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A New ILP-Based p-Cycle Construction Algorithm 
without Candidate Cycle Enumeration 

Abstract—The notion of p-cycle (Preconfigured Protection Cycle) 
allows capacity efficient schemes to be designed for fast span 
protection in WDM mesh networks. Conventional p-cycle 
construction algorithms need to enumerate/pre-select candidate 
cycles before ILP (Integer Linear Program) can be applied. In 
this paper, we propose a new algorithm which is only based on 
ILP. When the required number of p-cycles is not too large, our 
ILP can generate optimal/suboptimal solutions in reasonable 
amount of running time.  

Keywords-Fast span protection, ILP (Integer Linear Program), 
p-cycle, WDM (Wavelength Division Multiplexing). 

I.  INTRODUCTION 
WDM (Wavelength Division Multiplexing) technology is 

widely used in optical networks to fully utilize the fiber 
bandwidth. Nowadays, the capacity of a WDM wavelength can 
easily reach 10 Gb/s, and hundreds of wavelengths can be 
multiplexed onto a single fiber for concurrent data transmission. 
To minimize the amount of data loss upon an accidental failure 
(such as a fiber cut), it is imperative that the network can 
survive from the failure and achieve fast optical recovery. 

In WDM mesh networks, p-cycle (Preconfigured Protection 
Cycle) [1] can provide fast span (or link) protection with high 
capacity efficiency. The idea is to organize the spare (or 
backup) capacity in the network into a set of pre-cross-
connected cycles (i.e., p-cycles) to protect the working capacity 
at each span. If a p-cycle traverses a particular span, then this 
span is called an on-cycle span of this p-cycle. Otherwise, it is 
called a straddling span if both of its two end nodes are on the 
same p-cycle. We define a unity-p-cycle as a pre-cross-
connection of one unit of spare capacity (or one wavelength) 
on the on-cycle spans it traverses. Each p-cycle refers to a 
unity-p-cycle in this paper. Fig. 1 shows a simple network with 
bidirectional fiber connections. The two spans 0–1 and 3–4 are 
straddling spans of the dashed p-cycle, and all other spans are 
on-cycle spans. If the on-cycle span 2–3 fails, the traffic on it 
can be rerouted to the other side of the p-cycle, i.e., path 2–0–
4–1–3. If the straddling span 3–4 fails, two backup paths 3–1–4 
and 3–2–0–4 are available for protection. We can see that a 
straddling span is better protected than an on-cycle span, 
because a p-cycle protects two units of traffic for the former 
but only one unit for the latter. Although no spare capacity is 
preconfigured at the straddling spans, the reserved capacity on 
the p-cycle is shared to protect both on-cycle spans and 
straddling spans. This leads to high capacity efficiency 

comparable to a span-based mesh restoration scheme [1]. Upon 
a single span failure, only the two end nodes of the failed span 
are involved in real time switching. This gives a BLSR [2] 
ring-like fast recovery speed. 

Because of its outstanding performance on both recovery 
speed and capacity efficiency, p-cycle has attracted intensive 
research interests [3-14] since it was first introduced in 1998 
[1]. Recently, p-cycle was also extended to path/segment 
protection at the cost of slower recovery speed [15-16]. 

For a given network, the problem of p-cycle construction is 
to find a set of p-cycles to protect the working capacity on each 
span (i.e., 100% protection), and minimize the total amount of 
required spare capacity. Conventional p-cycle construction 
algorithms adopt a two-step approach. The first step 
enumerates all distinct simple cycles [17] in the network to 
form a candidate set. The second step determines an optimal 
set of p-cycles from the candidate set by ILP (integer linear 
program) optimization. However, the size of the candidate set 
can be very large even in a small network, and it soars 
exponentially as the network size increases. This makes the 
algorithm very time-consuming. To address this issue, some 
heuristic cycle pre-selection algorithms [18-20] are designed to 
reduce the size of the candidate set, by only selecting a subset 
of candidate cycles with “high merit” for ILP optimization. 
Obviously, this also degrades the quality of the solution. 

In this paper, we propose a new p-cycle construction 
algorithm which only relies on ILP. We formulate the new ILP 
in Section II, and give numerical results and discussions in 
Section III. The paper is concluded in Section IV. 

