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Abstract—In this paper, we study control problems of
Boolean Networks (BNs) and Probabilistic Boolean Networks
(PBNs). For BN CONTROL, by applying external control, we
propose to derive the network to the desired state within a
few time steps. For PBN CONTROL, we propose to find a
control sequence such that the network will terminate in the
desired state with a maximum probability. Also, we propose to
minimize the maximum cost of the terminal state to which the
network will enter. Integer linear programming and dynamic
programming in conjunction with hard constraints are then
employed to solve the above problems. Numerical experiments
are given to demonstrate the effectiveness of our algorithms. We
also present a hardness result suggesting that PBN CONTROL
is harder than BN CONTROL.

Keywords-Boolean networks; probabilistic Boolean net-
works; optimal control; integer linear programming; dynamic
programming

I. INTRODUCTION

Developing efficient algorithms for control of genetic
regulatory networks is an important research issue in bioin-
formatics. A number of formalisms have been developed
for modeling genetic regulation processes, such as Bayesian
networks, multivariate Markov chain model [1], Boolean
networks and probabilistic Boolean networks. A brief re-
view can be found in [2]. Among all the models, Boolean
networks (BNs) and their extension probabilistic Boolean
networks (PBNs) have received much attention since they
are able to capture the switching behavior of the genetic
process.

Boolean network (BN) was first introduced by Kauffman
[3] in 1969. It is a very simple model: each gene is quantized
to only two levels – on and off (represented as 1 and 0). The
target gene can be regulated by several genes called its input
genes via its Boolean function (predictor function). A BN
is said to be well defined if all the input genes and Boolean
functions are given. However, a BN is a deterministic model.
The randomness comes only from the initial state. Therefore,
it is more realistic to extend a BN to a stochastic one,
namely, Probabilistic Boolean Network (PBN). In a PBN,
instead of having only one Boolean function, each gene can
have multiple Boolean functions with selecting probabilities

assigned to them. The dynamics of a PBN can be studied
and analyzed by the theory of Markov chain. Furthermore,
it is possible to control one or more genes in a network such
that the whole network is derived into a desired state or a
steady-state distribution. Then therapeutic gene intervention
or gene control policy can be developed [4], [5], [6].

In this paper, we propose to solve the control problem
of PBNs by using integer linear programming and dynamic
programming in conjunction with hard constraints. In [7]
an integer programming approach has been applied to solve
the control problem of PBN. Here we consider adding hard
constraints (i.e. adding an upper bound for the number of
controls that can be applied to the network [6]) into the
problem and propose an integer linear programming based
method with hard constraints to solve the control problem of
BN and PBN. Introduction of hard constraints is important
for medical applications because the number of treatments
such as radiation and chemo-therapy is usually limited [6].
Moreover, given the terminal cost for each state, we want
to derive the network into the state with the minimized
maximum cost by applying external control. This problem
is important also for medical applications because we may
want to minimize the damage or cost even in the worst case.
In addition to development of algorithms, we study the time
complexity of control problems for PBN. We prove that both
minimizing the maximum cost and minimizing the average
cost are Σ𝑝

2-hard, where the latter problem corresponds to
the original control problem for PBN [8]. It is known that
control of BN is NP-complete1 and control of PBN is NP-
hard [4]. Since it is believed that Σ𝑝

2-hard problems are
much harder than NP-complete problems [10], this result
suggests that control of PBN is much harder than control
of BN. Furthermore, this result suggests that such methods
as integer linear programming cannot be effectively applied
to solve the control problem of PBN because (a decision
problem version of) integer linear programming is known

1Control of BN is NP-complete if the number of time steps is polyno-
mially bounded. Otherwise, it is PSPACE-complete, which directly follows
from the result of [9]. However, it is not usual to consider an exponential
number of time steps.

2010 IEEE International Conference on Bioinformatics and Biomedicine

978-1-4244-8305-1/10/$26.00 ©2010 IEEE 240



Figure 1. Example of a PBN. Dynamics of the PBN is well described by
the state transition probability and the transition diagram.

to be NP-complete [10]. Therefore, integer programming-
based approach can only be applied to control of BN [5]
and special restricted variants of control of PBN [7].

II. PROBLEMS

A. Boolean Networks and Probabilistic Boolean Networks

A Boolean network (BN) is represented by a set of
nodes (genes) 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and a list of Boolean
functions 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑛} where a Boolean func-
tion 𝑓𝑖(𝑣𝑖1 , . . . , 𝑣𝑖𝑘) with inputs from specified nodes
𝑣𝑖1 , . . . , 𝑣𝑖𝑘 is assigned to 𝑣𝑖. We use 𝐼𝑁(𝑣𝑖) to represent
the set of input nodes 𝑣𝑖1 , . . . , 𝑣𝑖𝑘 to 𝑣𝑖. The number of
inputs to 𝑣𝑖 is called the indegree of 𝑣𝑖. We define 𝐾 as the
maximum indegree of a BN.

