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FPGA-based reconfigurable computers. Hardware designs execute as normal UNIX processes under
BORPH, having access to standard OS services, such as file system support. Hardware and soft-
ware components of user designs may, therefore, run as communicating processes within BORPH’s
runtime environment. The familiar language independent UNIX kernel interface facilitates easy
design reuse and rapid application development. To develop hardware designs, a Simulink-based
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1. INTRODUCTION

FPGA-based reconfigurable computers (RCs) are becoming viable computing
architectures that promise to deliver supercomputer class performance by
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computing both directly on FPGA hardware and on processors[Chang et al.
2005; Hamada et al. 1998]. Their high performance to cost ratios have drawn
vast interest in areas such as bioinformatics[Dydel and Bala 2004], speech
recognition[Lin et al. 2007; Ortigosa et al. 2003], network security[Sugawara
et al. 2004], as well as embedded systems that demand high computational
power at a manageable cost. To effectively leverage the computational power of
FPGAs, two important issues must be addressed: (1) runtime operating system
support; and (2) hardware/software interface.

1.1 Runtime Operating System Support

Sufficient runtime operating system support is essential for successful deploy-
ments of modern FPGA-based reconfigurable computers. Previous works in de-
signing operating systems for FPGA-based systems focused mostly on the job of
hardware task scheduling. However, modern FPGA-based systems demand fea-
tures beyond basic task scheduling, such as Internet access, file system access,
home network integration, and sophisticated user interaction mechanisms. In
order to effectively support these features, we believe OS for modern FPGA-
based systems should not only provides seamless integration of hardware and
software tasks, but also provides traditional OS runtime support services, such
as general file system access, to both hardware and software tasks. It should
support commodity software applications, hardware/software applications, as
well as hardware-only applications within a unified framework.

1.2 Hardware/Software Interface

Developing applications on FPGA-based RCs usually involve multiple HW/SW
design teams which, as observed by [Rowson and Sangiovanni-Vincentelli 1997;
van der Wolf et al. 2004], can benefit from an interface-based design methodol-
ogy. To accommodate the hardware nature of FPGAs and to facilitate HW/SW
codesign, such interface must be common to both hardware and software.

While traditional HW/SW codesign researches have produced encouraging
results in the area of HW/SW partitioning, cosimulate, cosynthesis, and co-
verification, most of them rely on self-contained design environments that are
based on their specific input languages or library APIs [Balarin et al. 1997;
Panda 2001]. As a result, migrating existing hardware or software designs to
a new RC platform using conventional codesign methodologies would have in-
curred major reengineering efforts, including learning a new language and API,
getting familiar with a new design environment, and reimplementing existing
designs in the new language environment.

Furthermore, the use of FPGA has attracted enormous interest in compu-
tational demanding fields that traditionally rely on processor-based supercom-
puters or computer clusters. To facilitate rapid migration of existing software
designs to FPGA-based systems, a hardware interface that is familiar to soft-
ware engineers is highly desirable. We believe an easy to use HW/SW interface
that allows rapid application development and migration should be (a) familiar
and intuitive to both software and hardware engineers with various degree of
HW/SW codesign experience; and (b) language independent.
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1.3 BORPH Overview

In this paper, we present BORPH,1 an operating system designed specifically
for reconfigurable computers. Under BORPH, hardware and software share
the same familiar UNIX interface and the same level of support from the OS
kernel. We introduce the concept of hardware process, which is the same as a
normal UNIX process, except its “program” is an FPGA hardware design in-
stead of software program. Communications between a hardware process and
the rest of the system are accomplished through conventional UNIX interpro-
cess communication (IPC) mechanisms, such as shared file, pipe, signal, and
message-passing. Hardware processes have access to system resources as their
software counterparts, such as the general file system, standard input, stan-
dard output.

As an operating system that provides runtime support to FPGA-based re-
configurable computers, BORPH addresses both aforementioned requirements
for successful FPGA-based RCs deployments within the same framework.

1.3.1 Runtime Operating System Support for FPGA Designs. BORPH
models an executing instance of FPGA application as a hardware process. A
hardware process behaves, in most aspects, identical to a normal UNIX process,
except it is executed on FPGA hardware instead of the controlling processor.
With the notion of hardware process established, BORPH systematically pro-
vides runtime support to FPGA designs through standard UNIX semantics. For
example, BORPH extends conventional file I/O semantics to provide data I/O
capabilities to FPGA applications.

All kernel/user communications are accomplished through a message-
passing network. Furthermore, a set of hardware system libraries is developed
to shield an FPGA application designer from the complexities involved with
kernel/user interactions. With all complexities of I/O and other system oper-
ations handled by the BORPH kernel, application designers may, therefore,
devote their efforts to realizing their applications in FPGA.

1.3.2 Hardware/Software Interface at Process Level. BORPH’s model
of running FPGA applications as hardware processes provides a new di-
mension to the hardware/software interface problem by maintaining this
hardware/software application interface at the UNIX process level.

By hiding any differences between hardware and software processes, BORPH
creates a homogeneous HW/SW runtime system. Instead of relying on ad-hoc
and system-dependent methodologies, hardware and software processes com-
municate with standard UNIX interprocess communication (IPC) semantics,
such as file I/O and signals. The peer-to-peer nature between software and hard-
ware allows both conventional software-centric, as well as hardware-centric and
hardware-only application development methodologies.

At the same time, the user/kernel boundary of BORPH provides an interface
that is independent of user design language. Consequently, software and hard-
ware can both be developed at the language environment a designer is familiar
with.

1BORPH is an acronym for Berkeley Operating system for ReProgrammable Hardware.
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Moreover, the UNIX environment of BORPH provides a familiar system to
both software and hardware engineers, thus lowering the barrier to entry into
FPGA computing. It also provides invaluable backward compatibilities for mi-
grating existing software designs to FPGA-based reconfigurable computers.

1.4 Related Work

A number of research projects have approached the task of designing operating
system for FPGA-based reconfigurable computers [Danne et al. 2006; Wigley
et al. 2002; Walder and Platzner 2004; Mei et al. 2004]. All of them are de-
voted to the problem of dynamic FPGA resource allocation, memory sharing, or
virtualization between software and hardware tasks on FPGA-based systems.
We are not aware of any prior work that systematically offer runtime support
directly to hardware processes as does BORPH. Furthermore, the use of UNIX
semantics for modeling running FPGA designs instead of abstract “task” con-
cept is unique to BORPH.

