
Title A quorum-based commit and termination protocol for distributed
database systems

Author(s) Huang, CL; Li, VOK

Citation
The 4th IEEE International Conference on Data Engineering, Los
Angeles, CA., 1-5 February 1988. In Conference Proceedings,
1988, 136-143

Issued Date 1988

URL http://hdl.handle.net/10722/158032

Rights Creative Commons: Attribution 3.0 Hong Kong License

A Quorum-based Commit and Termination Protocol
for Distributed Database Systems*

Ching-Liang Huang and Victor O.K. Li

Department of Electrical Engineering
Univesity of Southern California
Los Angeles, CA 90089-0272

Abstract

Correctness and availability are two competing goals in the
design of a fault-tolerant transaction processing strategy for dis-
tributed database systems. To achieve absolute correctness,
availability of data may be reduced when failures occur. In
this paper, a quorum-based commit and termination protocol
is designed with the goal of maintaining high data availability
in case of failures. The protocol proposed is resilient to arbitrary
concurrent site failures, lost messages and network partitioning.
The major difference between this protocol and existing ones is
that the voting partition processing strategy is taken into con-
sideration in the design. By doing so, our protocol is expected
to inaintain higher data availability.

1 INTRODUCTION

A distributed database system supports a database physically
distributed over multiple sites interconnected by a computer net-
work. Compared to centralized database systems, distributed
database systems have at least the following distinctive advan-
tages: (1) copies of data can be replicated in more than one site
to improve performance and availability of the system. By stor-
ing copies of data in sites where they are frequently accessed,
the need for expensive remote access can be reduced. By stor-
ing copies of critical data on processors with independent failure
modes, the probability that at least one copy of the data will be
accessible increases. (2) concurrent execution of multiple trans-
actions at the same time can provide higher system throughput.

However, there are disadvantages also. Maintaining database
correctness in a distributed environment is more difficult due to
failures and synchronization problems. The generally accepted
notion of correctness in a distributed database system is that it
executes transactions so that they appear to users as indivisible,
isolated actions on the database. This property, referred to as
atomic ezecution [4], can be achieved by guaranteeing the fol-
lowing properties: atomic commitment for each transaction and
serialirabdity among all transactions in an environment where
failures may occur. The failure scenarios considered are site

‘This work is supported in part by the Joint Services Electronics Pro-
cram under Contract No. F49620-85-GO071 and by the National Si-irnre
Foundation under Grant No. DCI-8519101.

failures, lost messages, and network partitioning (the network is
partitioned into several disjoint components with no communi-
cation possible between them.) Atomic commitment meansfhat
either all of a transaction’s updates are performed or none are
performed. The execution of a set of transactions is serializable
if it has the same effect as executing the same set of transactions
one at a time in some order.

Atomic commitment is ensured by commit protocols and ter-
mination protocols. A termination protocol is invoked to con-
sistently terminate transactions when failures occur and ren-
der the continued execution of a commit protocol impossible.
Several commit protocols and termination protocols have been
proposed. The two-phase commit protocol (2PC) [9,11] is the
simplest one (Fig. 1). The protocol uses a designated site (-U-
ally the site where a transaction is issued) to coordinate the
execution of the transaction at the other sites (participants). In
the first phase of the protocol, the coordinator distributes the
update values (in Vote-Req messages) to all sites which contah
data items to be updated, and then each site individually votes
on whether to commit (’yes’) or abort (’no’) the transaction.
(An example in which a site may vote ’no’ is when its 1/0 sub-
system fails and it cannot implement the update.) In the second
phase, the coordinator makes a decision on whether the transac-
tion should be committed or aborted based on the responses it
receives from the participants (the transaction can be commit-
ted iff every site votes ’yes’), and informs each site its decision.
Each site will then commit or abort the transaction accordingly
when the coordinator’s decision is received. The termination
(i.e. commit or abort) of a transaction at a site is an irrevocable
operation. I f a transaction is committed (aborted), it cannot be
later aborted (committed).