We define 𝑣𝑖(𝑡) to be the state (0 or 1) of the gene 𝑖 at
time 𝑡. The rules of the regulatory interactions among the
genes can then be represented by Boolean functions:

𝑣𝑖(𝑡+ 1) = 𝑓𝑖(𝑣𝑖1(𝑡), . . . , 𝑣𝑖𝑘(𝑡)), 𝑖 = 1, 2, . . . , 𝑛. (1)

Here we let v(𝑡) = (𝑣1(𝑡), 𝑣2(𝑡), . . . , 𝑣𝑛(𝑡))
𝑇 which is

called the Gene Activity Profile (GAP). The GAP can take
any possible states from the set 𝑆 = {(𝑣1, 𝑣2, . . . , 𝑣𝑛)𝑇 :
𝑣𝑖 ∈ {0, 1}} and thus totally there are 2𝑛 possible states in
the network. We then define

𝑧(𝑡) = 1 +

𝑛∑
𝑖=1

2𝑛−𝑖𝑣𝑖(𝑡).

As 𝑣1(𝑡)𝑣2(𝑡) . . . 𝑣𝑛(𝑡) ranges from 00 . . . 0 to 11 . . . 1, 𝑧(𝑡)
will take on all values from 1 to 2𝑛. Clearly, there is a one-
to-one map from 𝑥(𝑡) to 𝑧(𝑡). Hence instead of the binary
representation for the global state, one can use equivalent
decimal representation 𝑧(𝑡).

Since a BN is a deterministic model, it is more realistic
to extend it to a probabilistic setting. To extend the concepts
of a BN to a stochastic model, for each vertex 𝑣𝑖 in a PBN,
instead of having only one Boolean function as in BN, there
are a multiple of Boolean functions (predictor functions)

𝑓
(𝑖)
𝑗 (𝑗 = 1, 2, . . . , 𝑙(𝑖)) to be chosen for determining the

state of gene 𝑣𝑖 and usually 𝑙(𝑖) is not very large. The
probability of choosing 𝑓

(𝑖)
𝑗 as the predictor function is 𝑐

(𝑖)
𝑗 ,

0 ≤ 𝑐
(𝑖)
𝑗 ≤ 1 and

𝑙(𝑖)∑
𝑗=1

𝑐
(𝑖)
𝑗 = 1 for 𝑖 = 1, 2, . . . , 𝑛.

(2)
To estimate the probability 𝑐

(𝑖)
𝑗 , one of the efficient methods

is called Coefficient of Determination (COD) [11]. It can
be used to estimate the probability 𝑐

(𝑖)
𝑗 with real gene

expression data sets.
We let 𝑓𝑗 be the 𝑗th possible realization, where 𝑓𝑗 =

(𝑓
(1)
𝑗1

, 𝑓
(2)
𝑗2

, . . . , 𝑓
(𝑛)
𝑗𝑛

), 1 ≤ 𝑗𝑖 ≤ 𝑙(𝑖), 𝑖 = 1, 2, . . . , 𝑛.
Suppose that the selection of the Boolean function 𝑓𝑗𝑖 for
each gene 𝑖 is an independent process, then the probability
of choosing the corresponding BN with Boolean functions
𝑓𝑗 = (𝑓

(1)
𝑗1

, 𝑓
(2)
𝑗2

, . . . , 𝑓
(𝑛)
𝑗𝑛

) is given by

𝑞𝑗1𝑗2⋅⋅⋅𝑗𝑛 =

𝑛∏
𝑖=1

𝑐
(𝑖)
𝑗𝑖

. (3)

There are at most 𝑁 =
∏𝑛

𝑖=1 𝑙(𝑖) different possible realiza-
tions of BNs. Fig. 1 gives an example of PBN. We note that
the transition process among the states in the set 𝑆 forms
a Markov chain process. Let a and b be any two column
vectors in the set 𝑆. Then the transition probability

P {v(𝑡+ 1) = a ∣ v(𝑡) = b} = ∑𝑁
𝑗=1

P {v(𝑡+ 1) = a ∣ v(𝑡) = b, the 𝑗th BN is selected} ⋅ 𝑞𝑗
=

∑
𝑗∈ℐ 𝑞𝑗

where ℐ is the set of BNs of which the transition probability
from state b to state a is 1.

Here we let

𝑞𝑗 = 𝑞𝑗1𝑗2⋅⋅⋅𝑗𝑛 and 𝑗 = 𝑗1 +
𝑛∑

𝑖=2

(
(𝑗𝑖 − 1)(

𝑖−1∏
𝑘=1

𝑙(𝑘))

)
.

