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A TERMINATION PROTOCOL FOR SIMPLE NETWORK PARTITIONING 

IN DISTRIBUTED DATABASE SYSTEMS 1 

Ching-Liang Huang and Victor O.K. Li 

Department of Electrical Engineering 

University of Sout hern California 
Los Angeles, CA 90089-0272 

ABSTRACT 

Resilient commit protocols for multi site simple 
network partitioning are studied in this paper. The 
necessity of termination protocols to make commit 
protocols resilient in multisite simple network partitioning 
is presented. A termination protocol that makes the three­
phase commit protocol resilient is designed. This protocol 
Is valid even for transient network partitioning. The 
method can be generalized to design termination protocols 
for other commit protocols in multisite simple network 
partitioning. 

1. Introduction 

A distributed database system enjoys the potential 
advantage of providing higher availability and reliability. 
However, this advantage cannot be achieved unless 
database consistency is guaranteed in the event of failures. 
Several commit protocols have been proposed 
[1, 2.4, 5, 6, 71 to achieve transaction atomicity in the 

event of site failures for any number of participating sites, 
and network partitioning for two participating sites. But 
none of them are resilient in multi site network partitioning, 
in which the number of participating sites is more than 
two. 

A termination protocol is a protocol that is invoked 

to consistently terminate transactions when failures occur 
and render the continued execution of a commit protocol 
impossible. In this paper, the necessity of termination 
protocols to make commit protocols resilient in multisite 
simple network partitioning is presented. A termination 
protocol that makes the three-phase commit protocol 
resilient is designed and the proof of its correctness is 
given. The protocol is valid even for transient network 
partitioning. This method may be generalized to design 
termination protocols for other commit protocols in 
multisite Simple network partitioning. 

1ThiS research is supported in part by the Joint Services 
Electronics Program under Contract No. F49620-85-
C-0071, and in part by the National Science Foundation 
under Grant No. DC18519101. 
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2. Background 

A distributed database system supports a database 
physically distributed over multiple sites interconnected by 
a computer network. In such a system, there may be more 
than one site participating in a transaction. Since, by 
definition, a transaction is a logically atomic operation, to 
maintain database correctness, transaction atomicity must 
be enforced. That is, for any given transaction, either the 
transaction is processed to completion at all participating 
sites or it appears to have never been executed at all. 

Preserving transaction atomicity in the single site 
case is a well understood problem [1, 3). When the site 
has finished processing the transaction but has not yet 
updated the database, it will decide to commit or abort the 
transaction (possibly by asking the user). If a commit 
decision is made, a commit log which contains the current 
state of the transaction (e.g. the update information) will be 
stored in stable storage, and. then the site will start 
committing the transaction.. If failures occur at any time 
before the commit log is stored, then immediately upon 
recovery the site will abort the transaction. If failures 
occur after the commit log is stored but before the 
updates are finished, all the updates will be applied again 
when the site recovers. Because update operations are 
idempotent (i.e. performing them several times is 
equivalent to performing them once), the above scheme 
ensures the atomicity of the transaction. 

In the multiple site case, the problem of guaranteeing 
transaction atomicity is much more difficult because of 
arbitrary site failures and partitioning of the computer 
network. To ensure transaction atomicity in this case, each 
participating site performs either all or none of the updates 
locally. In addition, all the sites should make the same 
decision with respect to committing or aborting the 
transaction. 

Protocols for preserving transaction atomicity are 
called commit protocols. Several commit protocols have 
been proposed [1, 2, 4, 5, 6, 7J. The two phase commit 
protocol [1, 21 is the simplest one (Fig. 1). It is a 
centralized protocol with a single master and with the 
remaining participating sites acting as slaves. A 

participating site can be in one of the following four states 



: the initial state (q), the wait state (w), the commit state 
(c) and the abort state (a). The first phase of the protocol 
begins when the master receives the transaction ("request") 
and forwards it to the slaves eXact"). When a slave 
rece ives the transaction, it will partially execute the 
transaction and send its intent to commit ("yes") or 
unilaterally abort ("no") the transaction. The second phase 
begins when the master receives all the responses from 
the slaves. If all the participating sites agree to commit 
the transaction, then the master will send out commit 
commands ("commit") to the slaves, else it wil l send out 
abort commands ("abort"). When a slave receives the 
command, it will act accordingly. 