II. ILP FORMULATION 
In our ILP, a “cycle” may actually contain one or multiple 

disjoint cycles and each of them corresponds to a p-cycle. In 
what follows, we use “cycle” and “p-cycle” to distinguish the 
two different notions. If a span can be protected by a particular 
p-cycle, we also say that it can be protected by the 
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Fig. 1.  An example of p-cycle protection. 
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corresponding cycle. With the notations defined in Part A 
below, we summarize the ILP in Part B, and explain the 
detailed rationale in Part C. 

A. Notations 
J: The maximum number of cycles allowed in the solution. 
j:  Cycle index where j∈{1, 2, …, J}. Note that a cycle may 

contain one or multiple disjoint p-cycles. 
j

abe : Binary variable. It takes the value of 1 if span (a, b) is an 
on-cycle span of cycle j, and 0 otherwise. 

j
az : Binary variable. It takes the value of 1 if node a is on cycle 

j, and 0 otherwise.  
j

abχ : Binary variable. It takes the value of 1 if span (a, b) can 
be protected by cycle j, and 0 otherwise. 

abd : The total amount of working capacity on span (a, b) after 
some routing algorithm is applied. 

j
baakx ),( : Binary variable. It assumes that we are checking 
whether span (a, b) can be protected by cycle j. It takes 
the value of 1 if there is a route on cycle j that connects 
nodes a and k, and 0 otherwise. 

j
ba

t
aky ),( : Binary variable. It assumes that we are checking 

whether span (a, b) can be protected by cycle j. For t≠b, 
it takes the value of 1 if there is a route on cycle j that 
connects nodes a and t, and at the same time (t, k) is an 
on-cycle span of cycle j. Otherwise, it takes the value of 0. 
For t=b, 0),( =j

ba
b
aky  is always enforced (See (8)). 

abc : The cost of adding a wavelength to span (a, b). If hop-
count is used as the cost metric, then cab=1 for each span 
(a, b). Otherwise cab may include distance-related costs 
such as for using amplifiers, plus the cost of any O/E and 
E/O interfaces, and the amortized cost of OXCs or 
wavelength converter pools. 

V:  The set of all the nodes in the network. 
E:  The set of all the spans in the network. 

B. ILP Formulation 
Given a network topology G(V, E), the working capacity 

dab (after routing) and the cost cab for each span (a, b)∈E, the 
set of p-cycles for 100% span protection can be obtained by 
solving the ILP below. 

1) Objective: 
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C. Rationale 
In the above ILP, we do not know how many cycles are 

sufficient for 100% span protection until a solution is obtained. 
Theoretically, we can set J sufficiently large, whereas the final 
solution may contain less number of cycles. 

Formula (1) states the objective of minimizing the total cost 
of all cycles/p-cycles. Formula (2) specifies that the set of p-
cycles must provide 100% protection for the given working 
capacity dab on each span (a, b)∈E. Note that j

ab
j

ab e−χ2  
denotes the number of working capacity units at span (a, b) that 
can be protected by cycle j. If span (a, b) cannot be protected 
by cycle j, we have 0=j

abχ , 0=j
abe  and thus 02 =− j

ab
j

ab eχ . 

(a) 

0 
1 

2 
3 

5 

6 

4 
0 

1 

2 
3 

5 

6 

4 

(b) 

Fig. 2.  It is important to identify spans that can be properly protected. 
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Otherwise, if it can be protected (with 1=j
abχ ), it may be an on-

cycle span (with 1=j
abe ) or a straddling span (with 0=j

abe ). 
Then, j

ab
j

ab e−χ2  takes the value of 1 for the former and 2 for 
the latter. 

Formula (3) requires a cycle j to have either 0 or 2 on-cycle 
spans incident on any node a∈V, depending on whether node 
a is on cycle j. With this constraint, multiple disjoint p-cycles 
may coexist in j. Fig. 2 gives an example. We assume 1=abd  
and 1=abc  for every span (a, b), except c14=c25=1000. In Fig. 
2a, two disjoint p-cycles coexist in j. If we cannot identify that 
spans (1, 4) and (2, 5) straddle two disjoint p-cycles, they will 
be mistaken as straddling spans of the same p-cycle, and thus 
can be protected by cycle j in Fig. 2a. Accordingly, the total 
cost is 7, instead of the correct answer 2005 in Fig. 2b (with a 
single p-cycle). 