(4)
We can then use both of them when there is no confusion.
By letting a and b take all the possible states in 𝑆, one can
get the transition probability matrix of the Markov chain (or
the PBN). The transition probability matrix can be written
as

𝐴 =
𝑁∑
𝑗=1

𝑞𝑗𝐴𝑗 (5)

where 𝐴𝑗 is the corresponding transition matrix of the 𝑗th
BN and 𝑞𝑗 is the probability of choosing the 𝑗th BN. We
remark that there are at most 𝑁2𝑛 nonzero entries in the
transition probability matrix 𝐴 and this means the matrix is
sparse, i.e., having a lot of zero entries.
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Figure 2. Example of BN CONTROL. In this problem, given the initial
and desired states of internal nodes (𝑣1, 𝑣2, 𝑣3), it is required to find a
sequence of control inputs (𝑢1, 𝑢2) leading to the desired state.

B. Control of BN with Hard Constraints

Akutsu et al. introduced a control problem for BNs in
[4]. In BN CONTROL, there are two types of nodes:
internal nodes and external nodes, where internal nodes
correspond to usual nodes in a BN and external nodes
correspond to control nodes. Let a set 𝑉 of 𝑛+𝑚 nodes be
𝑉 = {𝑣1, . . . , 𝑣𝑛, 𝑣𝑛+1, . . . , 𝑣𝑛+𝑚}, where 𝑣1, . . . , 𝑣𝑛 are
internal nodes and 𝑣𝑛+1, . . . , 𝑣𝑛+𝑚 are control nodes. Then
the states of internal nodes at time 𝑡+ 1 are represented by

𝑣𝑖(𝑡+ 1) = 𝑓𝑖(𝑣𝑖1(𝑡), . . . , 𝑣𝑖𝑘(𝑡)), 𝑖 = 1, 2, . . . , 𝑛. (6)

where each 𝑣𝑖𝑗 is either an internal node or a con-
trol node. Fig. 2 gives an example of BN CONTROL.
Here we let v(𝑡) = [𝑣1(𝑡), 𝑣2(𝑡), . . . , 𝑣𝑛(𝑡)] and u(𝑡) =
[𝑣𝑛+1(𝑡), 𝑣𝑛+2(𝑡), . . . , 𝑣𝑛+𝑚(𝑡)]. If

𝑣𝑛+𝑖(𝑡)− 𝑣𝑛+𝑖(𝑡+ 1) ∕= 0, for some 𝑖 ∈ {1, . . . ,𝑚}
then we say that the external control is applied once to the
network. Thus the number of controls applied to network is
equal to

𝑀−1∑
𝑡=0

𝑚∑
𝑖=1

∣𝑣𝑛+𝑖(𝑡)− 𝑣𝑛+𝑖(𝑡+ 1)∣.

Then the control problem of BN under hard constraints is
as follows:
Definition 1: Suppose an initial state of the network is v0

and the desired state of the network is v𝑀 , find a control
sequence ⟨u(0),u(1), . . . ,u(𝑀)⟩ such that v(0) = v0 and
v(𝑀) = v𝑀 , and the maximum number of controls applied
to the network during the finite time period 𝑀 is 𝐻 .

C. Finding the Optimal Path with Hard Constraints

In a PBN, for each time step 𝑡, the network will choose
one of the possible BNs (e.g., 𝑗𝑡-th possible BN) with the
corresponding selecting probability 𝑞𝑗𝑡 and enter into the
next state v(𝑡+1) from v(𝑡). Given the initial state v0 and

the desired state v𝑀 , we can define the probability of a
path with v(0) = v0 and v(𝑀) = v𝑀 as

∏𝑀−1
𝑡=0 𝑞𝑗𝑡 . By

applying external control to the network, we can derive the
network into desired state v𝑀 with different path probabili-
ties. Then the problem of maximizing the highest probability
of a path with the initial state v0 and the terminal (desired)
state v𝑀 can be described as follows:
Definition 2: Suppose an initial state of the network is v0

and the desired state of the network is v𝑀 , find a control
sequence ⟨u(0), . . . ,u(𝑀)⟩ such that the probability of the
path with the initial state v0 and the terminal (desired) state
v𝑀 is maximized, and the maximum number of controls
applied to the network during the finite time period 𝑀 is
𝐻 .