The two phase commit protocol is simple. However, 
if the master fails and all the operating slaves are in the 
wait state, the slaves cannot make any decision to commit 
or abort the transaction (because the master can be in 
either the commit state or the abort state) and therefore 
must block the transaction until the failures recover. Even 
though blocking preserves database consistency, it is 
highly undesirable because the locks acquired by the 
blocked transaction cannot be relinquished, rendering those 
data inaccessible to other transactions. In [4], non blocking 
commit protocols were studied, and a three-phase commit 
protocol and a termination protocol were presented which 
are non blocking under site failures. Network partitioning 
was studied in [71 and some definitions and results from 
that paper are reviewed next. 

A formal model is used to describe commit protocols. 
Transaction execution at each site is modelled as a finite 
state automaton (FSA), with the network serving as a 
common input/output tape to all sites. The states of the 
FSA for site i are called the local states of site i. The 
global state of a distributed transaction consists of (') a 
global state vector containing the local states of the 
participating sites, (2) the outstanding messages in the 
network. During a global state transition, there is exactly 
one local state transition, which involves a site reading a 
nonempty string of messages addressed to it, writing a 
string of messages, and moving to the next local state. 

A commit protocol is resilient to a class of failures 
only if the protocol enforces transaction atomicity and is 
nonblocking for any failure within that class. 

Network partitioning is divided into two classes: 

1. simple partitioning in which the sites are partitioned 
into exactly two sets with no communication 
between the sets. 

2. multiple partitioning in which the sites are partitioned 
into more than two sets. 

Two models are considered for network partitioning: 

,. pessimistic model where all messages are lost at the 
time partitioning occurs. 
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2. optimistic model where no messages are lost at the 
time partitioning occurs ; instead, undeliverable 
messages are returned to the sender. 

Some results on the existence of resilient commit 
protocols for network partitioning have been developed. 

Theorem: There exists no protocol resilient to a network 
partition ing when messages are lost. 

Theorem: There exists no protocol resilient to a multiple 
network partitioning. 

For two-site simple pa rt itioning with return of 
messages (optimistic model), some results have been 
derived. 

Definition: Concurrency Set C{s) Let s be an arbitrary 
local state of a commit protocol P. The 
concurrency set of s is the set of all local 
states that are potentially concurrent with it in 
the execution of P. 

Definition: Sender Set S{s) Let s be an arbitrary local 
state of a commit protocol p, and let M be the 
set of messages that can be received by s in 

the execution of P. S{s) = { t i t sends m, m e: 

M } 

Two rules are defined for designing resilient commit 
protocols for two-site simple partitioning with return of 
messages. 

Rule{a): For a state si: if its concurrency set, C{si)' 
contains a commit state, then assign a timeout 
transitio n  from si t o  a commit state; else assign 
a timeout transition from si to an abort state. 

Rule{b): For state sf if ti is in S{Sj) and ti has a timeout 
transition to a commit (abort) state, then assign 
an undeliverable message transition from Sj to a 
commit (abort) state, upon the receipt of an 
undeliverable message. 

Using the above two rules, an extended two-phase 
commit protocol augmented with timeout transitions and 
undeliverable message transitions is derived (Fig . 2). It has 
been proved that these two rules are necessary and 
sufficient for making protocols resilient to two-site simple 
partitioning with return of undeliverable messages [7]. 

3. Moti\lation 

The extended two-phase commit protocol shown 
above works correctly in optimistic two-site Simple 
partitioning; however. we note that it does not work in the 
multisite case by the following observation: 

Consider a transaction with three participating sites 
where site, is the master. Suppose a partitioning occurs 



with a global state vector of < P, ,w2,w3 > and outstanding 
messages < - ,commit2,commit3>' i.e. the master is in the 
prepare state, the slaves are in the wait state and the 
master has sent out commit messages. If the partitioning 
causes site3 to be separated from site, and site2' and 
commit3 undeliverable, then site2 will receive commit2 and 
commit while site3 will make a timeout transition and 
abort. 

