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In this paper, four three-node triangular finite element models which can readily be incorporated into the 

standard finite element program framework are devised via a multi-field variational functional for the 

bounded plane Helmholtz problem. In the models, boundary and domain fields are independently assumed. 

The former is constructed by nodal interpolation and the latter comprises non-singular solutions of the 

Helmholtz equation. The equality of the two fields are enforced along the element boundary. Among the four 

devised models, the most accurate one is 1/3 to 1/2 less erroneous than the conventional single-field model in 

most examples.  

 

Keywords: Multi-field, hybrid, Trefftz, triangular, finite element, Helmholtz. 

 

1.  Introduction 

A major challenge in finite element analysis of the Helmholtz problem is that the solution is 

spatially oscillating in the entire problem domain. While considerable computational saving can 

be realized by using graded meshes in stress analyses, the practice is not applicable to the 

Helmholtz problem. The high mesh-density requirement induces tremendous computing load 

when the wavenumber goes up. To better tackle the issue, a number of wave-based approaches 

that employ the non-singular solution sets for the Helmholtz equation have been proposed in the 

last decades. These include various Trefftz methods [1-11], the plane-wave basis method [12-15] 

and the discontinuous enrichment method [16-19], etc.  

      Among the Trefftz finite element methods, the least-square models [6,7], the traction-frame 

models [8] and the displacement-frame models [9-11] can be noted. All Trefftz finite element 

models possess their own domain modes which are extracted from a non-singular complete 

solution set. The least-square models are formulated by minimizing a weighted sum of the error 

norms of the boundary conditions and inter-element continuity conditions on the domain modes 

of the adjacent elements. “Displacement-frame” and “traction-frame” are inherited from Trefftz 

finite element formulation for elasticity problems [8,20]. The traction-frame (displacement-frame) 

models are equipped with boundary “traction” (“displacement”) modes and the domain modes 

can be condensed at the element level. As these two categories of models possess two fields, i.e. 

the domain and boundary fields, they are also known as hybrid-Trefftz models. In Helmholtz 

problems, “displacement” and “traction” refer to the Helmholtz variable and its flux across the 

element boundary, respectively. 
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      In the plane-wave basis method, the plane-wave solutions are employed as the nodal 

enrichment functions in the context of the partition of unity finite element method [12-15]. The 

value of the Helmholtz variable at a node is the sum of the plane-wave modes propagating along 

different directions. Within the element, the Helmholtz variable is obtained by the conventional 

nodal interpolation. Thus, the system equation unknowns are the amplitudes of the plane-wave 

solutions at the nodes but not the nodal value of the Helmholtz variable. 

      In the discontinuous enrichment method, the coarse scale modes constructed by the nodal 

interpolation are enriched by plane-wave solutions. The enrichment which is intended to resolve 

the fine scale phenomenon induces discontinuity across the inter-element boundary [16-19]. 

Continuity is enforced by Lagrange multipliers. While the fine scale enrichment modes can be 

condensed at the element level, the multipliers which link the enrichments of adjacent elements 

enter the system equation. 

 Designing “small” multi-field or hybrid elements is indeed challenging. Here, “small” and 

“large” elements are those possessing respectively small and large numbers of nodal dofs which 

enter the global equation. In “large” elements, the nodal dofs are plenty and the elements are less 

sensitive to the choice and the number of domain modes. On the other hand, accuracy of the 

“small” element can vary significantly with respect to the domain modes and their number. 

Poorly chosen domain modes can even lead to rank deficiency as well as variance of the element 

matrix with respect to element translation, rotation and connectivity [21,22]. While the authors 

and their coworker have derived hybrid-Trefftz element models using plane-wave and Bessel 

solution sets for four-node quadrilateral, eight-node quadrilateral and six-node triangular 

elements [9-11], this paper will present four three-node triangular models. Again, the 

“displacement-frame” will be employed as the resulting elements can readily be plugged into the 

conventional finite element problem framework. In the first model, the domain modes are 

truncated from non-singular complete solution set formed by Bessel functions of the first kind. 

Hence, it is a hybrid-Trefftz model. In the second model, the zeroth order Bessel functions of the 

first kind, i.e. J0, with different origins are employed as the domain modes. The idea resembles a 

meshless radial basis function (RBF) technique in which the radial basis functions among the 

Trefftz solution set are employed [23,24]. Note worthily, a mathematical proof on the 

completeness of the technique is pending. Both the third and fourth models employs plane-wave 

solutions in their domain fields. In most of the existing finite element formulations, the forward 

and backward plane-wave solutions are employed in pair, i.e. exp[ikr
T
] and exp[ikr

T
(-)] in 

which r = {x,y}
T
 is the position vector and  = {cos, sin}

T
 is unit vector along the propagation 

direction . Without changing the basis, the two solutions can be expressed as:   

cos( )Tkr φ    and   sin( )Tkr φ .      (1) 