D. Minimizing the Maximum Cost

Suppose that a PBN with 𝑛 internal nodes v(𝑡) =
[𝑣1(𝑡), 𝑣2(𝑡), . . . , 𝑣𝑛(𝑡)] and 𝑚 control nodes u(𝑡) =
[𝑣𝑛+1(𝑡), 𝑣𝑛+2(𝑡), . . . , 𝑣𝑛+𝑚(𝑡)]. Let

𝑧𝑡 = 1 +

𝑛∑
𝑖=1

2𝑛−𝑖𝑣𝑖

which is the state of network at time step 𝑡, and

𝑢𝑡 = 1 +

𝑚∑
𝑖=1

2𝑚−𝑖𝑣𝑛+𝑖

which is the control input of network at time step 𝑡. In a
PBN, even if the network starts with the given initial state
𝑧(0), the subsequent states will be random since the PBN
is a stochastic model. That is, the terminal state 𝑧𝑀 could
take any possible values from 1 to 2𝑛. We assign a terminal
cost 𝐶𝑀 (𝑧𝑀 ) to each of states 𝑧𝑀 at time step 𝑀 . Note
that, depending on the particular PBN and the control input
used in each step, it is possible that the network can not
enter some of the states at time step 𝑀 . We define 𝐶𝑡(𝑧𝑡)
as the maximum cost of which, beginning from 𝑧𝑡 at time
step 𝑡, the network can reach at the terminal time step. The
problem of minimizing the maximum cost can be described
as follows:
Definition 3: Given the terminal cost 𝐶𝑀 (𝑧𝑀 ) for each of
states 𝑧𝑀 ∈ {1, 2, . . . , 2𝑛} at time step 𝑀 , by applying
external control, minimize the maximum cost 𝐶0(𝑧0) be-
ginning from the given initial state 𝑧0, and the maximum
number of controls applied to the network is 𝐻 .

III. ALGORITHMS

A. ILP with Hard Constraints for BN CONTROL

In order to give ILP formalization for BN CONTROL, we
first introduce several definitions.

Let 𝑥𝑖,𝑡 represent the Boolean value 𝑣𝑖(𝑡). Define

𝜎𝑏(𝑥) =

{
𝑥, if 𝑏 = 1.

�̄�, otherwise.
(7)
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Then any Boolean function 𝑓𝑖(𝑥𝑖1,𝑡, . . . , 𝑥𝑖𝑘,𝑡) is equivalent
to

𝑓𝑖(𝑥𝑖1,𝑡, . . . , 𝑥𝑖𝑘,𝑡) =
⋁

𝑏𝑖1 ...𝑏𝑖𝑘∈{0,1}𝑘{𝑓𝑖(𝑏𝑖1 , . . . , 𝑏𝑖𝑘)∧
𝜎𝑏1(𝑥𝑖1,𝑡) ∧ ⋅ ⋅ ⋅ ∧ 𝜎𝑏𝑘(𝑥𝑖𝑘,𝑡)}

(8)
Then we define binary variable ℎ𝑖,𝑡 ∈ {0, 1} (𝑖 = 𝑛 +
1, . . . , 𝑛 + 𝑚) as the node control variable. If ℎ𝑖,𝑡 = 1,
we say the node 𝑖 changes its value at time step 𝑡. Since the
maximum number of controls applied to the network during
the finite time period is 𝐻 , we have

𝑀−1∑
𝑡=0

𝑛+𝑚∑
𝑖=𝑛+1

ℎ𝑖,𝑡 ≤ 𝐻.

Also, we define 𝜏𝑏(𝑥) as

𝜏𝑏(𝑥) =

{
𝑥, if 𝑏 = 1.

1− 𝑥, otherwise.
(9)

Then the ILP-Formulation for the BN CONTROL based on
the method of [5] is as follows:

Maximize
𝑁∑
𝑖=1

𝑥𝑖,𝑀

S.T.

𝑥𝑖,𝑡+1,𝑏𝑖1 ...𝑏𝑖𝑘
≥

∑
𝑗∈{1,2,...,𝑘}

𝜏𝑏𝑗 (𝑥𝑖𝑗 ,𝑡)− (𝑘 − 1) (10)

𝑥𝑖,𝑡+1,𝑏𝑖1 ...𝑏𝑖𝑘
≤ 1

𝑘

∑
𝑗∈{1,2,...,𝑘}

𝜏𝑏𝑗 (𝑥𝑖𝑗 ,𝑡) (11)

for all 𝑖 ∈ {1, 2, . . . , 𝑛}, 𝑡 ∈ {1, 2, . . . ,𝑀 − 1} and
𝑏𝑖1 . . . 𝑏𝑖𝑘 ∈ {0, 1}𝑘 such that 𝑓𝑖(𝑏𝑖1 , . . . , 𝑏𝑖𝑘) = 1.

𝑥𝑖,𝑡+1,𝑏𝑖1 ...𝑏𝑖𝑘
= 0 (12)

for all 𝑖 ∈ {1, 2, . . . , 𝑛}, 𝑡 ∈ {1, 2, . . . ,𝑀 − 1}, and
𝑏𝑖1 . . . 𝑏𝑖𝑘 ∈ {0, 1}𝑘 such that 𝑓𝑖(𝑏𝑖1 , . . . , 𝑏𝑖𝑘) = 0.