The e xtended two-phase commit protocol does not 
work in the multi site case due to the following facts: 

,. The wait state (w) of a slave contains both a commit 
and an abort in its concurrency set. 

2. There exists a local state (the wait state of a slave) 
that is noncommittable and contains a commit in its 
concurrency set. 

( A local state is called committable if occupancy of that 
state by any site implies that all sites have voted yes on 
committing the transaction. Otherwise, it is called 
noncommittable [4]. ) 

From the above observations, we get the following 
lemmas. 

Lemma 1: A commit protocol P can be made 
resilient to optimistic multisite simple network partitioning 
only if there does not exist a local state s in P, such that 
the concurrency set of s contains both a commit and an 
abort state. 

Proof: Assume there exists a local state s of sitei 
that contains both a commit and an abort in its 
concurrency set C(s). If sitei is separated from the other 
participating sites by the network partitioning when it is in 
state s and it has not obtained any information about 
whether the other sites commit or abort the transaction, 
then as long as the network is partitioned, sitei cannot tell 
whether the other sites commit or abort the transaction. 
Therefore sitei must be blocked; else no matter whether 
sitei commits or aborts the transaction before the network 
recovers, the database would probably become 
inconsistent. 

Q.E.D. 

Lemma 2: A commit protocol P can be made 
resilient to optimistic multisite simple network partitioning 
only if there does not exist a local state s, such that s is 
noncommittable and the concurrency set of s contains a 
commit state. 

Proof: Assume there exists a local state of sitei that 
is noncommittable and contains a commit in its 
concurrency set. If sitei is separated from the other 
participating sites by the network partitioning when it is in 
state s and all messages addressed to sitei become 
undeliverable, then sitei should not commit because it 
cannot ensure that all the other participating sites agree to 
commit. However, sitei should not abort either because 

457 

some participating site may have committed already. 
Therefore, site i must be blocked. 

Q.E.D. 

The two lemmas above is similar to the Fundamental 
Nonblocking Theorem in [4] which considers site failures 
instead of network partitioning. 

The three-phase commit protocol [4] (Fig. 3) satisfies 
both Lemma' and Lemma2; however, we found that 
augmenting this protocol by timeout transitions and 
undeliverable message transitions using Rule(a) and Rule(b) 
shown in Sec. 2 does not make it resilient to optimistic 
multisite simple network partitioning by the following 
observation: 

Consider a transaction of three participating sites 
where site2 and site3 are slaves, and abort e: C(w3)' 
commit e: C(P2)' P2 e: C(w3)' By Rule(a), the timeout 
transition from w3 should go to the abort state and the 
timeout transition from P2 should go to the commit state. 
If si te3 is in state w3 waiting for prepare3 and site2 is in 
state P2 waiting for commit2 when partitioning occurs 
which renders prepare3 undeliverable, then site3 will 
timeout and abort while site2 will timeout and commit. 
Therefore, the database becomes inconsistent. 

4. Necessity of termination protocol 

The three-phase commit protocol is the simplest 
commit protocol that satisfies both Lemma' and Lemma2. 
However, it cannot be made resilient to optimistic multi site 
simple network partitioning by simply augmenting it with 
timeout and undeliverable message transitions. If we add 
some more phases to our commit protocol, will timeout 
and undeliverable message transitions be sufficient to make 
the protocol resilient? The following lemma yields a 
negative answer. 

Lemma 3: If a commit protocol is not resilient to 
optimistic multisite simple network partitioning, then 
timeout transitions and undeliverable message transitions 
are not sufficient for making it resilient. 

Proof: It has been proved that protocols in which 
each state transition reads at most one message are 
equivalent in power to more general protocols that read an 
arbitrary number of messages per state transition [6]. 
Therefore, we only consider protocols of the first type in 
this proof. 

Assume network partitioning will cause all 
outstanding messages transmitted in the network at the 
time of partitioning between pairs of sites located in 
different partitions to be returned to the senders, i.e. Let 
mij be the message sent by sitei to sitej' If sitei and sitej 
are located in different partitions and mij are outstanding 
when partitioning occurs, then mij will be returned to sitei. 