However, the pairwise use of two solutions is not considered here as the number of node in the 

targeted element is three which is a small odd number. When two plane-wave modes along a 

single pair of directions are employed, the element is rank deficient. When four plane-wave 

modes along two pairs of directions are employed, the resulting three-node element is often less 

accurate than the conventional element in our computational trials. Furthermore, it is impossible 

to select two pairs of directions such that the element is invariant. It will be seen that only one of 

the two sinusoidal functions in Eq.(1) and locally defined origins of (x,y) are employed to define 

the element domain field in the third and fourth models.  
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2.  Conventional Formulation and Three-Node Triangle 

Helmholtz equation is often introduced by using steady-state acoustics or vibration of tensioned 

membrane. In the former, the Helmholtz variable u can be the spatial amplitude of the pressure or 

the velocity potential. With the problem domain  partitioned into finite elements 
e
’s and  

denoting the gradient operator (/x, /y)
T
, the problem can be summarized as:  

(1) Helmholtz equation: 2 2 0u k u            in all 
e
 

(2) Essential boundary condition: u u  and 0u         on all e

u   

(3) Robin boundary condition: Tu v u t   n    on all e

r  

(4) Compatibility condition: u u   and u u         on all e

m   

(5) Reciprocity condition: ( ) ( ) 0T Tv u v u    n n       on all e

m  

in which 
2
 = 

T
 is the Laplace operator, n is the outward unit normal vector to the element 

boundary, k is the wavenumber,  is the variational symbol and e

m  is the inter-element boundary. 

Quantities with overbars are prescribed in the boundary conditions. Moreover, ( )
+
 and ( )

-
 denote 

the braced quantities at the two sides of e

m . When homogeneous medium problems are 

considered, v can simply be taken to be unity. However, when u is the spatial amplitude of the 

pressure in steady-state acoustics, it should be taken to be the specific volume, so that (5) would 

be the continuity condition of the particle velocity component normal to the inter-element 

boundary of the adjacent elements which may model different media.  

It will be assumed as usual that element boundary 
e
 can be partitioned into the non-

overlapping portions e

u , e

r  and e

m , i.e. 

   e e e

u r m    = 
e
     and    e e e e e e

u r r m m u       = null.   (2) 

Note worthily, Robin boundary condition which is also known the impedance boundary condition 

degenerates into the natural boundary condition when   vanishes.  

The elemental functional for the conventional finite element formulation of the Helmholtz 

problem is: 

     2 2 21 1
( ) ( )

2 2e e
r

e Tv u u k u d u tu d
 

            (3) 

in which u is obtained from the conventional nodal interpolation and v is assumed to be constant 

within each of the elements. Conditions (2) and (4) can readily be satisfied by the nodal 

interpolated u and are taken as prerequisites. The global functional for the problem domain is 

equal to the sum of all 
e
s. By invoking (2), Eq.(2) and the divergence theorem, variation of 

Eq.(3) can be written as: 

  2 2( ) ( ) ( )
e e e

r m

e T Tv u k u u d v u u t u d v u u d    
  

              n n  (4) 

The first and second integrals enforce (1) and (3), respectively. With (4) satisfied, the last integral 

when considered jointly with those of the neighborhood elements enforces (5).  
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      Figure 1 shows a general three-node element. Using the area coordinates (s,t)  [0,1], the 

interpolated u is:  

      

1

2

3

[1 , , ]

u

u s t s t u

u

 
 

    
 
 

Nq      (5) 

 

 

Figure 1. The three-node triangular element: s and t  [0,1] are the area coordinates. 

 

In the equation, ui’s are the nodal unknowns, N is the interpolation matrix and q is the vector of 

element nodal unknowns. With Eq.(5) substituted into Eq.(3),  

      
1

( )
2

e T T

c   q K R q f q       (6) 

in which  

   2( ) ( )
e

T T

c v k d



    K N N N N , 
e
r

T d


 R N N   and   
e
t

T t d



 f N . 

Among them, Kc is the element matrix.  

 

3.  Multi-Field Finite Element Formulation 

The following elemental multi-field functional [9-11] can be formed by employing two 

Helmholtz variables ub and ud:  

  2 2 21 1
( ) ( )( ) ( )

2 2e e e
r

e T T

h d d d d b d b bv u u k u d v u u u d u tu d
  

             n . (7) 

In the functional, ub, which needs to be defined along the boundary only, and ud are the boundary 

and domain variables, respectively. Obviously, Eq.(7) degenerates into Eq.(3) when ub equals ud. 