𝑥𝑖,𝑡 ≤
∑

𝑏𝑖1 ...𝑏𝑖𝑘∈{0,1}𝑘

𝑥𝑖,𝑡,𝑏𝑖1 ...𝑏𝑖𝑘
(13)

𝑥𝑖,𝑡 ≥ 1

2𝑘

∑
𝑏𝑖1 ...𝑏𝑖𝑘∈{0,1}𝑘

𝑥𝑖,𝑡,𝑏𝑖1 ...𝑏𝑖𝑘
(14)

for all 𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑡 ∈ {1, 2, . . . ,𝑀}.
𝑥𝑖,0 = 𝑣0𝑖 , 𝑥𝑖,𝑀 = 𝑣𝑀𝑖

𝑥𝑖,𝑡 − 𝑥𝑖,𝑡+1 ≤ ℎ𝑖,𝑡, 𝑥𝑖,𝑡+1 − 𝑥𝑖,𝑡 ≤ ℎ𝑖,𝑡

for all 𝑖 ∈ {𝑛+ 1, . . . , 𝑛+𝑚} and 𝑡 ∈ {0, . . . ,𝑀 − 1}.
𝑀−1∑
𝑡=0

𝑛+𝑚∑
𝑖=𝑛+1

ℎ𝑖,𝑡 ≤ 𝐻

for all 𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑡 ∈ {1, 2, . . . ,𝑀}.

Note that 𝑥𝑖,𝑡 and 𝑥𝑖,𝑡,𝑏𝑖1 ...𝑏𝑖𝑘
and ℎ𝑖,𝑡 are binary val-

ues. Here (10) to (14) are to make sure that 𝑥𝑖,𝑡+1 =
𝑓𝑖(𝑥𝑖1,𝑡, . . . , 𝑥𝑖𝑘,𝑡) is satisfied for all 𝑖 ∈ {1, 2, . . . , 𝑛} and
𝑡 ∈ {1, 2, . . . ,𝑀 − 1}.

B. ILP with Hard Constraints for PBN CONTROL

To extend the above ILP formulation for PBN CONTROL,
we define 𝑦𝑟,𝑡 as the selection variable. If 𝑦𝑟,𝑡 = 1, we say
the 𝑟th BN is selected at time step 𝑡. Otherwise, we say it
is not selected at time step 𝑡. Then we have

𝑅∑
𝑟=1

𝑦𝑟,𝑡 = 1, for 𝑡 = 1, 2, . . . ,𝑀 − 1

Here 𝑅 is the total number of possible realizations for the
PBN. Define 𝑓𝑖,𝑟 as the Boolean function for node 𝑣𝑖 when
the 𝑟-th BN is selected. Let 𝑃 = (𝑝1, 𝑝2, . . . , 𝑝𝑅) be the
selecting probabilities for the 𝑅 possible realizations.

Then the objective function for the PBN control with hard
constraints is as follows:
Maximize

𝑀−1∑
𝑡=0

𝑅∑
𝑟=1

− log(𝑝𝑟) ⋅ 𝑦𝑟,𝑡

For the constraints, we revise (10) to (12) as follows:

𝑥𝑖,𝑡+1,𝑏𝑖1 ...𝑏𝑖𝑘
≥

∑
𝑗∈{1,2,...,𝑘}

𝜏𝑏𝑗 (𝑥𝑖𝑗𝑟 ,𝑡
)− (𝑘 − 1) + 𝑦𝑟,𝑡 − 1

(15)

𝑥𝑖,𝑡+1,𝑏𝑖1 ...𝑏𝑖𝑘
≤ 1

𝑘

∑
𝑗∈{1,2,...,𝑘}

𝜏𝑏𝑗 (𝑥𝑖𝑗𝑟 ,𝑡
)− 𝑦𝑟,𝑡 + 1 (16)

for all 𝑖 ∈ {1, 2, . . . , 𝑛}, 𝑡 ∈ {1, 2, . . . ,𝑀 −1}, 𝑏𝑖1 . . . 𝑏𝑖𝑘 ∈
{0, 1}𝑘 and 𝑟 ∈ {1, 2, . . . , 𝑅} such that 𝑓𝑖,𝑟(𝑏𝑖1 , . . . , 𝑏𝑖𝑘) =
1.

𝑥𝑖,𝑡+1,𝑏𝑖1 ...𝑏𝑖𝑘
≤ 1− 𝑦𝑟,𝑡 (17)

for all 𝑖 ∈ {1, 2, . . . , 𝑛}, 𝑡 ∈ {1, 2, . . . ,𝑀 −1}, 𝑏𝑖1 . . . 𝑏𝑖𝑘 ∈
{0, 1}𝑘 and 𝑟 ∈ {1, 2, . . . , 𝑅} such that 𝑓𝑖,𝑟(𝑏𝑖1 , . . . , 𝑏𝑖𝑘) =
0.