Suppose the network is divided into two partitions: 



01 and 02' We can always name the participating sites of 
a transaction such that all the sites in 0, precede all the 
sites in 02' i.e. sitei is in 01 for 1 �i �k, site · is in 02 for 
k+1 �j �n where n is the number of particip�ting sites, n 
> 2, and 1 �k <: n. 

Assume there exists a commit protocol P that is not 
resilient to optimistic multi site simple network partitioning 
and can be made resilient by augmenting it with only 
timeout and undeliverable message transitions. let HO H 1 

HC be the global state sequence of a failure-free 
execution of P that commits a transaction. 

let Hi = ( Si, Mi ) where the global state vector 
Si=(sl

i, " ', Sn
i
), and the outstanding messages: 

mk,l 
i ... 

mk+1,1 
i ... 

i i m',k m1,k+1 

mk,k 
i mk, k+1 

i 

mk+ 1 ,k 
i mk+1,k+1 

mk,n 
i 

i mk+1,n 
i 

... 

... 
mn,n i 

mp,q
i is the set of outstanding messages in t�e network 

sent by sitep to siteq when the global state is H'. 

let UD(mp,q
�) d�note �he . set of undeliverable 

messages of m
p,q

' , tt' 
=( S', �') be the global state 

resulting from a partitioning that occurs during global state 
Hi

. 

m',k i 4> 4> 

Xk,k 
i 4> 4> 

4> Xk+l,k+1 
i mk+1,n 

i 

4> mn,k+1 
i Xn,n i 

where �.fi = mf,fi U UD(mf k+1 i) U ... U UD(mf nil 

for f = 1 to k 

U 

for f = k+ 1 to n 

Let �ji = COLUMNj( �
i 

). 

Suppose Fj is the transition function tha� m.oves sitej 
to a final state during partitioning, i.e. Fj(Sj

"�i
' 

) is the 
r�sulting final state of sitej when partitioning occurs dur ing 

H'. 

let r be the smallest i such that a simple partitioning 
which occurs while the transaction is in Hi results in the 
transaction being committed, i.e. Fj (S( �{) = comm it for j 
= 1 to n .  By the choice of r, we have F.(s.r-1, M.r-1) � 

brtf 'l f h 
' "  II -I 
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a 0 or ,= to n or t e same part,t,onlng. 

let the global transition from Hr-1 to Hr be made by 
sitep reading a message uqp sent by site

q 
and sending 

some (nul l or nonnul I) messages { up1 ... upn}' Therefore, 

Mr = Mr-1 4> 4> + 4> 4> 

We consider the following fou r cases : 

(1) 1 � q � k, 1 � P � k 

then �{= �r' 
for k+1 � j � n 

(2) 1 � q � k , k+ 1 � P � n 

then M.r 
= 

M.r-1 for 1 _< j _< k, I' � q 
- J - I 

(3) k+1 � q :::- n , 1 � P � k 

then tl-{= �r' for k+1 � i � n ,  i �q 

(4) k+1 � q � n, k+l � P � n 

then M·r = M .r-
1 for 1 < j <: k - J - J - -

Since only sitep makes a transition during the global 

transit ion from Hr-1 to Hr ' s{ = s{-l 
for j F p. So in all 

cases, there exists a sitej such that s{ = s{-l and tl-{"' 
�r 1 Hence, Fj(s{-

l , tl-r 1) = Fj(S( tl-{ ) which is a 

contradiction. 

Therefore, there does not exist such a protocol P. 
Q.E.D. 

5. A termination protocol for three-phase commit in 

multisite simple network partitioning 

Since timeout transitions and undeliverable message 
transitions are not sufficient to make commit protocols 
resilient to multi site simple partitioning, we need to invoke 
another protocol to consistently terminate the transactions 
when partitioning occurs. This protocol is called a 
termination protocol. In this section, we present a 
terminat ion protocol that makes the three-phase commit 

protocol resilient to opti mistic multisite simple network 
partitioning. 



5.1. Assumptions 

We make several assumptions for the following 
discussion: 

1. all undeliverable messages due to network 
partitioning are returned to the sender. 

2. there is no subsequent network partitioning before all 
the transactions affected by the previous partitioning 
have terminated, i.e. there is no multiple network 
partitioning. 

3. network partitioning and site failures never occur 
concurrently. 

4. masters never fail. 