In the absence of failures, two-phase commit works well.
However, it is blocking under site failures or network partition-
ing. In the protocol, once a participant has voted ’yes’, it cannot
terminate the transaction until it has received the coordinator’s
decision. If the coordinator crashes and fails to send out its
decision, or the network is partitioned and the decision can-
not be delivered, the participants must block the transacton’s
execution and wait for the failures to recover. When a transac-
tion is blocked, locks will be held on data items accessed by the
transaction, rendering those data items inaccessible to the other
transactions.

It has been proved that there does not exist a commit pro-
tocol nonblocking to concurrent site failures and network parti-
tioning [14,17]. Since it is impossible to eliminate blocking, it
is desirable to minimize the reduction in data availability when

CH2550-2/88/0000/0136$01 .oO 0 1988 IEEE

_ _ _ ~ ~ ~ _ _ ~

I36

failures occur. There are two factors that effect the availability
of data items. First, to ensure atomic commitment, data items
locked by blocked transactions are not accessible to the other
transactions. Secondly, to ensure serializability, conflicting oper-
ations issued by transactions executing in different partitions of
the network should be controlled (by partition processing strate-
gies), further reducing the availability of the data. All existing
commit and termination protocols do not take the second fac-
tor into consideration in the design, therefore data availability
is more likely to be reduced by both factors.

In this paper, we propose a quorum-based commit and termi-
nation protocol with the goal of maintaining high data availabd-
ity in case of failures. The protocol proposed has the following
salient features :

(1) It is resilient to arbitrary concurrent site failures, lost
mpcqages and network partitioning.

(2) It does not require the correct identification of the ';nl
ure type and it does not require that the coordinator in each
partition be unique.

(3) It can deal with additional failures that occur during the
execution of the termination protocol, i.e., it is reenterable.

(4) It takes the voting partition processing strategy into con-
sideration in the design. By doing so, we deaease the reduction
in data availability due to failures.

This paper is organized as follows. In section 2, we give
an overview of related work and then describe a problem with
the existing protocols. In section 3, quorum-based commit and
termination protocols are developed. Section 4 gives the proof
of correctness of the protocols. We conclude in section 5 with
some discussions on the protocols proposed.

2 RELATED WORK

The local transaction states of any commit protocol form two
disjoint subsets: the committable states and the noncommit-
table states. A site will occupy a committable state only if all
participating sites have voted 'yes' on the transaction. In [15], a
three-phase commit protocol (Fig. 2) and a termination protocol
were presented. By introducing a buffer state PC (Prepare-to-
Commit) between the wait state (W) and the commit state (C),
there exists no local state adjacent to both the abort state and
the commit state and there exists no noncommittable state ad-
jacent to the commit state, rendering the three-phase commit
protocol nonblocking under site failures.

In [16], a quorum-based commit and termination protocol
is proposed which reduces the probability that a large parti-
tion (one consisting of many participants) will be blocked in the
event of a partitioning. The protocol uses a weighted voting
scheme to resolve conflicts during failures. Each site is assigned
some number of votes. When failures occur, a transaction is
committed only if a minimum number of votes, called a commit
quorum, are cast for committing. Similarily, a transaction will
be aborted only if a mini" number of votes, called an abort
quorum, are cast for aborting. The sum of the commit quorum
and the abort quorum must exceed the total number of votes.

Serializability in nonpartitioned database systems can be
achieved by using concurrency control algorithms [2,6,10,13].
When the database is partitioned, not only must serializability
be ensured in each partition but also across partitions. Several
partition-processing stategies for ensuring serializability in a par-
titioned environment have been proposed [1,3,4,5], [8,12,18,19]

and most of them are based on the observation that a s ac i en t
(but not necessary) condition for serializability is that no two
partitions execute conflicting data operations. Among them, the
voting scheme [8] is the most commonly used. In the scheme,
every copy of each data item is assigned some number of votes.
A transaction must collect r(z) votes of a data item z before it
can read the data item, and collect w(z) votes of a data item
z before it can write that data item. Two constraints must be
satified : (1) r(z) + w(z) > u(z), the total number of votes of
data item z, and (2) w(z) > u(z)/2. The fist constraint ensures
that data read by any transaction wil l contain the most recent
copy. (Version numbers are used to identify the most recent
copy.) It also ensures that a data item cannot be read in one
partition and written in another when the system is partitioned.
The second constraint ensures that two writes on a data item
cannot happen in parallel, or if the system is partitioned, that
writes cannot occur in two different partitions.