On the other hand, most commercial FPGA-based reconfigurable comput-
ers[Cray; XtremeData; DRC computer; Celoxica] are managed by off-the-shelf
operating systems such as Linux and VxWorks. FPGAs on these systems
are used mainly as software accelerators. Software and FPGAs communicate
through conventional device driver layer while FPGA designs must utilize
vendor-specific libraries with custom APIs. As a result, even if machines from
different vendors are constructed using identical FPGAs, the inconsistent sys-
tem interface prevent designs targeting one machine be easily ported to another.
Such an inconsistent system interface greatly hinders collaborations among
FPGA researchers.

In terms of hardware/software interface, the work of UltraSONIC
[Wiangtong et al. 2003] shares a similar design philosophy as BORPH in pro-
viding a unifying coarse-grain hardware and software component interface. In
their system, software and hardware tasks share the same interface into a run-
time task scheduler. POLIS [Balarin et al. 1997] provides a common CFSM
based framework that can be synthesized to either software or hardware. How-
ever, both require the input design be specified in a specific language.

The main contribution of BORPH is that by leveraging conventional UNIX
semantics to FPGA-based reconfigurable computing, it provides a unique, uni-
fied environment for both FPGA and software application designers. The UNIX
semantics is familiar to developers across many research domains, thus lower-
ing the barrier-to-entry into FPGA-based reconfigurable computing. Further-
more, since BORPH is implemented as an extended Linux kernel, a BORPH-
managed system may leverage all commodity Linux software applications for
developing, testing, benchmarking, and deploying FPGA applications.

We will first describe the general concept and interfaces of BORPH in
Section 2. Then, we will describe our Simulink-based hardware design flow
and how it integrates with BORPH in Section 3. Section 4 describes our cur-
rent BORPH implementation on a BEE2 platform. In Section 5, we will re-
port the performance of our two different hardware implementations and the
lesson we have learned in the process of developing the second version. Section 6
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Fig. 1. Two possible ways to organize FPGAs in a system.

illustrates actual usage model of BORPH through three different application
examples. We will conclude the paper and discuss future direction of this re-
search in Section 7.

2. BORPH: THE OPERATING SYSTEM

BORPH is an operating system designed for reconfigurable computers. It ex-
tends a standard Linux kernel to include support for FPGAs in a RC. The major
difference between BORPH and other OS’s for FPGA systems is that instead
of treating FPGAs as coprocessors, BORPH treats FPGAs in the system as
first-class computational resources.

Figure 1a illustrates the traditional way of managing FPGA resources on
a single processor system. In such system, the operating system kernel acts
as a layer between software and hardware. Running as software programs on
the central processor, user applications must rely on the OS kernel via a set of
system libraries and device drivers to communicate with the underlying hard-
ware platform, such as a graphical display. Most systems treat FPGAs and
other reconfigurable hardware resources as part of the same underlying hard-
ware platform. Consequently, to communicate with any user hardware design
running on these reconfigurable resources, one must employ the same mech-
anism as described before. Software and hardware programs therefore form a
master–slave relationship, implying a software-centric design methodology.

On the other hand, BORPH logically separates reconfigurable hardware re-
sources that are used for user applications, such as FPGAs, from the underly-
ing hardware support platform. BORPH denotes these resources reconfigurable
hardware regions (HWRs). Figure 1b illustrates this concept. We term a hard-
ware design running on such HWR a hardware process. A hardware process
communicates with the kernel through a predefined message-passing network
that resembles software system calls. In practice, a layer of hardware system
library will be responsible for the message-passing protocol. This layer can be
thought as functions provided by a system VHDL package, or a system library
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Fig. 2. Simplified BOF file format.

blocks, as in our current implementation. It is this layer that provides hardware
processes with UNIX system services such as file system support.

By maintaining a consistent UNIX interface for both software and hardware
processes, interacting with an FPGA design inherits the same semantics as
normal UNIX software programs. In general, there is no need for a program to
differentiate if a running process is a software program or an FPGA design. For
example, using the standard UNIX pipe construct, a program can pipe its output
to either a software program or a hardware design without being aware of it. The
BORPH kernel hides any discrepancies between software and hardware during
runtime. This homogeneous handling of hardware and software in the kernel
forms the foundation of coarse grain hardware/software codesign boundary.

In this paper, we focus on three essential concepts of BORPH. First we will
describe the concept of hardware process. Then two different ways to communi-
cate with hardware processes are presented: the ioreg interface and the hard-
ware file I/O interface. With respect to a hardware process, the IOREG interface
provides a passive communication mechanism, while the hardware file I/O in-
terface provides an active communication mechanism. Our particular imple-
mentation of these interfaces is described in Section 4.

2.1 Hardware Process

In conventional OS terminologies, a process is usually defined as “an executing
instance of a program,” running on a processor. BORPH extends this idea to
reconfigurable hardware, defining a hardware process as “an executing instance
of a hardware design.”

A hardware process is created when a BORPH Object File (BOF) is exec-ed.
As shown in Figure 2, a BOF file is a binary file format that encapsulates, among
other information, configuration for FPGAs. In conventional UNIX systems, a
process is created with two system calls: fork and exec. When a hardware pro-
cess is created by a software process, the same fork-exec sequence is employed.
During the exec system call, the actual hardware region is setup according to
the configuration in the corresponding BOF file. Since hardware process cre-
ations are handled by the kernel, a hardware design can be started by any
software program that is able to create normal UNIX process, such as the com-
mand shell, a C or Java program, etc. Figure 3 shows a simple transcript of
executing a BOF file.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 14, Publication date: February 2008.
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Fig. 3. Executing a BOF file containing a free running counter. FPGA hardware is configured at
prompt 1 and is automatically unconfigured at prompt 8 by the BORPH kernel.

Hardware process creations conform to the standard UNIX process creation
semantics by maintaining all necessary parent–child and process group infor-
mation. The created hardware process has its own memory space and execution
domain. As a result, there is no shared memory between hardware and other
processes in the system by default. Currently, memory attached to hardware
processes must be exported by the IOREG interface. Each hardware process also
has access to its execution environment, including its executing command line
arguments.

As a normal running process, the status of a hardware process can be checked
by standard command like ps as shown in prompt 2 in Figure 3. The output of
the command ps shows the parent–child relationship between the starting bash
shell and the hardware process counter.bof, as well as its process group infor-
mation. Of interest is the STAT column in the output, which shows counter.bof
is at an “interruptible sleep” state. In our current implementation, to avoid a
hardware process being put on the processor’s run queue, it is marked with a
Linux process state of TASK INTERRUPTIBLE. In the future, a new process state
will be introduced to indicate to the rest of the system that a process is being
run on a HWR.