5. once the network is partitioned, it will remain in the 
partitioned state until all the transactions affected by 
the partitioning have terminated, i.e. there is no 
transient network partitioning. 

Assumption 5 simplifies the problem but will be relaxed 
later. 

5.2. Approach to the problem 

Denote the two partitions of the network G" G2 and 
the boundary between them B (Fig. 4). A site can tell 
whether partitioning has occurred or not by having a 
timeout or receiving an undeliverable message. Note, 
however, that a site does not know which partition it is in 
and where the boundary is. For a particular transaction, let 
G, be the partition in which the master is located. The 
basic ideas for solving the problem are as follows : 

,. Slaves in G2 will commit iff there is at least one 
prepare message flowing through boundary B before 
partitioning occurs. If there exists such a prepare 
message, then the master can commit all the slaves 
in G, and the slave ( or slaves, since there may be 
more than one) in G2 that receives the prepare 
message will be responsible for committing all the 
slaves in G2. 

2. If partitioning occurs when the master is in w, state 
waiting for "yes" and if the master times out 
eventually, then the master can safely abort all the 
slaves in G, since no prepare messages have been 
generated and none of the slaves in G2 will commit. 

3. If partitioning occurs when the master is in p, state 
waiting for "ack" and if the master times out 
eventually and there is no undeliverable prepare 
message returned, then the master can safely commit 
all the slaves in G, since we are sure that all the 
slaves will receive the prepare message and all the 
slaves in G2 will commit. 

4. If partitioning occurs when the master is in P, state 
and there is at least one undeliverable prepare 

message returned to the master, then the master can 
tell whether there is at least one prepare message 
flowing through boundary B before partitioning 
occurs by the following rules : 

a. When a slave times out in p(prepare) state, it 
will send a probe message: probe(trans _id, 
slave _id) to the master. 

b. !! the probe messages that the master received 
are sent bV exactly those slaves that do not 
have an undeliverable prepare message 
returned to the master then there is no prepare 
message flowing through boundary B and the 
master can safely abort all the slaves in G,; 
else there is at least one prepare message 
flowing through boundary B and the master can 
safely commit all the slaves in G,. 

5. If partitioning occurs when the master is in p, state 
and there is at least one undeliverable prepare 
message returned to the master, then all the slaves 
in G, will time out in p state eventually. 

6. A slave which has received a prepare message can 
tell that it is in G2 by (') receiving a returned 
undeliverable "ack" message, or (2) receiving a 

returned undeliverable probe message. Such a slave 
will commit all the slaves in G2· 

5.3. The termination protocol 

In this subsection, we describe the termination 
protocol by specifying the actions to be taken when 
timeout occurs or an undeliverable message is received in 
each state. 
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Notations 

abort,_n: { abort" "', abortn } 

commit'_n: {commit" ... , commitn } 

UD( msg ): the corresponding undeliverable message 
of msg. 

PB: the set of slaves from which the master 
has received probe messages. 

UD: the set of slaves to which the prepare 
messages sent by the master are 
undeliverable. 

T: the longest end-to-end network 
propagation delay. 

N: the set of sites participating in this 
transaction = {', 2, .. " n }. 



wl --- (1) timeout: send abort 1-n 

(2) undeliverable Xact: send abortl_n 

Pl --- (1) timeout: send commitl_n 

(2) undeliverable preparei: 

UD :" { i } ; 
PS:= <P; 
reset timer 5T ; (Fig. 6) 

xx: wait(event) ; 

case of event { 

receive UD(preparej): 

UD := UD + {j} ; 
goto xx; 

receive probe(trans-id, slavej): 

PS := PS + {j} ; 
goto xx; 

timeout: if( N - UD = PS) 

} 

Slaves ( i= 2 to n ) 

then send abortl_n 
else send commit1_n 

wi --- (1) timeout: reset timer 6T ;(Fig. 7) 
wait(event) ; 
case of event { 

receive a commit: commit; 

receive an abort: abort; 

timeout: abort 
} 

(2) undeliverable yesi: 
send abortl_n ; 

Pi --- (1) timeout: send probe(trans-id, slavei) ; 
wait(event) ; 
case of event { 

receive UD(probe): send commit'_n 

receive a commit: commit; 

receive an abort: ahort 

} 
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(2) undeliverable Acki: 
send commit'_n ; 