The missing writes scheme [5] is an adaptive voting strategy
that improves performance when there are no failures in the
system.

If we use any existing commit and termination protocol to
ensure atomic commitment and use the voting scheme to ensure
serializability, then the correctness of the database can be main-
tained. However, we note that the availability of the data it-
is reduced twice, fist by the commit protocol and the termina-
tion protocol and then by the partition-processing strategy. I f s
transaction is blocked in a partition by the termination protocol,
then even though the partition may have enough votes for some
data items in the writeset of that transaction, those data items
are not accessible in the partition. On the other hand, even
though a transaction is terminated in a partition by the termi-
nation protocol, if the partition does not have enough votes for
some data items in the writeset of that transaction, then those
data items are not accessible in the partition. The following ex-
amples illustrate this point.

EXAMPLE 1 A transaction TR issued at sitel updates data
items x and y. Data item x has copies 21, 22, 23 and 2 4 stored
at sitel , sitez, sites, and site4, respectively. Data item y has
copies 15, y6, y7 and yS stored stored at sites, sites, siter, and
sites, respectively. Suppose the quorum-based commit and ter-
mination protocol [16] is used to ensure atomic commitment and
the voting scheme is used to ensure serializability. Assume the
vote assigned to each site in the quorum-based protocol is 1 with
commit quorum V, = 5 and abort quorum V, = 4 (Vc + V, > 8
= V,, the total number of votes), and the vote assigned to each
copy of x and y in the voting scheme is also 1 with r(x) = r(y)
= 2 and w(x) = w(y) = 3 (The two constraints are satisfied.).
Suppose during the commitment procedure of TR, the coordina-
tor (s i te l) fails and the network is partitioned into three parts:
GI = {s i te l , sitez, sites}, Gz = {sited, sites} and G3 = {s i tes ,
site7, sites}, leaving the local state of sites as PC and all the
other active participants as W (Fig. 3). Since the votes con-
tained in each partition is less than both the commit quorum
and the abort quorum, transaction TR will be blocked in all the
partitions, which causes data item x and y to be inaccessible
in all the partitions even though partition G1 has enough votes
for reading data item x and partition G3 has enough votes for
updating data item y.

137

EXAMPLE 2 Suppose we have the same scenario as Example
1 except that the three-phase commit and termination protocol
is used for ensuring atomic commit. The termination protocol of
the thee-phase commit protocol is designed for dealing with site
failures only, and it dictates that if there exists a site in PC state
or commit state, then the transaction should be committed; else
the transaction should be aborted. Therefore, partition GI and
GJ will abort transaction TR while partition GZ will commit the
transaction, and transaction TR is terminated inconsistently.

not be blocked in the partition by the termination protocol; that
is, i f a partition has enough votes for a data item in the writeset
of a transaction, the termination protocol should either commit
or abort the transaction in the partition. Unfortunately, the
following argument shows that such a termination protocol does
not exist.

When the commitment procedure of a transaction is inter-
rupted by failures, the mutually-exclusive, collectively-exhaustive
partition states that a partition can be in and their correspond-
ing concurrency sets are listed in Fig. 4. By rule 1, PS3 should
be aborted, PSI? should be committed. By rule 2, both PS1 and
P S . should be blocked or aborted since PS3 is in both C(PS1)
and C(PS2); PS5 should be blocked or committed since PS6 is
in C(PS5h PSd should be blocked or terminated consistently

3 THE QUORUM-BASED COMMIT
AND TERMINATION PROTOCOLS

Atomic commitment is ensured by the quorum-based commit
and tennination protocols. The termination protocol is invoked
to correctly terminate a transaction at all active participating
sites (participants) when the normal commitment procedure is
interrupted by failures. When it is invoked, a coordiantor will
first be elected in each partition by an election protocol [7]. In
the following, we will assume that an election protocol is avail-
ability. It should be noted that our protocols do not require the
election of a unique coordinator in each partition.