Then we also add the following constraints:

𝑅∑
𝑟=1

𝑦𝑟,𝑡 = 1, for 𝑡 = 1, 2, . . . ,𝑀 − 1, and 𝑦𝑟,𝑡 ∈ {0, 1}.

for all 𝑡 ∈ {1, 2, . . . ,𝑀} and 𝑟 ∈ {1, 2, . . . , 𝑅}.
The other constraints are the same as the ones in ILP-

Formulation for the BN CONTROL.
Here (13) to (17) are to make sure that 𝑥𝑖,𝑡 is regulated

by the chosen BN and its corresponding Boolean functions
for all 𝑖 ∈ {1, 2, . . . , 𝑛}, 𝑡 ∈ {1, 2, . . . ,𝑀 − 1} and 𝑟 ∈
{1, 2, . . . , 𝑅}.
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C. Minimizing the Maximum Cost

Define 𝐽(𝑧𝑡, ℎ𝑡) as the minimized maximum terminal cost
𝐶𝑀 (𝑧𝑀 ) when the state is 𝑧𝑡, and the remaining number of
external controls is ℎ𝑡, at time step 𝑡. Define 𝑢(𝑧𝑡, ℎ𝑡) as
the control function when the state is 𝑧𝑡 and the remaining
number of external controls is ℎ𝑡 at time step 𝑡. Let 𝐹 (𝑧𝑡, 𝑢𝑡)
be the set of states at time step 𝑡 + 1 that can be reached
from 𝑧𝑡 with control 𝑢𝑡. Then dynamic programming for the
PBN control with hard constraints is as follows:
Step 0: Set 𝑡 = 𝑀 ; 𝐽(𝑧𝑀 , ℎ𝑀 ) = 𝐶𝑀 (𝑧𝑀 ) for all ℎ𝑀 =
{0, . . . , 𝐻}.
Step 1: 𝑡 := 𝑡− 1.
Step 2: For any 𝑧𝑡 ∈ {1, . . . , 2𝑛} and ℎ𝑡 ∈ {0, . . . , 𝐻},
compute

𝐽(𝑧𝑡, ℎ𝑡) = min
𝑢𝑡∈{1,...,2𝑚}⎧⎨

⎩
max

𝑧𝑡+1∈𝐹 (𝑧𝑡,𝑢𝑡)
𝐽(𝑧𝑡+1, ℎ𝑡), if 𝑢𝑡 = 𝑢(𝑧𝑡+1, ℎ𝑡),

max
𝑧𝑡+1∈𝐹 (𝑧𝑡,𝑢𝑡)

𝐽(𝑧𝑡+1, ℎ𝑡 − 1), otherwise.

and

𝑢(𝑧𝑡, ℎ𝑡) = argmin𝑢𝑡∈{1,...,2𝑚}⎧⎨
⎩

max
𝑧𝑡+1∈𝐹 (𝑧𝑡,𝑢𝑡)

𝐽(𝑧𝑡+1, ℎ𝑡), if 𝑢𝑡 = 𝑢(𝑧𝑡+1, ℎ𝑡),

max
𝑧𝑡+1∈𝐹 (𝑧𝑡,𝑢𝑡)

𝐽(𝑧𝑡+1, ℎ𝑡 − 1), otherwise.

Step 3: If 𝑡 > 0, go back to step 1; Otherwise, stop.
In the above, 𝑢𝑡 ∕= 𝑢𝑡+1 is counted as one control

where we need to modify the algorithm for the case that
the number of controls is defined as before. Finally, we
take minℎ0∈{0,...,𝐻} 𝐽(𝑧0, ℎ0) for computing the minimized
maximum cost.2 Though we do not consider costs of control
operations in this paper, it is possible to extend the algorithm
so that costs of control operations are taken into account.

IV. COMPLEXITY ANALYSIS

In this section, we give some analysis on the complexity of
minimizing the maximum cost and minimizing the average
cost. In order to analyze the time complexity, we assume that
a PBN is not given in the matrix form 𝐴 of (5) but in the
form of 𝑓

(𝑖)
𝑗 s and 𝑐

(𝑖)
𝑗 s because 𝐴 is of exponential size and

thus it is almost meaningless to discuss the time complexity
if we use 𝐴. Furthermore, we assume that it is only required
to output u(0) for given 𝑧0 and PBN (otherwise, we should
output u(𝑡)s for an exponential number of GAPs). Then,
we can keep both the sizes of input and output polyno-
mial of 𝑛 and thus can discuss the time complexity with
respect to the network size. Furthermore, we assume that
the number of time steps (i.e., 𝑀 ) is polynomially bounded.
Otherwise, both BN CONTROL and PBN CONTROL would
be PSPACE-hard [9], [12]. Since it is not realistic to consider

2We need to modify the algorithm if there exist multiple 𝑢𝑡s giving the
minimum cost.

an exponential number of time steps, this is a reasonable
assumption.

For the complexity of minimizing the maximum cost, we
have the following theorem by using a polynomial time
reduction similar to that in [5].