In fact, it is trivial to require that only a single p-cycle 
exists in j. Though this can be achieved by adding extra 
constraints to the ILP, it will dramatically increase its running 
time. Instead, it is necessary to distinguish straddling spans (of 
a p-cycle) from spans connecting two separate p-cycles in j 
(such as (1, 4) and (2, 5) in Fig. 2a). Straddling spans can be 
properly protected by cycle j but spans connecting two separate 
p-cycles cannot. In our ILP, this is achieved by protection 
constraint 4) (i.e., (4)-(10)) using a recursive process. 

To check if span (a, b) can be protected by cycle j, we can 
check whether there is a route on cycle j that connects nodes a 
and b. If yes, then both a and b are on the same p-cycle and 
span (a, b) can be protected. For simplicity, we use “a connects 
to b” to mean that the two nodes are connected by a path on 
cycle j. For example, in Fig. 2a, node 0 connects to node 3, but 
node 1 does not connect to node 4. In essence, checking the 
connectivity of two nodes is similar to a routing process along 
the cycle. 

Motivated by some classic routing algorithms such as 
Dijkstra’s and Floyd-Warshall algorithms [21], we can use the 
recursive process formulated in (4)-(10) to achieve the above 
goal. Fig. 3 shows the key idea. Checking the connectivity of 
nodes a and k in Fig. 3 is equivalent to checking the 
connectivity of nodes a and t because (t, k) is an on-cycle span. 
Assume that (s, t) is also an on-cycle span. This further 
translates to checking the connectivity of a and s, and so on. If 
a and k are on the same p-cycle, this recursive process will 
converge to node a which is called the root of the recursive 
process. 

For each span (a, b)∈E, formulas (4)-(10) check the 
connectivity of nodes a and b on cycle j. Formula (4) means 
that the root node a always connects to itself. Formulas (5) & 
(6) are the main body of the recursive process. Specifically, 

formula (5) defines j
ba

t
aky ),( , which can take the value of 1 

only if a connects to t (with 1),( =j
baatx ) and (t, k) is an on-cycle 

span of cycle j (with 1=j
tke ). We call this “a connects to k via 

t” for short, as shown in Fig. 3. Formula (6) says that, a can 
connect to k only if there exists at least one neighbor t of k, 
such that a can connect to k via t. 

We now use the example in Fig. 4a to show how the 
recursive process works. Our task is to check whether span (1, 
4) can be protected by cycle j=1 which contains two disjoint p-
cycles. Or equivalently, whether 1

1414
1
14 x=χ (as defined in (9)) 

can take the value of 1. Figs. 4c-4h give the details of the 
recursive process based on (5) & (6). Since 01

)4,1(
1
14 =y  (because 

(1, 4) is not an on-cycle span and 01
14 =e ), the value of 1

)4,1(14x in 
Fig. 4c depends on the values of 1

)4,1(
6
14y and 1

)4,1(
5
14y . We first 

a 

k 
t 

 

 

t is a direct neighbor of k and 
(t, k) is an on-cycle span. 

A p-cycle in cycle j. 

Fig. 3.  Node a connects to node k via its neighbor t ( 1),( =j
ba

t
aky ). 
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Fig. 4.  Mutual reference, self-reference and the recursive process. 
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consider 1
)4,1(

6
14y . From Figs. 4d & 4e, we can see that the value 

of 1
)4,1(

6
14y further depends on the values of 1

)4,1(
5
16y and 1

)4,1(
4
16y , 

because (6, 4) is an on-cycle span in Fig. 4a and thus we have 
11

64 =e  in Fig. 4d. However, at this point we should not refer 
back to node 4 again (or 1

)4,1(
4
16y in Fig. 4e). Otherwise we will 

be trapped by the logical loop shown in Fig. 4b, which is called 
mutual reference between nodes 4 and 6. In such a mutual 
reference, the connectivity of node pairs {1, 4} and {1, 6} 
depends on each other, and thus both will be mistaken as 
connected. Note that the ILP will treat any two nodes as 
connected if their connectivity is undefined, because this can 
help to minimize the objective in (1). Therefore, we should 
prevent such mutual references, and let the nodes on the cycle 
be sequentially referred to in a unidirectional manner, as shown 
by the dashed arrows in Fig. 4a. This is achieved by (7) in the 
ILP, which allows either j

ba
t
aky ),(  or j

ba
k
aty ),(  (but not both) to 

take the value of 1. 
Assume 01

)4,1(
4
16 =y  in Fig. 4e for avoiding the mutual 

reference between nodes 4 and 6. Then, the recursive process 
continues as in Figs. 4e-4h. Note that 11

56 =e in Fig. 4f and 
11

45 =e in Fig. 4h (See the cycle in Fig. 4a), and we have omitted 
1

)4,1(
2
15y in Fig. 4g because it equals to 0. Besides, we have 

01
)4,1(

6
15 =y  in Fig. 4g to avoid mutual reference between nodes 

5 and 6. Finally, we can see that the value of 1
)4,1(14x in Fig. 4c 

ultimately depends on its own value (i.e., 1
)4,1(14x in Fig. 4h). 