3.1 THE QUORUM-BASED TERMINATION
PROTOCOLS

with PS2 and PS5. Note that PS2 is in C(PS5) and vice versa.
When a partition G1 has enough votes for some but not all of
the data items in W(TR) of a transaction TR and is in state
PS2 for the transaction, it is possible that some other partition
G2 may have enough votes for some other data items in W(TR)
and is in state PS5 for TIL. As partitions in state PS2 can only
be blocked or aborted and partitions in state PS5 can only be
blocked or committed, it is impossible to terminate TR in both
G1 and G2 even though both of them have enough votes for some
data item in W(TR). This argument can be generalized for any
termination protocol working with any commit protocol.

In spite of the negative result shown above, we expect to
be able to maintain higher data availability if the partition pro-
cessing strategy is taken into consideration in the design of a
termination protocol. The following two solutions follow such
an

In this subsection, we will assume that the commit protocol
used is the three-phase commit protocol. A quorum-based corn-
mit protocol similar to the three-phase commit protocol will
be designed in the next subsection. The quorum-based commit
protocol will help speed up the commitment procedure. S . l . l TERMINATION PROTOCOL 1

This termination protocol consists of three phases. In the first
phase the newly elected coordinator polls the participants of
transaction TR in its partition about their local states, and their
replies determine the action taken in the next two phases. If any

committed at all participants in the partition. any parti,+
pant has aborted or is in the initial state, then transaction TR

1 : w(TR) is the set Of data items in the writeset
of transaction TR.

1 (partition state) The partition state p s of participant has committed, then transaction TR is immediately
a transaction TR in a partition is the set of local states of all
active participants of TR in the partition.

Deflnition 2 (concurrency set) The concurrency set C(PS)
of a partition state PS is the set of partition sfates which may
be concurrent with PS.

To terminate a transaction consistently in all the partitions,
the following rules must be obeyed.

- Rule 1 : Given that Ute partition state of a transaction in a
partition is PS. If C(PS) contains a partition state where at
least one participant is in the commit state, then the partition
should commit the transaction. On the other hand, if C(PS)
contains a partition state where at least one participant is in the
abort state, then the partition should abort the transaction.

- Rule 2 : If a partition has partition state PS for a tmnsac-
tion TR, the partition should either block TR or terminate TR
consistently with all the other Partitions with state PS'for TR,
where PS' is in C(PS).

To minimize the reduction in data availability, we should
design a termination protocol with the following property: if a
partition has enough votes for a data item, that data item will

is immediately aborted at all participants in the partition. Oth-
erwise, the coordinator will attempt to establish a quorum.

We introduce a new state, PA, and a new message, Prepare-
To-Abort. A site will relinquish its right to participate in an
abort quorum by moving to state PC when a commit quorum
is formed and a Prepare-To-Commit message is received. A
site will relinquish its Tight to participate in a commit quorum
by moving to state PA when an abort quorum is formed and
a Prepare-TeAbort message is received. A commit quorum is
possible if at least one participant is in the committable state PC
and the partition has at least W (Z) votes for every data item
z in W(TR) from those participants which are not in state PA.
If this is the case, the coordinator will attempt to move all par-
ticipants in state W (wait) into PC by broadcasting Prepare-To-
Commit messages. Barring additional failures, the coordinator
will then commit the transaction in the partition.

An abort quorum is possible if not all participants in the
partition are in state PC and the partiton has
at least r (z) votes for data item z in W(TR) from those
participants which are not in state PC. If this is the case, the co-
ordinator will attempt to move all participants in state W (wait)
into PA by broadcasting Prepare-To-Abort messages. Barring

I38

additional failures, the coordinator will then abort the transac-
tion in the partition. Note that if a commit quorum is formed
in one partition, then it is impossible for an abort quorum to
be formed in another partition and vice versa. However, several
abort quorums may be formed at the same time.