Unfortunately, there is still a fly in the ointment. 
Consider the following scenario : let sitei and sitej be two 
of the sites in G2' Sitei receives a prepare message, sends 
out an "ack" message and receives a returned undeliverable 
ack message. Sitej receives no prepare message and waits 
in state w. It is possible that while sitej receives a commit 
sent by sitei' sitej is still in state w and has not timed out 
yet; therefore, sitej will not respond to this commit 
message. This may cause a serious problem because the 
commit message could be the only commit message sitej 
will ever receive. If it misses this message, after it times 
out in state w and waits for 6T, it will abort the 
transaction. To deal with this problem, we can add one 
transition from state w to state c when receiving a commit 
message to the slaves' three-phase commit protocol (Fig. 
8). 

5.4. Proof of Correctness 

In this subsection, we give a formal proof of 
correctness of the termination protocol. 

FACT1: A slave in G2 will commit only i f  
(1) it receives a commit from the master, 
(2) it times out in wi ' and then receives a commit, 
(3) it times out in Pi ' and then receives an UD(probe), 
(4) it times out in Pi ' and then receives a commit, 
(5) it receives an UD(acki) in Pi' Q! 
(6) it receives a commit from some slave in G2 while it  

is in state w or state p. 

FACT2: A site in G1 will commit only i f  
(1) the master makes a transition from Pl t o  cl and 

sends out all the commits, 
(2) the master times out in P, and sends out all the 

commits, or 
(3) the master receives an UD(preparei)' finds that 

N - UD -F PS and sends out all the commits. 

lemma 4: N - UD -F PS occurs only if at least one 
slave in G2 receives a prepare message. 

Proof: The master will check whether N - UD " PS 
only if it sends out all the prepare messages and receives 
an UD(prepare) message. Therefore, all the slaves in Gl 
will receive prepare messages. 

If none of the slaves in G2 receives a prepare 
message, then only those slaves in G1 receive prepare 
messages. The slaves in Gl will time out and send probe 
messages which will be received by the master. Therefore, 
N - UD = PS = set of all slaves in G,. 

Q.E.D. 

Lemma 5: A slave in G2 �ommits ill all slaves in G2 
commit. 



Proof: "if": trivial. 

"only if" : Let the slave in G2 that commits be sitei· 

By FACT1, we know that there are only six possible cases. 

(case'): sitei receives 1! commit from the master. In 
this case, the master must have received all the "ack"s, 

made a transition from P, to c, and sent out a l l  the 

commits. Therefore, for any sitej in G2 either it wi1l. t�e 

out in p. or commit in Cj. If it times out in Pj' then It will 
eventua�y receive the returned UD(probe) message a nd 

commit all the sites in G2· 

(case2): sitei times out i.!l '!!it .and then receives! 

commit. Since sitei is still in wi' the commit it receives 

must come from some SlaVej in G2. When a slave in G2 
sends out commits (after receiving an UD(probe) or UD(ack) 
), It will send to all the slaves in G2. Therefore, all the 
slaves in G2 will commit. 

(case3): sitei times out i.!l 14 and then receives an 
UD(probe). When sitei receives a UD(probe), it will send 
commits to all slaves in G2; therefore, all slaves in G2 will 
commit. 

(case4): sitei times out i.!l 14 and then receives 1! 
commit. Since sitei receives a commit after it times out in 
Pi' this commit message must come from some slave in 
G2. By the same argument as (case2), all slaves in G2 will 
commit. 

(caseS): sitei receives an UD(acki) i.!l 14. When sitei 
receives an UD(acki), it will send commits to all slaves in 
G2; therefore, all slaves in G2 will commit. 

(case6): sitei receives 1! commit from some slave iD. 
Qa while IT l.§. i.!l state If'{ or state p. By the same argument 
as (case2), all slaves in G2 will commit. 

Q.E.D 

Lemma 6: A site in G, commits ill all sites in G, 
commit. 

Proof: "if"; trivial. 

"only if" ; By FACT2, if a site in G, commits, then all 
sites in G, will commit. 

Q.E.D. 