Theorem 1: Minimizing the maximum cost in control of
PBN is

∑𝑝
2-hard.

Proof: As in [5], we use a polynomial time reduction
from the quantified Boolean formula problem for 3-DNF
(disjunction of conjunctions of which consisting 3 literals).
Let 𝜓(𝑥, 𝑦) be a 3-DNF over variables 𝑥 = (𝑥1, . . . , 𝑥𝑚1

)
and 𝑦 = (𝑦1, . . . , 𝑦𝑛1

). Then it is known that deciding
whether or not (∃𝑥)(∀𝑦)𝜓(𝑥, 𝑦) is true is

∑𝑝
2-complete

[10], [13]. We show a polynomial time reduction from this
problem to minimization of the maximum cost.

From a given 𝜓(𝑥, 𝑦), we construct a PBN as follows.
Let 𝑛2 be the number of terms in 𝜓(𝑥, 𝑦). Then we let
𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛1+𝑛2+2𝑚1+1}. For 𝑖 = 1, . . . , 𝑛1, 𝑣𝑖
corresponds to 𝑦𝑖. For 𝑖 = 1, . . . , 𝑛2, 𝑣𝑛1+𝑖 corresponds to
the 𝑖th term of 𝜓(𝑥, 𝑦) where the 𝑖th term is represented
as 𝑙𝑖1 ∧ 𝑙𝑖2 ∧ 𝑙𝑖3 . For 𝑖 = 1, . . . ,𝑚1, both 𝑣𝑛1+𝑛2+1+𝑖

and 𝑣𝑛1+𝑛2+𝑚1+1+𝑖 correspond to 𝑥𝑖. Then, we assign the
following Boolean functions to 𝑉 :

𝑣𝑖(𝑡+ 1) = 𝑣𝑖(𝑡) with probability 0.5, for 𝑖 = 1, . . . , 𝑛1,

𝑣𝑖(𝑡+ 1) = 𝑣𝑖(𝑡) with probability 0.5, for 𝑖 = 1, . . . , 𝑛1,

𝑣𝑛1+𝑖(𝑡+ 1) = 𝑙𝑖1 ∧ 𝑙𝑖2 ∧ 𝑙𝑖3 , for 𝑖 = 1, . . . , 𝑛2,

𝑣𝑛1+𝑛2+1+𝑖(𝑡+ 1) = 𝑣𝑛1+𝑛2+𝑚1+1+𝑖(𝑡),

for 𝑖 = 1, . . . ,𝑚1,

𝑣𝑛1+𝑛2+1(𝑡+ 1) =
⋁

𝑖∈{1,...,𝑛2} 𝑣𝑛1+𝑖(𝑡),
(18)

where we identify 𝑣𝑖(𝑡) with 𝑦𝑖 and 𝑣𝑛1+𝑛2+1+𝑖(𝑡) with 𝑥𝑖

in 𝑙𝑖1 ∧ 𝑙𝑖2 ∧ 𝑙𝑖3 . Finally, we let 𝑛 = 𝑛1 + 𝑛2 + 𝑚1 + 1,
𝑚 = 𝑚1, v(0) = (0, 0, . . . , 0), and 𝑀 = 3.3 The cost is
given by 𝐽 = 0 if 𝑣𝑛1+𝑛2+1(𝑀) = 1. Otherwise 𝐽 = 1.

Then we see that the minimum of the maximum cost is 0
iff (∃𝑥)(∀𝑦)𝜓(𝑥, 𝑦) is true. First, suppose (∃𝑥)(∀𝑦)𝜓(𝑥, 𝑦)
is true for an assignment of 𝑥 = (𝑏1, 𝑏2, . . . , 𝑏𝑚1

). Then, it
is straight-forward to see that the maximum cost is 0 by the
control input (𝑣𝑛1+𝑛2+𝑚1+2(0), . . . , 𝑣𝑛1+𝑛2+2𝑚1+1(0)) =
(𝑏1, 𝑏2, . . . , 𝑏𝑚1

).
Next, suppose that the minimum of the maximum cost

is 0. Since the minimum cost 𝐽 is only determined by
𝑣𝑛1+𝑛2+1(𝑀) and 𝐽 = 0 must hold, 𝑣𝑛1+𝑛2+1(𝑀) = 1
holds for any assignment on 𝑣1(1), . . . , 𝑣𝑛1

(1). Therefore,
(∃𝑥)(∀𝑦)𝜓(𝑥, 𝑦) is true.