If there are additional failures and the coordinator does not
receive enough acknowledgement messages, then the termina-
tion protocol will be repeated again. A prototype for termi-
nation protocol 1 is shown in Fig. 5. The longest end-to-end
propagation delay of the network is assumed to be T.

The state transition diagram is given in Fig. 6. Note that
there is no transition between PC and PA. A participant should
ignore PREPARETO-COMMIT messages if it is in PA state
and ignore PREPARETO-ABORT messages if it is in PC state.
These are required to deal with additional failures and the pos-
sibility of more than one coordinators in a partition, each com-
municating with distinct intersecting subsets of the participants.
It can be best explained by a counterexample.

EXAMPLE 8 A transaction TR issued at site 1 updates
data items z and y which have copies 2 2 , 23, 2 4 , 2 5 and yz, y3 ,

y4, ys stored at sites 2, 3, 4, and 5, respectively. Assume the
vote of each copy of both x and y is 1 and w(z) = w(y) = 3, r(z)
= r(y) = 2. Suppose we adopt termination protocol 1. However,
a participant will respond to a PREPARE-TO-ABORT message
when in PC state and respond to a PREPARE-TO-COMMIT
message when in PA state. Suppose during the commitment
procedure of TR, the coordinator fails and the network is par-
titioned into two parts: G1 = {sitel , sitez} and G2 = {sites,
sited, sites}, leaving the local state of sites as PC and all the
other active participants as W (Fig. 7). After the election pro-
tocol, site2 and site3 will be elected as the coordinator of GI
and G2, respectively. However, just before site2 starts collect-
ing local state information, the network recovers, giving rise to
two coordinators in the same partition. Assume that all the
messages between site2 and site3 and from site2 to sites are
somehow lost in the network. So site2 will only collect enough
votes to abort TR and will send out PREPARE-TO-ABORT
messages, while site3 will collect enough votes to commit TR
and will send out PREPARE-TO-COMMIT messages. If a site
is allowed to respond to a PREPARETO-ABORT message in
PC state and to respond to a PREPARE-TO-COMMIT message
in PA state, then site4 will respond to both the PREPARE-TO-
ABORT message and the PREPARE-TO-COMMIT message.
Therefore, site2 will receive enough PA-ACK’s to send ABORT
commands, while site3 will receive enough PC-ACK’s to send
COMMIT commands, and transaction TR is terminated incon-
sist ently.

The following example illustrates that termination protocol
1 can maintain higher data availability than the protocol in [16].

EXAMPLE 4 Suppose we have the same scenario as example
1 except that the three-phase commit protocol and termination
protocol 1 is used for ensuring atomic commitment. Since both
partitions G1 and G3 satifiy the abort quorum in protocol 1,
transaction TR can be aborted in GI and GB. Now data item
x in G I is not blocked any more and GI has enough votes for
reading data x, so I: can be read in G I . Similarly, data item y
can be updated in G3.

3.1.2 TERMINATION PROTOCOL 2

Protocol 2 is the same as protocol 1 except that the criteria for
forming a quorum is different. In this protocol, an abort quorum
is possible if the partition has at least w (x) votes for every data
item z in W(TR) from participants which are not in PC state. A
commit quorum is possible if at least one participant is in state
PC and the partition has at least r (x) votes for data item
z in W(TR) from participants which are not in PA state. A
prototype for this protocol is shown in Fig. 8.

3.2 THE QUORUM-BASED COMMIT PROTO-
COLS

Instead of using the three-phase commit protocol, we can design
a quorum-based commit protocol for each termination protocol
described above. These protocols are similar to the three-phase
commit protocol except that the coordinator can send out com-
mit commands before all the PC-ACKs’ are received (Fig. Q),
thus speeding up the commitment procedure. For commit pro-
tocol 1, the Coordinator only has to wait for w (~) votes of PC-
ACKs’ for every data item x in the write set, because receiving
these PC-ACKs’ ensures that an abort quorum can never be
formed for the transaction anymore. For commit protocol 2,
the coordinator only has to wait for r(x) votes of PC-ACKs’ for
some data item x in the write set for similar reasons. So commit
protocol 2 runs faster than commit protocol 1.