Lemma 7: A slave in G2 receives a prepare message 
ill all slaves in G2 commit. 

Proof: "if": trivial. 

"only if" ; Let the slave in G2 that receives a prepare 
message be sitei. There are three possible cases. 

(case') sitei receives 1! commit too. By LemmaS, all 
the slaves in G2 will commit. 

(case2) sitei times out i.!l 14· Sitei will probe the 

master and eventually it will receive the returned UD(probe) 
or a commit sent by some slave in G2 and commit. By 
LemmaS, all slaves in G2 will commit. 
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(case3) sitei receives an UD(acki). Sitei will send out 
commits to all slaves in G2; therefore, all slaves in G2 will 
commit. 

nE.D. 

lemma 8: A slave in G2 receives a prepare message 
jff all sites in G, commit. 

Proof: "only if" ; Let the slave in G2 that receives a 
prepare be sifei. Since sitei has received a prepare 
message, the master must be in P, or Cl. If the master is 
in Cl' then all the sites in G, will commit by Lemma6. 

If the master is in P" there are two cases to be 
considered. 

(case'): The master times out i.!l14. The master will 
commit and send commits to all the slaves; therefore, all 
sites in G, will commit. 

(case2): The master receives an UD(prepare} message. 
Since sitei ' located in G2, has received a prepare message 
and the master can only receive the probes sent by slaves 
In G" the master will find that the set of slaves that probe 
it does not equal to the set of slaves that have received 
prepare messages. Therefore, the master will send 
commits to all slaves in G, and all of them will commit. 

"if" ; By FACT2, there are three cases to be 
considered. 

(case'): The master makes 1! transition from 14 !Q f+ 
and sends out !ill the commits. Since the master will make 
a transition from p, to c, only if it has received all the 
Hack" messages, all the slaves must have received the 
prepare message. 

(case2): The master times out i.!l 14 and sends out all 
the commits. Since the master will time out in p, only it 
all  the prepare pessages are deliverable, all the slaves must 
have received the prepare message. 

(case3): The master receives an UD(prepare} message, 
finds that N = UD t PB and sends out all the commits. By 
Lemma4, there exists a slave in G2 which has received a 
prepare message. 

Q.E.D. 

Theorem 9: The termination protocol makes the 
three-phase commit protocol resilient to optimistic 
multisite simple network partitioning. 

Proof: By Lemma5 to Lemma8, we know that 



(1) a slave in G2 commits implies all the slaves in G2 
commit which implies a slave in G2 receives a prepare 
message which means that all sites in G1 commit. 

(2) a site in G 1 commits implies all sites in G 1 
commit which implies a slave in G2 receives a prepare 
which means that all slaves in G2 commit. 

Therefore, the three-phase commit protocol becomes 
resilient to optimistic multisite simple network partitioning. 

Q.E.D. 

In fact, the basic ideas used in designing the above 
termination protocol can be applied to design termination 
protocol for any master-slave type commit protocol that 
satisfies Lemmal and Lemma2. 

Theorem 10: A commit protocol can be made 
resilient to multisite simple network partitioning if the 
following conditions are satisfied: 

1. there exists no local state that has both a commit 
and an abort in its concurrency set. 

2. there exists no local state that is noncommittable and 
has a commit in its concurrency set. 

3. undeliverable messages are returned to the senders. 

4. there is no concurrent network partitioning and site 
failures. 

5. masters never fail. 

Proof: For any commit protocol that satisfies 
conditions (1) and (2), the only adjacent states of a commit 
state. must be committable states and these committable 
states cannot be adjacent to an abort state. To commit a 
transaction in such a protocol, there exists a message sent 
by the master for a slave to make a transition from a 
noncommittable state to a committable state. Let this 
message be "m". We can use the ideas listed in Sec. 5.2 to 
design a termination protocol for this commit protocol in 
an environment that satisfies conditions (3), (4) and (5) by 
substituting "m" for "prepare". 

Q.E.D. 

6. Transient Network Partitioning 

A network partitioning is transient if the network 
recovers before all the transactions affected by the 
partitioning have terminated. In the previous discussion, 
we assume that transient network partitioning never occurs 
in order to simplify the discussion. In this section, we will 
relax this assumption. 