Similar to a software process, a hardware process can be terminated either by
external UNIX signals (SIGTERM, SIGKILL), or it can terminate itself by sending
a message to the BORPH kernel that is equivalent to the exit system call.

2.2 The ioreg Interface

BORPH’s IOREG interface encapsulates conventional memory mapped I/O con-
cept with a virtual file system interface similar to that presented in [Donlin et al.
2004]. Communication between hardware and software typically involves defin-
ing a set of special hardware registers that are memory mapped by software
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Table I. Hardware Constructs Supported by the IOREG

Virtual File System

Type R/W Seekable Size

Register rw no 4 bytes
On Chip Memory rw yes any
Off Chip Memory rw yes any
FIFO (from user) r/o no width × depth
FIFO (to user) w/o no width × depth

device drivers. BORPH encapsulates this common design practice by support-
ing it systematically via its IOREG interface. Note that this is a passive commu-
nication method with respect to the hardware process, because it is usually a
software process that initiates the communication transaction.

BORPH extends the standard Linux /proc directory to include hardware-
specific information about a hardware process. When a hardware process is
started, the kernel populates a special /proc/<pid>/hw directory under that
process ID (<pid>). In this directory are virtual files that provide information,
such as the physical FPGA location, of this hardware process. There is also
a subdirectory named ioreg that is used by the IOREG interface. Each virtual
file in this directory corresponds to one hardware construct embedded in the
user hardware design. Reading from, or writing to, these virtual files causes
the kernel to read/write to the corresponding IOREG physically located inside a
hardware process using BORPH’s standard message-passing network.

As an example, the design in Figure 3 contains a free-running counter that
stores its output in an IOREG register named cntval. The operation of this
counter is controlled by an enable register called cnten. Once the design is run-
ning in the system as a hardware process, the value of cntval can be read by
any program, such as cat, from the file /proc/<pid>/hw/ioreg/cntval (prompt
3 in Figure 3). Similarly, disabling this counter can be accomplished by writ-
ing “0” to the file /proc/<pid>/hw/ioreg/cnten by any program, such as echo
(prompt 5).

Despite the name might have suggested, the IOREG interface supports not
only simple single word register. It also provides access to on-chip FIFO, on-
chip memory, as well as off-chip memory that a hardware process have access
to. Table I shows the supported hardware construct by this interface and their
differences when exported as virtual files in BORPH.

The virtual files under /proc/<pid>/hw/ioreg are created by the kernel ac-
cording to the information embedded in the corresponding BOF file. Each vir-
tual file’s name, unique id, size, and access mode are embedded in the BOF
file header. Based on these information, when a virtual file is read (or write),
BORPH kernel sends a message to the running hardware indicating the cor-
responding access. The user hardware is then responsible for returning the
necessary value to the kernel. The exact mechanism by which the user design
obtains such value is implementation dependent; we will defer the discussion
until Section 4.

No caching is performed on these virtual files. Each read (or write) access to
these virtual files causes the kernel to generate the corresponding message to
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the user design. The kernel’s involvement again guarantees that this interface
is language independent. For example, reading an on-chip memory may be
accomplished by a simple shell cp command

bash$ cp /proc/123/hw/ioreg/Shared Memory ~/

or similarly in a C program:

memfile = fopen("/proc/123/hw/ioreg/Shared Memory", "r");
fread(buf, 2048, 1, memfile);

Both of the above code causes the kernel to generate the same message to a
user design, requesting 2048 bytes from the corresponding memory, starting at
offset 0.

The format of message kernel sends to a user design is common to all IOREG

virtual files regardless of the underlying hardware that they represent. The
differences between, for example, a memory or an on-chip FIFO are handled on
the Linux virtual file system level. For instance, since an on-chip FIFO should
only logically be read from the head, its corresponding virtual file is marked
as nonseekable in the Linux virtual file system layer, causing any file seek
attempt to fail. As a result, all requests to a FIFO will always have an offset
value of 0. On the other hand, an on-chip memory may be accessed randomly
and, therefore, does not impose such restriction. Consequently, the kernel might
initiate a request from a nonzero offset to the user design as needed.

2.3 File I/O

Hardware processes in BORPH have access to the general UNIX file system
just like normal software processes. Unlike other coprocessor-based FPGA sys-
tems, such active communication mechanism that is initiated by user hardware
designs is only logically possible with BORPH’s hardware process concept. It
enables a hardware-centric, or even hardware-only, design methodology. De-
spite the simple semantics, however, the fact that hardware processes are not
running in the same processor as the OS implies extra care must be taken by
the kernel. The BORPH kernel must take care of HW/SW discrepancies, such
as process blocking, file caching, parallel file access, and error handling.

When a hardware process is started, three standard I/O files, stdin, stdout,
and stderr, are automatically opened. They constitute the simplest form of
hardware file I/O as no file open, or close system call is needed. They are
currently being used for hardware debugging, as well as for interprocess data
streaming.

For debugging purposes, a small shell program that utilizes stdin and stdout
is implemented directly from an FPGA design, which allows low-level user in-
teraction. Hardware designs read keyboard input and write information di-
rectly to the user’s terminal. Access to stdout also enables printing messages
to the screen in response to certain hardware event. Such “debug by printing”
capability was previously only available during HDL simulation.

Another use of standard file I/O is to chain multiple processes through UNIX
pipes. Because of the standardized file interface, a user can freely combine
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Fig. 4. An automatic hardware design flow that compiles high-level Simulink designs into exe-
cutable BOF files.

software and hardware processes on either end of a pipe. For example, a video
transcoding task can be accomplished by the following hypothetical command:

bash$ cat video.in | v decode | v filter | v encode > video.out

where v decode, v filter and v encode may be implemented in either soft-
ware or hardware.

If the two processes on each side of the pipe are both hardware processes,
the BORPH kernel will automatically setup a pure hardware route between the
two processes, bypassing kernel’s involvement in the middle. Such pure hard-
ware pipe provides much higher bandwidth than a software-hardware pipe.
Nonetheless, with an identical interface, user designs do not have to be aware
of the hardware–software difference during compile time.

Finally, besides standard I/O, hardware processes can access any other file
in the system during runtime.

3. HARDWARE DESIGN FLOW

One of the design goals for BORPH is for it to be language independent. How-
ever, to make concrete discussion on how one creates designs for use with
BORPH and how various components of BORPH work together to form a com-
plete design and runtime environment, we will describe the specific high-level
hardware design flow we currently employ in this section.