4 PROOF OF CORRECTNESS
In this section, we give the proof of correctness of commit pro-
tocol 1 and termination protocol 1. Similarly, protocol 2 can be
proved.

Lemma 1 If the jirst participant that terminates transaction
TR commits the transaction, then all other participants will ei-
ther commit or block tramaction TR in the termination protocol
when failures occur.

Proof: Let the first participant that terminates transaction
TR be site,. Consider the following two cases:

Case(1): site, is committed by the quorum-based commit
protocol.

In this case, participants which are in PC or commit state
must constitute at least w(x) votes for every data item x in
W(TR) before the termination protocol is executed. For any
given partition, if the local states collected by its coordinator
contains a commit, then the coordinator will send commit com-
mands to all participants in the partition; else there must be
less than r(z) votes for every data item x in W(TR) from par-
ticipants which are not in PC state and the coordinator will
not be able to move any participant to PA state. Therefore, no
Participant in the partition will abort transaction TR.

Case(2): s i t P l is committed by the termination protocol.
In this case, it is impossible to have a partition that con-

tains a participant in the initial state because there must exist
a participant in PC state for site, to be committed. It is also
impossible to have a partition where the coordinator can receive
enough PA-ACK’s from participants weighing a total of at least
r(z) for some data item zin W(TR). This is because before site,
is committed, participants weighing a total of at least w(x) for
every data item z in W(TR) must have been moved to state

139

PC and none of them will respond to a PREPARE-TO-ABORT
message. Therefore, no participant will abort transaction TR.

Q.E.D.
2 If the first participant that terminates transaction

TR aborta the transaction, then all other participants will either
abort or block transaction TR in the termination protocol when
failures occur.

Proofi Let the first participant that terminates transaction
TR be siteb. Consider the following two cases :

Case(1) : siteb is aborted by the quorum-based commit pro-
tocol.

In this case, all other participants of transaction TR must
either be in the abort state, the wait state or the initial state
before the termination protocol is executed. So it is impossi-
ble to have a partition that contains at least one participant in
state PC, which in turn prevents any partition to have a commit
quorum. Therefore, no participant will commit the transaction.

Case(2) : siteb is aborted by the termination protocol.
In this case, it is impossible to have a participant that re-

ceives a delayed commit command because the participants in
the same partition as siteb cannot all be in state PC for siteb
to be aborted. It is also impossible to have a partition where
the coordinator can receive enough PC-ACK's from participants
weighing a total of at least w(z) for every data item sin W(TR).
This is because before siteb is aborted, participants weighing a
total of at least r(z) for some data item z must have been moved
to state PA and none of them will respond to a PREPARE-TO-
COMMIT message. Therefore, no participant will commit the
transaction.

Q.E.D.
Theorem 1 The proposed termination protocol will terminate
transactions consistently under concurrent site failures, lost mes-
sages and network partitioning.

Proofs Follows as a direct consequence of Lemma 1 and
Lemma 2.

Q.1 i

5 CONCLUSIONS

We have presented two quorum-based commit and termination
protocols which are resilient to arbitrary concurrent site failures,
lost messages and network partitioning. By taking the voting
partition processing strategy into consideration in the design,
our protocols are expected to maintain higher data availability
than existing ones. The idea can be generalized to work with
other partition-processing strategies. Protocol 2 is expected to
perform better than protocol 1 because its commit protocol runs
faster, which not only shortens the commitment procedure of
transactions when the system operates normally but also makes
transactions less susceptible to failures.

References

[I] P. A. Alsberg and J. D. Day. A principle for resilient sharing
of distributed resources. In Prw. 2nd IEEE Int. Conf. on
Software Eng., pages 627-644, 1976.

[2] P. A. Bernstein and N. Goodman. Concurrency control in
distributed database systems. ACM Computing Surveys,
13(2):18&221, June 1981.

(31 S. B. Davidson. Optimism and consistency in partitioned
distributed database systems. ACM Tmns. on Database
Systems, 9(3):456481, September 1984.