We modify the proof of Theorem 1 for proving Σ𝑝
2-

hardness of the original control problem of PBN (i.e.,
minimizing the average cost). For that purpose, we use the
same reduction as in the proof of Theorem 1. Then, we note

3It is to be noted that our hardness result holds for the case of 𝑀 = 3.
The reductions in [9], [12] are not directly applicable to such a case (i.e.,
small 𝑀 ).
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Table I
THE RESULTS OF EXPERIMENT 1

1 2 3 4 5 Average time
ILP method 0.38 4.22 3.66 0.69 6.54 3.10
DP method 20.81 5.93 5.75 7.77 9.53 9.96

Table II
THE RESULTS OF EXPERIMENT 2

1 2 3 4 5
Maximum cost without control 245 252 249 244 239

Minimized maximum cost 193 194 177 173 163

that for any 𝑥, the average cost is 0 iff (∀𝑦)𝜓(𝑥, 𝑦) is true
(i.e., the average cost is greater than 0 iff 𝜓(𝑥, 𝑦) is false
for some 𝑦). By utilizing this observation, we can prove the
following:

Theorem 2: Minimizing the average cost in control of
PBN is

∑𝑝
2-hard.

V. COMPUTATIONAL EXPERIMENTS

In this section, we give some computational experiments
to demonstrate the effectiveness of our algorithms. Compu-
tational experiments were done on a PC with a Intel core
2 Duo CPU (p8600 2.4GHz) and 2GB RAM running under
the Windows XP professional 2002 operating system. For
solving integer linear programs, we used ILOG CPLEX
(version 11.2,http://www.ilog.com/products/cplex/) with a
Xeon 5470 3.33GHz CPU and 10GB RAM running under
the LINUX (version 2.6.16) operating system.

A. Experiment 1: Comparison of ILP and DP for the Opti-
mal Path Problem

For comparison of ILP and DP methods, we consider
a 10-gene example with 𝐾 = 3, where genes 𝑣1, . . . , 𝑣8
are internal nodes and genes 𝑢1, 𝑢2 are control nodes. The
PBN is consisting of 8 possible BNs with the selecting
probabilities given by

q = (0.1, 0.1, 0.3, 0.05, 0.05, 0.2, 0.15, 0.05).

Let 𝑀 = 5 and 𝐻 = 3. Suppose the initial sate is
00 . . . 0 and the desired state is 11 . . . 1. We conducted
the experiments five times with different sets of Boolean
functions which were randomly generated. By using the ILP
method given in Section III-B and the revised DP method
for finding the optimal path, we got the same results. Table I
gives the CPU time (sec) for both methods. From the table,
we see that the ILP method is faster than the DP method
though PCs used for ILP and DP are not the same.

B. Experiment 2: Minimizing the Maximum Cost

For evaluating the DP method presented in Section III-C,
we apply the DP method to minimize the maximum cost for
a 10-gene example with 8 internal nodes and 2 control nodes.
The PBN is consisting of 4 possible BNs and the Boolean

WNT5A

pirin

MART-1

RET-1
MMP-3

HADHB

PHO-C

STC2

Synuclein

S100P

Figure 3. Structure of 10-gene WNT5A network [14].

functions are randomly generated. Suppose the initial state is
(0, 0, . . . , 0), and the terminal cost is given by 𝐶𝑀 (𝑧𝑀 ) =
𝑧𝑀 . Let 𝑀 = 3 and 𝐻 = 2. We conducted the experiments
five times. The results are given in Table II.

C. Experiment 3: On Realistic Network

We also conducted an experiment based on a 10-gene
WNT5A network (see Fig. 3, which is extracted from [14]).
There are 10 nodes in this network, we assume WNT5A,
pirin, MART-1, synnclein, PHO-C, S100P, STC2 and MMP-
3 are internal nodes, and RET-1 and HADHB are control
nodes. The initial state is (0, 0, . . . , 0), and the desired
state is (1, 1, . . . , 1). Let 𝑀 = 10 and 𝐻 = 3. The
Boolean functions are randomly generated and the PBN is
consisting of eight possible BNs with the following selection
probabilities:

q = (0.0011491, 0.2165696, 0.2018161, 0.0740315,

0.0587344, 0.0304030, 0.1348942, 0.2824019).

By using ILP with hard constraints, the probability of
optimal path is 1.2306×10−8. The external control is applied
three times to the network.

Then we consider minimizing the maximum cost for the
initial state (0, 0, . . . , 0). Also, the terminal cost is given by
𝐶𝑀 (𝑧𝑀 ) = 𝑧𝑀 . Let 𝑀 = 3 and 𝐻 = 2. Without applying
external control, the maximum cost was 256. By using DP
method, the maximum cost was reduced to 172.

VI. CONCLUSION

In this paper, we have presented ILP-based methods for
control of BN and for finding an optimal path for PBN
both with hard constraints. We have also presented a DP-
based method for finding a control policy that minimizes
the maximum cost for PBN under hard constraints, where
it uses exponential size tables. The results of preliminary
computational experiments suggest that for finding an opti-
mal path for PBN, the ILP-based method is faster than the
DP-based method (specialized for this problem). However,
the hardness results presented in this paper suggest that

245



ILP cannot be effectively applied to minimization of the
maximum or average cost for PBN.
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