Creating hardware designs for use with BORPH requires the design be able
to communicate with the kernel via a specific protocol. However, it is usually
desirable to isolate users from most of the complexities involved. For that pur-
pose, we have extended our previously reported Simulink-based hardware de-
sign flow [Chang et al. 2003] for integration with BORPH. Figure 4 shows the
major stages of our integrated hardware design flow.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 14, Publication date: February 2008.
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Fig. 5. Block diagram of a user FPGA. Compiled user Simulink designs are combined with a
predefined EDK template of UK to generate user FPGA configurations.

Using this design flow, users describe their designs in Simulink using blocks
provided by Xilinx System Generator [Xilinx]. The vendor-provided blockset
includes blocks ranging from low-level single bit flip-flops, to complex hardware
constructs such as adder, multiplier and finite impulse response (FIR) filter. To
interact with the rest of the BORPH systems, users make use of data I/O blocks
from our in-house library. It includes, for instance, custom library blocks for
hardware constructs that are exported and accessible through the IOREG virtual
file system such as register, shared memory, and FIFO. Once the design is
created in Simulink, the user may optionally simulate the design within the
Simulink environment before proceeding to hardware generation.

The hardware generation process is where the BORPH specific steps are in-
volved. First, the user Simulink design is parsed to identify all instances of
BORPH-specific library blocks. These blocks serve as the boundary between
the actual generated hardware and native Simulink blocks that are only for
simulation purposes. Xilinx System Generator is then called to generate the
necessary netlist from the user design, instantiating native library blocks ac-
cordingly. Clock and reset insertion, as well as data sample rate resolutions, are
handled by System Generator. The resulting low-level netlist is then prepared
as a block for use with Xilinx Embedded Development Kit (EDK) in our next
step.

Next, a processor system (UK) is inserted, as shown in Figure 5. All IOREG-
related blocks from a user design are connected to a multilevel on-chip pe-
ripheral bus (OPB) that is accessible from this processor system. All runtime
communications with the central BORPH software kernel (MK) are handled
by this processor system. A detail block diagram of UK is shown in Figure 8
(see later). The combined system is subsequently passed to vendor-provided
backend tools for synthesis, map, place and route.

Finally, from the top-level Simulink design, a symbol file is generated that
lists information, such as address and size of all BORPH-specific blocks. This
symbol file is combined with the FPGA configuration file generated by the ven-
dor tools to create the final BOF executable file.

This fully automated tool flow takes the role of a compiler in conventional
software development methodologies. It hides all detail interactions with the
kernel from a user. Such abstraction simplifies users’ experiences with hard-
ware development, allowing them to focus their efforts on application logic
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Fig. 6. A BEE2 compute platform.

design. At the same time, such abstraction allows upgrade to the OS kernel
implementation without requiring user intervention. We will show one such
example in Section 4.

4. CURRENT IMPLEMENTATION

This section describes our current implementation of BORPH. We will first
describe the underlying BEE2 hardware platform [Chang et al. 2005]. Then
we will describe the software architecture of the BORPH kernel. Finally,
we will describe two different versions of on-chip hardware architecture
implementations.

4.1 BEE2 Platform

Figure 6 shows the block diagram of a BEE2 compute module. Each BEE2
compute module contains 5 Xilinx Virtex-II pro xc2vp70 FPGAs. Each FPGA
contains two on-chip PowerPC 405 cores. The center control FPGA, handles all
system related functions, such as networking and FPGA configurations. The
remaining four user FPGAs are used for implementing user designs.2 Each
of the five FPGAs is connected to four DDR2 memory banks, supporting up
to 8 GB of external memory. Furthermore, each user FPGA is connected to
four independent external high-speed serial I/O channels, which provides a
raw bandwidth of 12.5 Gb/s. The control FPGA has two such connections. Each
FPGA runs at 100 MHz, while the processors run at 300 MHz.

The four user FPGAs are connected in a ring topology with a 120-bit direct
connection to its neighbor. Each user FPGA is also directly connected to the
center-control FPGA with a 50-bit connection. User FPGAs are configured by
the control FPGA using an 8-bit SelectMap bus. Once the user FPGA is config-
ured, this bus is doubled as a communication channel between the control and
user FPGA. BORPH currently communicates with all user FPGAs using this
connection.

2Note that with some special arrangement, it is possible to use part of control FPGA for user
applications.
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Fig. 7. A simple packet format for message exchange with BORPH kernel.

4.2 Software Kernel Architecture

BORPH kernel is a modified version of a Linux 2.4.30 kernel running on the
left PowerPC 405 core in the control FPGA. A standard Debian PowerPC root
file system is mounted over network file system (NFS), which provides familiar
Linux applications to the user. To provide kernel support for FPGA fabric, a
number of modifications have been made to the standard Linux kernel.

4.2.1 BOF File Support. Standard Linux kernel contains an extensible
interface to support user-defined binary file format. Making use of this interface,
we have developed a binary file format kernel module called binfmt bof to
handle execution of BOF files.

4.2.2 Hardware Region (HWR). We have defined a set of kernel APIs to al-
low different hardware region types be loaded to BORPH as kernel modules. For
example, each HWR kernel modules must implement a configure function that
handles detail about configuring a particular HWR type. The rest of the kernel
will then call the corresponding configure function based on HWR requirements
embedded in a BOF file. This abstract HWR definition and the extensible kernel
API allows BORPH to be ported to different RC relatively easily. In our first
implementation, we have defined a HWR type hwr b2fpga, which corresponds to
a BEE2 user FPGA.

4.2.3 Hardware Configuration and Resource Allocation. A kernel thread
bkexecd is created to handle all HWR allocation and configurations. When a
BOF file is executed by the user, as long as the BOF file is relocatable, as in
the case for hwr b2fpga, bkexecd will pick an unused FPGA and configure that
FPGA accordingly. A user may override this behavior by setting a hwr addr
field in the BOF file header. Doing so instructs bkexecd to configure a BOF file
only at the specified user FPGA. This is useful for cases when a user design
requires specific FPGA that is connected to special external hardware. In case
the requested FPGA is not available, or no free FPGA is available in the case of
relocatable BOF file, a device busy error is returned to the user with standard
Linux semantics.

4.2.4 Software/Hardware Communication. All communications between
software and hardware are handled by the BORPH kernel through a standard-
ized message-passing network. Figure 7 shows the format of such message
packet. These message packets are used for all kernel communications, includ-
ing the hardware file I/O and the IOREG interface.
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A kernel thread (mkd) is responsible for handling all read/write messages
from hardware processes. For each file opened by a hardware process, a kernel
thread, called a fringe, is created to perform the actual file operations. Similarly,
user read/write requests to virtual IOREG files are translated automatically into
packet messages that communicate with hardware processes.