[4] S. B. Davidson, H. Garcia, and D. Skeen. Consistency in
partitioned networks. ACM Computing Surveys, 17(3):341-
370, September 1985.

[5] D. L. Eager and K. C. Sevcik. Achieving robustness in dis-
tributed database systems. ACM 'lhns. Database System,
8(3):354-381, September 1983.

[6] K. P. Eswaran, J. N. Gray, R. A, Lorie, and I. L. Traiger.
The notions of consistency and predicate locks in a database
system. ACM Communication, 19(11):624-633, November
1976.

[7] H. Garcia-Molina. Elections in a distributed computing ay%
tem. IEEE Tmns. on Computers, C-31(1):48-59, January
1982.

[SI D. K. GifFord. Weighted voting for replicated data. In
Proc. 7th ACM Symposium on Operating Systems Princi-
ples, pages 150-162, 1979.

[9] J. Gray. Notes on database operating systems. In Opemting
System: An Advanced Course, New York Springer-Verlag,
1979.

[lo] H.T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. ACM Trans. on Database Systems,
6(2):213-226, June 1981.

[ll] B. Lampson and H. Sturgis. crash Recovery in a DW-
tributed Storage System. Technical Report, Computer Sci.
Lab., Xerox Parc, Palo Alto, CA, 1976.

[12] T. Minoura and G. Wiederhold. Resilient extended true-
copy token scheme for a distributed database system. IEEE
Tmns. on Software Eng., SE-8(3):173-189, May 1982.

[13] C. H. Papadimitriou. The serializability of concurrent
database updates. Journal of ACM, 26(4):631-653, Octo-
ber 1979.

114) D. Skeen. Crash Recovery in Distributed Database System.
PhD thesis, Dept. of EECS, University of California, Berke-
ley, May 1982.

[15] D. Skeen. Nonblocking commit protocols. In SIGMOD Int.
Conf. on Management of Data, pages 133-142, 1981.

[16] D. Skeen. A quorum-based commit protocol. In Proc. 6th
Berkeky Workshop, pages 69-80, February 1982.

[17] D. Skeen and M. Stonebraker. A formal model of crash
recovery in a distributed system. IEEE Trans. on Software
Eng., SE-9(3):219-228, May 1983.

[18] D. Skeen and D. Wright. Increasing availability in par-
titioned networks. In Proc. 3rd ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems, pages 290-
299, 1984.

[19] M. Stonebraker. Concurrency control and consistency of
multiple copies in distributed ingres. IEEE h n s . on Soft-
ware Eng., SE-5(3):188-194, May 1979.

Cmrdin.lor

e 1

Site i
(participant)

0 0 0 I

request

WUeSl

vote-req .__ vote-req.

pc-a&, -- pc-ackn
commit*-. -commit. 1 sit. I

(participant)

v o t e - r A z ; q t yesi

aborti
Fig. 2 The Three-phase Commit Protocol.

(Adaptive from Dale Skeen 115).)

Fig. 1 The Two-Phase Commit Protocol.

.. ...-
iartition

preparei

Id
crash

Fig. 3 Figure for Example 1.

---+ , . .
, indicates a path taken when a site does

not participate in the formation 01 the
quorum. - : indicates a path taken when a site
participates in lhe formation of the
w o n "

Fig. 6 State Transition Diagram for
the Termination Protocol.

Coordinator

PSI ' at least one participant in the partition is in the
Q (initial) state and no participant in the p
is in the A (abort) state.

PS2 : ail particiappnts in the partition ere in the W (wait)

PSI : et least one participant in the Dartition are in the crashes

state
Coordinator

A state.

P s 4 : some participants in the partition are in the PC
state, some participants are in the W state.

PS5 : ail participants in lhe paenition are in the PC state

PS6 : at least one participant in the partition is in the Fig. 7 Figure for Example 3.
C (commit) state. ~ I w (h . p u (i d p u " ~ ~ u 3 P c .

Fig. 4 The Concurreny Sets of Partitioin States. Fig. 9 The Quorum-Based Commit Protocol.