We call such a logical loop as self-reference of span (1, 4), and 
it should also be avoided. The physical meaning behind is as 
follows. To check the connectivity of nodes 1 and 4 in Fig. 4a, 
we start from node 4 and retrieve the connectivity in a 
recursive manner along the cycle. We finally reach node 4 
instead of node 1. Generally, it means that node 1 does not 
connect to node 4, and span (1, 4) cannot be protected by the 
cycle. Formula (8) in our ILP is to prevent the self-reference 
problem. When we check whether span (a, b) can be protected 
by cycle j, formula (8) sets 0),( =j

ba
b
aky  if k (where k≠a) is a 

direct neighbor of node b. This is equivalent to removing the 
dashed arrow 4→5 in Fig. 4a, or set 01

)4,1(
4
15 =y  in Fig. 4g, 

such that the self-reference of span (1, 4) can be avoided. Note 
that this is carried out only for checking the connectivity of 
nodes a and b. It does not affect our analysis on the 
connectivity of other node pairs. 

In Fig. 4g, we have 01
)4,1(

4
15 =y  to avoid self-reference of 

span (1, 4), and 01
)4,1(

6
15 =y  to avoid mutual reference between 

nodes 5 and 6. Therefore, we get 01
)4,1(15 =x , meaning that node 

1 does not connect to node 5. Recursively, we have 01
)4,1(

6
14 =y  

in Fig. 4c. If 1
)4,1(

5
14y in Fig. 4c is considered, we can get 

01
)4,1(

5
14 =y  in a similar way. Consequently, 01

1414 =x  in Fig. 4c, 
and span (1, 4) cannot be protected by cycle j=1. 

On the other hand, if we check whether span (1, 2) can be 
protected by cycle j=1 in Fig. 4i, the connectivity of nodes 1 
and 2 can be retrieved as indicated by the dashed arrows. We 
can finally reach node 1, and 11

)2,1(12
1
12 == xχ  is ensured by the 

root definition 11
)2,1(11 =x  (see formula (4)). Therefore, span (1, 

2) can be protected by cycle j=1 which is also a p-cycle. 
In summary, formulas (4)-(10) are used to check whether 

span (a, b) can be protected by cycle j. Specifically, formula 
(4) defines the root, and formulas (5) & (6) form the main body 
of the recursive process. Formulas (7) & (8) are used to prevent 
mutual reference and self-reference, respectively. Formula (9) 
defines j

baab
j

ab x ),(=χ . Finally, formula (10) says that, if there is 
no on-cycle spans of cycle j incident on node a, then a does not 
connect to any other node along cycle j. For the example in 
Fig. 4, a final solution with a single p-cycle can be obtained in 
Fig. 4i, instead of the two p-cycles in Fig. 4a. 

III. NUMERICAL RESULTS AND DISCUSSION 
The ILP formulated in (1)-(10) is implemented using ILOG 

CPLEX 10.0 [22]. To speed up the ILP optimization, we 
emphasize on finding feasible solutions instead of optimal 
solutions. Specifically, we set the environment parameters of 
CPLEX 10.0 as in (11) below to tighten our ILP model, and 
allow more frequent heuristic processing. 

1→ emphasis mip 
2→ mip strategy probe 
3→ mip strategy rins 
3→ mip strategy heuristicfreq                  (11) 
2→ mip cuts all 
3→ mip strategy dive 
3→ preprocessing symmetry 

Let N=||V|| be the network size and S=||E|| be the total 

Fig. 5.  p-cycles for the two homogeneous networks. 
(b) N=15, S=19. 