4.2.5 Process Scheduler and Signal Handler. Since hardware processes do
not run on the processor that BORPH runs on, the kernel must take special
care during process scheduling. Hardware processes are handled differently
such that they are never put on the software run queue.

Furthermore, since hardware processes may access terminal TTYs, they
must respond correctly to “stopping” and “continuing” signals. For example,
a hardware process will receive SIGSTOP when a user press CTRL-Z on the run-
ning terminal, or SIGTSTP when it tries to read from a terminal while it is
running in the background. Also, a hardware process receives SIGCONT when a
user put the process in background, or back to foreground. The BORPH kernel
is modified to handle these cases for hardware processes so that they conform
to standard UNIX semantics and thus be able to coexist coherently with other
software processes in the system.

4.2.6 Software Fringe. A hardware process maybe blocked while accessing
the general file system if the file is not ready. To handle this potential blocking,
each opened file by a hardware process is managed by a software fringe running
on the processor. The fringe performs blocking file I/O operations on behalf of
the hardware process and sends data back to the hardware process only when
it is ready.

4.3 On-Chip Hardware Architecture

On-chip hardware architecture refers to the hardware infrastructure that must
be implemented in order to support BORPH’s operations. Figure 8 shows a block
diagram of the internal of the control FPGA and a typical configuration of a user
FPGA created by our Simulink design flow.

The part of a BEE2 compute module that makes up BORPH’s infrastruc-
ture is labeled “kernel space” in Figure 8. It includes the control FPGA (MK)
and a part of the user FPGA (UK) that is responsible for communicating with
the control FPGA. The part of the system that is responsible for executing
user hardware designs is labeled “user space” in the diagram. This part of the
user FPGA is denoted a reconfigurable hardware region (HWR). Each UK can be
thought as a distributed, low-level manager for the attached HWR.

On the control FPGA, a standard processor system is built around the left
PowerPC 405 core on which BORPH runs. To communicate with user FPGAs, a
SelectMap bus controller is attached to the processor’s on-chip peripheral bus
(OPB) via the processor local bus (PLB). As hardware processes are created and
destroyed, FPGA is configured and unconfigured. Since all four user FPGAs
have the exact same pin connections, BOF files targeting BEE2 user FPGAs
are relocatable.
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Fig. 8. Block diagram of BORPH system on a BEE2 compute module with OPB-based SelectMap
controller in control FPGA (OPBSM).

The part of user FPGA that belongs to the system infrastructure is called
a micro kernel (UK). It handles distributed hardware process management on
behalf of the main kernel. For example, it controls the starting and stopping of
hardware process on that user FPGA once it is configured. It responses to IOREG

packets sent from the BORPH kernel by reading or writing the corresponding
values to a user design. It also keeps records of opened files by a hardware
process and handles read/write requests by a hardware process accordingly.

As mentioned before, the processor system on the user FPGA is automat-
ically inserted by our design flow. As part of the system infrastructure, this
part of hardware should never be unconfigured when a user hardware process
terminates. However, in our current design, we have chosen to embed this part
of the kernel within a user BOF file for simplicity sake.

We have also reimplemented part of the control FPGA as shown in Figure 9.
In this version, the SelectMap bus controller is connected to the processor lo-
cal bus directly. Communication performance between control FPGA and user
FPGA is improved by eliminating delay through the PLB-to-OPB bridge. This
second version serves as a demonstration of BORPH’s hardware kernel/user
separation concept, while improving HW/SW communication performance at
the same time. We denote the original and the new architecture OPBSM and
PLBSM, respectively.
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Fig. 9. PLB-based SelectMap controller implemented on control FPGA of BEE2 (PLBSM).

Fig. 10. An example of porting BORPH to a single FPGA, where user hardware processes are
executed on a partially reconfigurable region.

4.4 Porting BORPH

Although currently implemented on a BEE2 compute module, BORPH is a gen-
eral operating system design that can be applied to other FPGA-based systems.
This section provides a high-level description on porting BORPH.

To make the discussion concrete, we will illustrate the proess using an ex-
ample of porting BORPH to an FPGA that supports dynamic partial recon-
figuration. The top-level block diagram of the resulting system is shown in
Figure 10.

Porting BORPH to the platform in Figure 10 requires changes to both hard-
ware and software from the original BEE2 implementation. Logically, all hard-
ware and software changes involved can be classified as part of the process of
implementing a new reconfigurable hardware region (HWR). Denote this new
HWR as hwr pr. As shown in Figure 10, we assume only one instance of hwr pr
will be presented.

The first hardware change required is to implement logic that configures
and unconfigures the newly defined partial reconfiguration region. Modern
FPGAs provide native support for this purpose, such as through the internal
configuration access port (ICAP) in Xilinx FPGAs. For other platforms, different
configuration logic will need to be implemented.

The second hardware change required is to reimplement the message-
passing network between MK and UK. The original BORPH implementation
on BEE2 utilized the SelectMap bus for communication between control and

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 14, Publication date: February 2008.



A Unified HW/SW Runtime Environment for FPGA RCs using BORPH • 14:17

user FPGA. Porting BORPH to a new platform requires a new communication
mechanism between MK and UK. In the case of hwr pr, since MK and UK are
physically residing within the same FPGA, this communication network may
be reduced to a simple memory mapped device on the processor system.

Most of the BORPH software kernel can be ported to any FPGA-based recon-
figurable system without modification because they are written as high-level
machine independent code. Two parts of the BORPH kernel are machine depen-
dent. First, some part of signal-handling code is processor dependent. There-
fore, porting BORPH to a FPGA-based reconfigurable system with a different
processor will require small modifications to its signal-handling code. Second,
the BORPH software kernel must be updated to handle any newly defined HWR

type by registering a new corresponding HWR module.
As described in Section 4.2, BORPH’s kernel design has a dedicated subsys-

tem devoted to supporting different kinds of HWR types. This HWR subsystem
works in ways similar to the standard Linux device driver subsystem. A set
of virtual function calls must be implemented by each HWR type kernel mod-
ule to handle hardware specific operations. For example, in the case of hwr pr,
the configure function must be implemented to configure the correct reconfig-
urable region on the FPGA using the built-in ICAP. It must also make use of the
newly implemented hardware for communication between MK and UK. Work is
currently underway to standardize this interface for MK–UK communication.