141

PROTOCOL 1 PROTOTYPE

COORDINATOR

Phase 1

Request local states from all reachable participants

Phase 2

PARTICIPANTS‘ RESPONSES

- i f (2 1 commit state) OR (there are at least w(x) votes
for every data item x in W(TR) from participants in PC state)

- elseif (2 1 abort state or initial state) OR (there are
at least r(x) votes for some data item x in W(TR) from par-
ticipants in PA state)

- elseif (there exists a participant in PC state) AND (there
are at least w(x) votes for every data item x in W(TR) from
participants not in PA state)

- elseif
x in W(TR) from participants not in PC state)

(there are at least r (x) votes for some data item

- else

COORDINATOR‘S ACTIONS

send COMMIT commands to all reachable participants ;
terminate ;

send ABORT commands to all reachable participants ;
terminates ;

send PREPARETO-COMMIT to all participants in W state ;
continue with (3s) ;

send PREPARETO-ABORT to all participantr in W state ;
continue with (3b) ;

block ;

. ,
if

then - else

(the participants which reply PC state in phase 1 and the participants which reply PC-ACK within
the timeout period 2T in phase 2 constitute at least w(x) votes for every data item x in W(TR))
send COMMIT commands to all reachable participants ;
start the election protocol ;

-

(3b)
iJ (the participants which reply PA state in phase 1 and the participants which reply PA-ACK within

the timeout period 2T in phase 2 constitute at least r(z) votes for some data item x in W(TR))
&&E send ABORT commands to all reachable participants ;
e& start the election protocol ;

PARTICIPANTS

EVENTS

(1) receive a request for local state of TR

(2) receive PREPARE-TO-COMMIT for transaction
TR

(3) receive PREPARETO-ABORT for transaction
TR

PARTICIPANTS’ ACTIONS

send the local state of TR

- if - then
(TR is not in PA or Commit state)
enter PC state for transaction TR ;
send PC-ACK back to the coordinator;

(TR is not in PC or abort state)
enter PA state for transaction TR ;
send PA-ACK back to the coordinator ;

- if - then

(4) receive COMMIT command for transaction TR

(5) receive ABORT command for transaction TR

(6) time out

commit transaction TR and then terminate ;

abort transaction TR and then terminate ;

start the election protocol ;
(* Occurs when the participant does not receive a response
from the coordinator within 3T after sending a message to
the coordinator *) Fig. 5 The Termination Protocol 1.

142

PROTOCOL 2 PROTOTYPE

Phase 1

Request local states from all reachable participants

ICIPANTS’ RESPONSES

g (2 1 commit state) OR (there are at least r(x) votes
for some data item x in W(TR) from participants in PC state
1
elreif (2 1 abort state or initial state) OR (there are
at least w(x) votes for every data item x in W(TR) from par-
ticipants in PA state)

elseif (there exists a participant in PC state) AND (there
are at least r(x) votes for some data item x in W(TR) from
participants not in PA state)

-

-

elseif
I: in W(TR) from participants not in PC state)

(there are at least w(x) votes for every data item -

COORDINATOR‘S ACTIONS

send COMMIT commands to all reachable participants ;
terminate ;

send ABORT commands to all reachable participants ;
terminates ;

send PREPARE-TO-COMMIT to all participants in W state;
continue with (3a) ;

send PREPARE-TO-ABORT to all participants in W state ;
continue with (3b) ;

block ;

Phase 3

(34
g (the participants which reply PC state in phase 1 and the participants which reply PC-ACK within

the timeout period 2T in phase 2 constitute at least r(x) votes for some data item x in W(TR))
send COMMIT commands to all reachable participants ;
start the election protocol ; - else

(3b)
(the participants which reply PA state in Phase 1 and the participants which reply PA-ACK within
the timeout period 2T in phase 2 constitute at least w(z) votes for every data item x in W(TR))

then send ABORT commands to all reachable participants ; - else start the election protocol ;

PARTICIPANTS

SAME AS TERMINATION PROTOCOL 1.

Fia. 8 The Termination Protocol 2.

143