If we take transient network partitioning into 
consideration, we can enumerate all the possible cases of 
network partitioning as follows: 
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(1) no prepare messages pass boundary B. 

(2) some prepare messages pass B, some prepare 
messages do not pass B. This case can be divided 
into the following two cases : 
(2.1) some ack messages do not pass B. 
(2.2) all the ack messages sent by those sites in G2 

which receive prepare messages pass B. 
This case can be further divided into the 
following two cases for transient network 
partitioning: 
(2.2.1) network recovers at a point in time such 

that some probe messages do not pass B. 
(2.2.2) network recovers at a point in time such 

that all the probe messages sent pass B. 

(3) all the prepare messages pass B. 
This case can be divided into the 
following two cases: 
(3.1) some ack messages do not pass B. 
(3.2) all the ack messages pass B. 

This case can be further divided into the 
following two cases: 
(3.2.1) all the commit messages pass B. 
(3.2.2) some commit messages do not pass B. 

This case can be further divided into the 
following two cases for transient network 
partitioning: 
(3.2.2.1) some probe messages sent by 

those sites in G2 that receive 
no commit messages do not 
pass B. 

(3.2.2.2) all the probe messages sent by 
those sites in G2 that receive no 
commit messages pass B. 

Our original termination protocol works well in all 
cases except case (3.2.2.2). In this particular case, those 
sites in G2 that receive no commit messages sent by the 
master will wait forever. To deal with this problem, we 
calculate the longest possible time for a slave to receive 
an UD(probe) message, a commit or an abort after it times 
out in state p and get the following result: 

Case(2.1): T. 
Case(2.2.1): 4T. 
Case(2.2.2): 5T (Fig. 9). 
Case(3.1}: T. 
Case(3.2.2.1): 4T. 
Case(3.2.2.2): 00 • 

Since only case(3.2.2.2) takes more than 5T, a slave can tell 
that case(3.2.2.2) has happened and commits itself if it has 
waited for 5T after it times out in state p and receives 
neither an UD(probe) message nor a commit nor an abort. 
Therefore, to deal with transient network partitioning, we 
only have to modify the action to be taken when a slave 
times out in state p as follows: 

Pi --- (1) timeout: reset timer 5T ; 
send probe( tran-id, slavei ) ; 
wait(event) ; 
case event of { 



receive UD(probe): send commit'_n; 

receive a commit: commit; 

receive an abort: abort; 

timeout: commit 

} 

7. Conclusion 

In this paper. we assume that network partitioning 
and site failures never occur concurrently. This assumption 
is necessary due to the fol lowing two observations: (1) if 
the only slave in G2 that receives a prepare message fails 

before it sends out commit messages, then all slaves in G2 
will abort while all participating sites in G, will commit. (2) 
if none of the slaves in G2 receives a prepare message and 
one of the slaves in G 1 fails after receiving a prepare 
message but before sending a probe message, then all 

slaves in G2 will abort while all participating sites in G 1 
will commit. In fact. there is no commit protocol resilient 

to concurrent network partitioning and site failures because 
site failures in a network partitioning may have the same 
effect as message loss and it has been proved that there 
exists no commit protocol resilient to network partitioning 
when messages are lost [7]. Furthermore, we assume that 
masters never fail. The reason we make this assumption is 
that the termination protocol to be taken for network 
partitioning is different from the termination protocol to be 
taken for master site failure which has been proposed by 
Dale Skeen [4] and there is no simple way to distinguish a 
site failure from a network partitioning which separates 

that site from the rest of the system. These two 
assumptions amount to assuming that site failures never 
occur and a site will abort a transaction only because of 

Site 1 
(master) 

l' 
reQuest 

Kocti' . Xoct� 
w, 

(nol)'�I"'lnon (yes,) yes2"'yes" 

a-(?" ,omm�,," 
Figure 1: The two-phase commit protocol, 

Sitei (i:2,3, ... ,nl 
(slave ) 
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network failures, transaction deadlocks with other 

transactions or the user aborting the transaction. With 
technological advances of hardware fault tolerance, 

computers will be very reliab!e compared to links in the 
network. Therefore, we feel that assuming site failures 

never occur is acceptable. 
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Figure 9: Timing analysis 