Supporting any additional system calls for hardware process can be accom-
plished by defining a new message that corresponds to each supported system
call. For example, to add support of gettimeofday function to FPGA designs,
a new message with unique CMD field corresponding to gettimeofday can be
defined. Upon receiving such message, the main message handling thread, mkd,
may then serve as a proxy that returns the current time of the day to the issuing
hardware process.

5. PERFORMANCE

In this section, we will describe the implementation of various tasks that are
performed by the BORPH kernel. Performance of such tasks, based on the orig-
inal OPBSM is first presented. Then, we will discuss the migration process from
OPBSM to PLBSM, as well as the performance differences between the two.

5.1 Hardware Process Creation

A hardware process is created when an exec system call is received by the
BORPH kernel on a BOF file. The request is then passed on to a kernel thread,
bkexecd, for the actual configuration. Based on the BOF file header, one or more
suitable FPGAs are chosen and configured accordingly using the SelectMap bus.

Using the OPBSM on-chip architecture, creating a hardware process takes
about 900 ms, while creating a normal software process takes about 13 ms on the
same processor.3 The theoretical minimum time required to start a hardware
process is the sum of the time to start a software process plus the time to

3This is time needed when the program is already residing in memory cache.
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Fig. 11. Performance of reading/writing on-chip memory on a user FPGA using IOREG interface.

configure an FPGA, which amounts to 65 ms in our system. The process creation
time is limited by data transfer speed from control FPGA to the user FPGA.
Preliminary investigation indicates that the PLB-to-OPB bridge on the control
FPGA as well as the SelectMap bus implementation, are limiting the data
bandwidth. Our second implementation, PLBSM, confirms this assertion.

Note that modern operating systems like Linux employs demand paging
techniques such as copy-on-write that significantly reduce software process
start up time. Although demand paging of hardware configurations have been
studied by other researchers in specialized partially reconfigured systems,
such technique is not being used by BORPH. BORPH focuses on the hard-
ware process abstraction and its integration with the rest of the software
system.

5.2 Reading/Writing ioreg Virtual Files

When a user reads or writes to a virtual IOREG file, the request is translated by
the kernel into a message that is sent to the corresponding FPGA. The unique
identification number of the IOREG is sent in the LOC field of the message. Each
IOREG read (write) request is answered by the user FPGA by a read (write) ac-
knowledge message, indicating the number of bytes read (written), or a negative
value that indicates error condition. Adhering to the standard UNIX semantics
for file read (write), the return value is passed directly back to the user process
that initiated the request.

Figure 11 shows the performance of reading/writing an on-chip memory that
is exported as an IOREG file, using different read/write sizes, s. The transfer time
remains low until s increases beyond about 64 bytes. Since there is no buffer-
ing in the file system level, the time needed for the operation is determined
solely by data movement time, which includes memory copy time and hard-
ware data transfer time. The effect of a small data cache (16 KB), combined
with a small 128 bytes SelectMap FIFO are contributing factors for the slowing
down. Nonetheless, for large enough s, the speed levels at about 1.38 MB/s4 for
both read and write.

41 MB/s = 220 bytes/s.
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Fig. 12. Hardware process file I/O performance.

5.3 General File I/O from Hardware Processes

Hardware processes initiate file I/O by sending messages to the BORPH kernel
using the format described in Figure 7, with the LOC field denoting Linux-opened
file descriptor number. All messages are received by mkd. Each opened file is
managed by a fringe, which is implemented as a kernel thread on the control
FPGA. A fringe is woken up by mkd as needed.

For purpose of benchmarking hardware file I/O performance, an FPGA de-
sign, stdloop.bof, and an equivalent software C program, pipetok, are created.
Both designs repeatedly read s bytes of data from its stdin, and write the data
back to stdout, until the end of file is reached.

5.3.1 Regular File I/O. First, to determine the performance of regular file
I/O from a user FPGA hardware process, the two programs are run as follows:

bash$ stdloop.bof < datafile > outfile
bash$ pipetok < datafile > outfile

Figure 12a shows the file I/O performance of both processes with various file
transfer sizes s. In the case of stdloop.bof, the time for each file I/O operation
is measured directly on the user FPGA.

A hardware process file read is analogous to the C function call:

read(fd, buffer, s);

For each read, a read request packet is sent from the user FPGA to the control
FPGA. As a result, mkd is woken up, which, in turn, wakes up the correspond-
ing fringe. The fringe then carries out the file read on behalf of the hardware
process, blocking as needed. Once the request data is ready, the fringe sends all
data back to the user FPGA in one READ ACK packet. Comparing a hardware file
read to a software file read, a hardware file read incurs the overhead of inter-
rupt handling and two context switches to the fringe. This overhead is reflected
when value of s is small. Moreover, there is the overhead of data movement for
large values of s. On the other hand, software reads require almost the same

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 14, Publication date: February 2008.



14:20 • H. K.-H. So and R. Brodersen

amount of time as fringe reads. The only difference between the two is the extra
kernel boundary crossing time for software processes as they run in user mode.

Similarly, a hardware process file write is analogous to the C function call:

write(fd, buffer, s);

For each write, the data to be written is sent as the payload of a write request
packet to the control FPGA. Upon receiving the packet, mkd is woken up. Since
most file writes complete successfully without blocking, as an optimization, mkd
writes to the file on behalf of the hardware process directly without involving a
fringe, eliminating one context switch for each file write. Furthermore, we have
eliminated the need for hardware processes to wait for WRITE ACK messages.
Therefore, for small writes that can fit into the on-chip FIFO, the time to write
a file is the same as the time needed to write the packet into the FIFO. This
explains the very fast hardware file write operations for small payloads. For
write operations with larger payloads, however, the hardware process is delayed
further by both the limited size of on-chip FIFO and the maximum packet size
limit imposed by BORPH. Consequently, large hardware file writes approach
the performance of hardware file reads.

In general, file readings by hardware processes requires more than a single
hardware read call. Figure 12b plots the time required for a hardware process
to read files of various sizes using different values s for each read request. The
values are measured from the control FPGA using the time command:

bash$ time sink.bof -s $SIZE < $INPUT FILE

where sink.bof is a hardware design that reads the entire content of a file
from stdin and then exit. This graph gives an overall system performance
benchmark as it includes system time, such as the time for process creation
and destruction.

From Figure 12b, it can be seen that large transfer size s is essential for
large files transfer to amortize the high overhead involved for each hardware
file system call. For s = 4096, streaming a 32 MB file to a hardware process
completes in 16.68 s, resulting in a transfer speed of 1.91 MB/s. On the other
hand, for s = 1, the same transfer takes 1871.73 s.