(a) N=15, S=27. 
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Solution time = 96.31 sec 
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number of spans in the network. The two homogeneous 
networks (or flat capacity networks) in Fig. 5 (taken from [23]) 
are first considered, where the anticipated working capacity on 
each span is the same. The homogeneous scenario corresponds 
to p-cycle protection for dynamic traffic [10], or for fiber-level 

protection in DWDM networks [23]. In Fig. 5, we assume that 
the working capacity on each span is one unit, and hop-count is 
used as the cost metric (i.e., cab=1 for each span (a, b)). The 
optimal solutions returned by the ILP are also shown in Fig. 5, 
where both solutions are obtained quickly for J=3. For 
homogeneous networks, the required number of p-cycles is 
usually small. Therefore, our ILP can return an optimal 
solution rather quick. 

We then consider the pan European COST 239 network in 
Fig. 6. The cost of each span is defined as the Euclid distance 
between its two end nodes (See Fig. 6a). The number next to 
each span in Fig. 6b denotes the number of working capacity 
units (i.e., dab) on that span. The optimal solution obtained is 
shown in Fig. 6b, which consists of 2 p-cycles. 

Examples in Figs. 7 & 8 are for capacitated networks. Fig. 
7a is the traffic matrix for the capacitated pan European COST 
239 network in Fig. 7b. It is obtained by dividing the traffic 
matrix in [24] by 10 Gb/s. The cost of each span is the same as 
in Fig. 6a. Fig. 7b shows the working capacity at each span 
after shortest path routing. The solutions at different running 
time are given in Fig. 7c with J=7. Particularly, the set of p-
cycles obtained after running for 3 hours are listed. The 
solution has a gap of 2.10% to optimality. The network in Fig. 
8a is taken from [23], where hop-count is used as the cost 
metric. Our ILP returns the optimal solution [23] (listed in Fig. 
8b) in just 886.53 seconds (though a gap to optimality of 
3.14% is still observed after 3 hours). 

One issue in our ILP is how to determine the number of 
allowed cycles J. Theoretically, we can set J large enough and 
the ILP can return a solution with less number of cycles. But, 
the running time of our ILP is very sensitive to J, because the 
number of variables and constraints will increase rapidly with 
J. Note that each p-cycle can protect two units of working 
capacity on a straddling span, and the ILP tends to generate p-
cycles that straddle the most-heavily-loaded span (in order to 
reduce the number of required p-cycles). So intuitively, we can 
set J to half of the working capacity units at the most-heavily-
loaded span, or slightly larger than that. On the other hand, if J 
is too small to give a feasible solution, CPLEX can identify the 
infeasibility very fast (usually in less than 1 second). If this 
happens, we can slightly increase J before rerunning the ILP. 

From the examples in Figs. 5-8, we can see that our ILP 
returns optimal/suboptimal solutions in reasonable amount of 
running time. In contrast, the candidate cycle enumeration in 

Time in hours Gap to optimality p-cycles 
1                32960              7.72% 
2                32130              3.23% 
3                31790              2.10% 

Total cost 

0–3–2–4–5–8–10–9–6–0 
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0–3–2–4–5–8–10–9–6–0 
4–5–8–10–4 
0–1–2–4–5–8–7–10–9–6–3–0 
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(a) Traffic matrix. (b) Working capacity on each span. (c) ILP solutions with J=7. 

Fig. 7.  Case study for the capacitated pan European COST 239 network. 

0: Copenhagen 
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Span Span Cost Cost 

0–1      1310     4–5       220 
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3–6      340       8–9       730 

3–7      1090     8–10     320 

3–9      660       9–10     820 

(a) Span cost in kilometers. 
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Fig. 6.  A simple example based on pan European COST 239 network. 
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conventional p-cycle construction algorithms is much more 
time-consuming. However, the complexity of our ILP is very 
sensitive to the value of J. For heavily loaded networks, two 
approaches can be taken to address this issue. First, we can 
reduce the number of p-cycles by scaling down the traffic with 
a larger bandwidth unit (e.g. combine two or more wavelengths 
into a single bandwidth unit). Second, we can follow the 
divide-and-conquer approach to break the set of demands into 
subsets, and solve each subset separately using our ILP. 

IV. CONCLUSION 
We proposed a new p-cycle construction algorithm which 

only relies on ILP (Integer Linear Program). Compared to the 
conventional algorithms, it removes the time-consuming 
process for candidate cycle enumeration and pre-selection. 
When the required number of p-cycles is not too large, our ILP 
can generate optimal/suboptimal solutions in reasonable 
amount of running time. 
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Fig. 8.  A capacitated network taken from [23]. 
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