ 2m+m−1 = 3m−1, (6)

which establishes the theorem.

Example 3.5: Consider the graph in Fig. 9(b) and assume

the context is as in the proof of Theorem 3.3. Then we have,

Ψ = {(A, J), (B,K), (L,C), (K,D), (F,M), (E,N)}.

Among all the elements in Ψ, (A, J), (B,K), (F,M) and

(E,N) are of type I, and (L,C), (K,D) are of type II. It

is easy to check that

Θ = ((A, J), (B,K), (K,D), (L,C), (E,N), (F,M)),

which is partitioned into three mini-blocks ((A, J), (B,K)),
((K,D), (L,C)) and ((E,N), (F,M)). The first mini-block

is linked to the second one, but the second one is not linked

to the third, so Θ is partitioned into two medium-blocks:

((A, J), (B,K), (K,D), (L,C)) and ((E,N), (F,M)).

Remark 3.6: The result in Theorem 3.3 in fact has already

been proved in [3] using a different approach. The proof

in this paper, however, is more intrinsic in the sense that

it reveals in greater depth the topological structure of non-

reroutable (m, 2)-graphs achieving 3m − 1 mergings, and

further helps to determine the number of such graphs.

Assume a non-reroutable (m, 2)-graph G has 3m − 1
mergings. One then checks that in the proof of Theorem 3.3,

equalities hold for (6). It then follows that

• t = 1, namely, there is only one medium-block in Θ;

and

• equalities hold necessarily for (5), (2) and eventually

(1), which further implies that between two adjacent

singletons, only one mini-block has three elements and

any other mini-block has two elements.

Furthermore, one checks that

• for a mini-block with two elements ((λ1, µ1), (λ2, µ2)),
µ2 is smaller than µ1; and

• for a mini-block with three elements ((λ1, µ1), (λ2, µ2),
(λ3, µ3)), either (µ2 is smaller than µ3 and µ3 is smaller

than µ1) or (µ3 is smaller than µ1 and µ1 is smaller than

µ2).

Assume that G is “reduced” in the sense that, other than

S1, S2, R1, R2, each vertex in G is a terminal vertex of

some merging. The properties above allow us to count how

many reduced non-reroutable (m, 2)-graphs (up to graph

isomorphism) can achieve 3m − 1 mergings: suppose that

there are k (1 ≤ k ≤
⌊
m+1
2

⌋
) singletons in G, then

necessarily, there are (k− 1) three element mini-blocks and

(m−2k+1) two element mini-blocks in Θ. It can be checked

that the number of ways for these m mini-blocks to form a Θ
for some (m, 2)-graph is

(
m

2k−1

)
2k−1. This implies that the

number of (m, 2)-graph, whose Θ consists of k singletons,

(k − 1) three element mini-blocks and (m − 2k + 1) two

element mini-blocks, is
(

m
2k−1

)
2k−1. Through a computation

summing over all feasible k, the number of reduced non-

reroutable (m, 2)-graphs with 3m − 1 mergings can be

computed as

⌊m+1

2 ⌋∑

k=1

(
m

2k − 1

)

2k−1 =
1

2
√
2
[(1+
√
2)m−(1−

√
2)m] = Pm,

where Pm is the m-th Pell number [7].
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