5.3.2 Piped Process through Standard I/O. Having access to system stan-
dard I/O allows hardware and software processes to communicate with standard
UNIX pipes. To evaluate the performance of such pipe, a second benchmark is
performed. Instead of reading regular files, the two programs from previous
section are run as follows:

bash$ sendtok | stdloop.bof | recvtok
bash$ sendtok | pipetok | recvtok

where sendtok and recvtok are software programs that repeatedly send and
receive token of s bytes from their stdout and stdin, respectively. The time for
recvtok to receive an entire s bytes token from sendtok, in both cases, is shown
in the top half of Figure 13a. Communication overhead, which is the extra time
needed for the mixed HW/SW pipe over the software pipe, is plotted at the
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Fig. 13. Performance comparisons between software pipeline and mixed hardware/software
pipeline.

bottom half of the diagram. For s < 128, the mixed HW/SW pipe’s latency is
about 60% more than the pure software pipe. The gap increases as s increases
to almost 300% for s ≥ 128 as the data transfer latency starts to dominate.

In the above piped organization, throughput of the pipe is also an important
metric. Figure 13b shows the throughput of HW/SW pipe and SW/SW pipe for
different token sizes s. Throughput is measured by sendtok at the source, and
recvtok at the sink. The difference in rate is a result of buffering within the
system. At the receiving end, throughput increases as s increases. For s = 4096,
the mixed HW/SW pipe has a throughput of 858.56 kB/s,5 while the SW/SW pipe
has a throughput of 2.8 MB/s.

5.4 Alternative Hardware Architecture

The performance results reported thus far are all performed on the original
on-chip hardware architecture, OPBSM. Figure 14 shows the results of repeating
experiments from previous section in PLBSM. Each subfigure plots the results
for both OPBSM and PLBSM. To highlight the performance difference between the
two hardware architectures, only subsets of all data points are shown in the
diagrams.

Figure 14a shows that process creation benefits most from the new archi-
tecture, with a 28.9% decrease in process creation time. To create a hardware
process, no complex interrupt handling or message exchange is needed between
control FPGA and user FPGA. Hardware process creation is dominated purely
by the transfer of 3 MB of configuration data to the user FPGA. Therefore,
all the performance gain in bypassing a PLB-to-OPB bridge is reflected in the
process creation benchmark.

On the other hand, Figure 14c shows that there is only marginal improve-
ment on hardware file I/O as measured from the user FPGA. It is as expected

51 kB/s = 1024 bytes/s.
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Fig. 14. Performance comparison between OPBSM and PLBSM.

because the performance of hardware file I/O is largely limited by the speed of
the processor system on the user FPGA and not the control FPGA. On a user
FPGA, the processor communicates with the SelectMap bus FIFO through an
OPB-connected controller. Here, the OPB-to-PLB bridge is again the bottleneck,
undermining any improvement in control FPGA speed. Figure 14d shows that
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for file reads with large enough size, PLBSM and OPBSM have similar performance.
For small file transfers, the performance advantages of PLBSM are direct results
of faster process-creation times.

Performance of IOREG interface also sees limited performance improve-
ment: an average of 4% increase for large reads and 2% increase for large
writes. The performance of the IOREG interface is largely limited by pure
hardware data transfer speed. As in the case of hardware file I/O, since the
user FPGA is limiting the data transfer speed, very little improvement is
expected.

The chained hardware/software pipe benefits significantly from the architec-
tural change. An average of 12% performance increase in latency (Figure 14e)
is observed. With a transfer size s = 2048, the overall throughput increases
14% from 807 to 920 kB/s (Figure 14f). The piped process operation involves
complex HW/SW interaction, such as context switching on the processor, in-
terrupt, and message-passing, etc. Therefore, a faster data transfer speed on
the control FPGA allows the processor to perform these tasks more efficiently,
resulting in higher overall system performance.

5.4.1 Comparing the Two Hardware Architectures. The performance
benchmarks of PLBSM have identified two performance bottlenecks in our
current BORPH system. First, the elimination of PLB-to-OPB bridge im-
proves raw data transfer performance, as expected. However, the increased
performance in control FPGA must be matched by the user FPGA. Sec-
ond, in a heavily loaded system, the processor currently spends a large
portion of the processing time in data transfer, hindering overall system
performance.

Based on the above two observations, we are currently implementing another
hardware architecture in which direct memory access (DMA) will be employed
between control processor and the SelectMap controller. This will increase raw
data transfer speed and relieve the processor from intensive data transfer op-
erations at the same time.

The implementation of PLBSM also demonstrates BORPH’s concept of hard-
ware kernel/user separation. During the migration from OPBSM to PLBSM, no
recompilation was needed for hardware user designs used in benchmarking.
The same designs have been used in both cases because the interface into the
BORPH kernel, the SelectMap connection in this case, remains compatible. In
general, it is the design philosophy of BORPH that the kernel/user interface
must be kept consistent such that any change to the kernel does not affect user
designs.

However, in order to improve overall system performance, we have to reim-
plementing uK on user FPGAs as well. Unlike changes that we have made to the
control FPGA, it will require recompilation of user designs. Such recompilation
violates the design philosophy of BORPH. In order to avoid future user design
incompatibility issues, we are, therefore, developing new architecture for the
user FPGA that employs dynamic partial reconfiguration with standardized
interface into the BORPH kernel.
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Fig. 15. Cognitive radio testbed system.

6. SAMPLE APPLICATIONS

In this section, three FPGA applications are briefly described to illustrate how
various features of BORPH work together to ease their development processes.

6.1 Example 1: A Real-Time Wireless Signal Processing System

The first application is a real-time wireless signal processing system for our
cognitive radio project [Mishra et al. 2005]. This system makes extensive use
of the IOREG virtual file system for hardware parametrization and HW/SW com-
munication. Furthermore, full backward compatibilities with existing Linux
system allows the software team to perform HW/SW system testing remotely
over the Internet.

6.1.1 Overview. Cognitive radios are smart radios that take advantage
of under-utilized licensed spectrum for opportunistic tranceiving. In order to
prevent interference to licensed primary users of the spectrum, a variety of
techniques have been proposed for reliable sensing and noninterfering use of
the spectrum. Our system is designed to validate those techniques. Figure 15
depicts our overall system design that involves multiple cooperative cognitive
radios.

Each radio is logically separated into two parts that are developed by two
physically separated design teams. The partitioning is done loosely, based on
the standard ISO network stack, where the physical layer is implemented in
hardware and the higher layers are implemented in software.

At the physical layer, real-time spectrum analysis is performed by FPGA
hardware that is connected to external RF frontend. The FPGA hardware is
designed using our Simulink-based design flow described in Section 3. All high-
level network protocols are independently developed in software.

6.1.2 Using BORPH for Communication and Synchronization. All com-
munications between the spectrum sensing hardware and the software protocol
stacks are done via BORPH’s IOREG interface. Two 8192 bytes shared memories
are exported as IOREG virtual files for data communication with software. In
addition, more than 20 single word registers are defined. Most of them serve
the function of controlling hardware parameters, such as RF channel and am-
plifier gain. Some IOREG registers, however, are used solely for synchronization
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purpose. For example, each shared memory is guarded by a pair of enable and
ready registers. The enable register is used by software to notify hardware its
intention to read memory. When the data in the shared memory is ready, the
hardware asserts the corresponding ready register. This two-way handshaking
mechanism forms the basis of simple synchronization between software and
hardware processes.

The file I/O capability of a hardware process is used to implement a low-level
debugging shell. It provides an additional way to debug the running FPGA and
to display hardware status.

6.1.3 Remote System Testing. Our software design is developed off-site.
BORPH provides a remote testing environment for our protocol group who
does not have physical access to the hardware. With BORPH, our software
team independently develops the protocol stack without the presence of the
hardware by emulating it with software processes. As development progress,
they then remote log onto the physical hardware for mixed HW/SW testing with
a simple swap of hardware process in place of the emulating software process.
Since BORPH runs with a fully functional Debian root file system, all necessary
software development tools, such as gdb are available for debugging.

6.2 Example 2: Low-Density Parity-Check Decoders Emulation

In this project, FPGAs are used to study quantization effects on the performance
of low-density parity-check (LDPC) codes [Zhang et al. 2006, 2007]. Because of
the intense computational need for empirical study of LDPC code for even mod-
erate bit error rates (BER), hardware emulations using FPGAs are employed.

Similar to the previous wireless signal processing example, this application
relies heavily on BORPH’s IOREG virtual file interface to dynamically customize
design parameters to explore implementation choices. Furthermore, IOREG vir-
tual files are used to export collected data for postprocessing.

This application is unique in that it does not require externally attached
hardware devices for execution. As a result, during design exploration phase,
the same relocatable BOF file can be executed concurrently on multiple FPGAs.
The fact that each BORPH system is networked allows each instance to be
conveniently started and parametrized through IOREG virtual files remotely.
Having more than ten instances of the same design emulating concurrently
have significantly improved the productivity of the designers.

6.3 Example 3: FPGA Video Processing with Commodity Software

The standard conforming file I/O capabilities for hardware processes allow
FPGA designs to communicate with commodity software via standard pipes.
To illustrate this, we have implemented a simple Sobel edge detection program
in FPGA (yuvedgdet.bof) that works with the MJPEG tools [mjpegtools]. The
MJPEG tools is a set of Linux programs that collectively perform complex video
editing functions. Most of the programs in the tool set communicate with each
other through piped standard input and output, using a predefined raw video
format (YUV4MPEG2).
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Using BORPH’s file I/O capabilities, the FPGA edge detection filter may
therefore be inserted easily with a single shell command:

bash$ lav2yuv test.avi | yuvedgdet.bof | mpeg2enc -o output.mpg

where lav2yuv and mpeg2enc are programs distributed with the MJPEG
tools. In the above command, lav2yuv translates the source video test.avi
into the YUV4MPEG2 raw video stream, which is then redirected to our FPGA
edge detection filter. The filtered video is piped back to the software MPEG
encoder mpeg2enc for the final encoding.

Comparing to a pure software implementation, performance of the above
hardware-in-the-loop video processing is 18% slower as a result of I/O over-
head. As with any other hardware acceleration scheme, the advantage of FPGA
implementation is expected to be more prominent as more computation, such
as MPEG encoding, is shifted to FPGA, amortizing performance degradations
because of I/O.

Most importantly, this example demonstrates BORPH’s unique approach
to hardware/software coexecution. The use of standard file semantics for
hardware/software communication is not only easy to understand for novel
users, but also allows easy integration with existing commodity software,
greatly improving productivity of designers.

7. CONCLUSION

In this paper, we have described the design and implementation of BORPH, an
operating system designed for FPGA-based reconfigurable computers. BORPH
encapsulates FPGA hardware designs as running hardware processes and
provides conventional OS services such as file system support to them. By
setting the HW/SW boundary at OS kernel level, BORPH provides a uni-
fied HW/SW runtime environment with a familiar UNIX interface. It extends
the familiar notion of process-level parallelism to include both hardware and
software. BORPH’s kernel interface ensures a design language independent
environment.

The concept of hardware process in BORPH allows user hardware designs
to integrate into traditional UNIX environment as a normal running process.
It allows hardware designs to take an active role in the system. Instead of the
traditional master-slave relationship with software, a hardware process forms a
peer-to-peer relationship with software programs. Two ways of communicating
with hardware processes have been presented. With respect to a hardware
process, the IOREG interface provides a passive communication channel. The
interface exports constructs from a hardware design to the rest of the system
through a virtual file system. On the other hand, hardware processes initiate
active communications to the rest of the system through standard UNIX file
system.

We have also described our Simulink-based high-level hardware design flow
as an example of how a hardware design environment integrates with BORPH.
This design flow serves the same role as a compiler in software design method-
ology. Starting from a high-level design, a BORPH object file (BOF file) is
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generated with a single-pass compilation process. The created BOF file can
then be executed in the BORPH system as native binary.

Two variations of BORPH hardware implementation on a BEE2 platform
were presented. By improving raw data transfer speed, user hardware process
creation time is reduced by 28.9%. Latency and throughput of mixed HW/SW
pipes is improved by 12 and 14%, respectively. Hardware file I/O and IOREG

interface have limited performance improvement, because they are limited by
the speed of user FPGA.

The two hardware implementations serve as a proof-of-concept of BORPH’s
kernel/user separation design philosophy. Since implementation detail of
BORPH is independent of the OS interface, performance is expected to be im-
proved through future reimplementations.

Currently, we are further exploring the semantics for hardware processes,
such as blocking, parallel file system access, and HW/SW notification mecha-
nisms. Partial reconfiguration of user FPGA is also being developed to further
enhance kernel/user space separation. Moreover, we are developing a direct
in-system hardware process debugging methodology based on BORPH.
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