Again, the global functional equals to the sum of all e

h s. Variation of e

h  is:  

   2( ) ( )( ) ( )( )
e e

e T T T

h d d d d d b d d b dv u u k u u d v u u u v u u u d     
 

             n n  

  ( )
e
r

b bu t u d 


              (8) 

By invoking the divergence theorem and assuming that ud satisfies (2) and (4) as prerequisites,  
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2 2( ) ( )( ) ( )
e e e

r

e T T

h d d d d b d d b bv u k u u d v u u u d v u u t u d    
  

              n n  

       ( )
e
m

T

d bv u u d


   n           (9) 

It can be seen that the second integral enforces the equality of ub and ud along the element 

boundary 
e
. The first, third and fourth integrals enforce respectively (1), (3) and (5) with u 

replaced by ud. If ud satisfies the Helmholtz equation, i.e. 
2
ud + k

2
ud = 0, Eq.(7) can be expressed 

as: 

     21 1
( ) ( ) ( )

2 2e e
r

e T T

h d d d b b bv u u v u u d u tu d
 

          n n   (10) 

which only involves boundary integrals. The interpolation for u in Eq.(5) is equally applicable to 

ub, i.e. 

       bu Nq        (11) 

Now, let the domain variable be expressed as: 

       
du  P        (12) 

where P is the shape function matrix and  is the vector of coefficients. With Eq.(11) and Eq.(12) 

substituted into Eq.(10),  

     
1

2

e T T T

h     T1
H Gq q Rq f q

2
   .     (13) 

in which  

    ( )
e

T Tv d



  H n P P  and  ( )
e

T Tv d



  G n P N .   

Furthermore, the H-matrix should be symmetric but it may lose its symmetry under numerical 

integration. In our implementation, H is symmetrized by averaging itself and its transpose. The 

stationary condition of Eq.(13) with respect to  yields: 

     H Gq    or     1H Gq       (14) 

with which  can be condensed from e

h  and the latter becomes: 

   11 1
( ) ( )

2 2

e T T T T T

h h

      q G H G R q f q q K R q f q     (15) 

where Kh is self-defined and is the element matrix of the multi-field finite element model. Same 

as the conventional element matrix Kc, Kh can also be incorporated into the standard finite 

element program framework. 

 In designing multi-field elements for stress/structural analyses, the two common guidelines 

on the selection of the stress (domain) modes are that the element should be rank sufficient and 

invariant [21,22,25,26]. Furthermore, the optimal number of stress modes in the hybrid-stress 

element is often considered to be the minimal number that can secure the rank sufficiency. This 
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point is echoed in the recent attempt in deriving quadrilateral elements [10]. While this section 

outlines the principle to formulate the multi-field element model for the plane Helmholtz problem, 

this and the subsequent sections will present three-node triangular element models which make 

use of the Bessel and plane-wave solutions of the Helmholtz equation.  

 

4.  Domain Modes from Bessel-Solution Set 

This section considers the domain modes selected from the Bessel-solution set. The element to be 

proposed is not intended to equip with ad hoc features to tackle the singularity of the Helmholtz 

variable or its derivatives within the element domain or on the element boundary. After shifting 

the coordinate origin for defining the domain modes to the element centroid 

     1 2 3 1 2 3( , ) ( , )
3 3

c c

x x x y y y
x y

   
      (16) 

for securing the translational invariance [10,21,22], the solution set can be restricted to the non-

singular Bessel functions of the first kind, i.e. 

      ( )exp( ), 0,1,2,...mJ kr im m       (17) 

where 

   
cx x x  ,  

cy y y  ,  2 2 2r x y  ,  arctan( , )y x  .    (18) 

and those of the second kind need not be considered. For the present element, the first three 

modes are employed. In other word, the shape function matrix for the domain modes is: 

     0 1 1[ ( ) ( )exp( ) ( )exp( )]J kr J kr i J kr i  P  

or, without changing the basis,  

     0 1 1( ) ( )cos ( )sinJ kr J kr J kr    P     (19) 

which is complete to first order Bessel function of the first kind. Hence, rotational invariance 

[10,21,22] can also be secured. When k and the boundary conditions are real, complex data type 

and computation can be avoided by the latter format of the P-matrix which is real. 

 

5.  Radial Basis Function as Domain Modes  

Similar to the radial basis function technique [23,24] in which J0’s with different origins are 

employed, the shape function matrix for the domain modes of the second three-node triangular 

element is chosen to be: 

     0 1 0 2 0 3[ ( ) ( ) ( )]J kr J kr J krP      (20) 

where 2 2 2( ) ( )i i ir x x y y     and (xi,yi) are the nodal coordinates. There are two reasons for 

picking the nodes as the origins of J0. Firstly, the boundary variable can only assume its extreme 

values at the nodes. It is consistent to the present choice as extreme values of J0 occur at the 

nodes. Secondly, the contours of J0(kri) are perpendicular to the two element edges defining the i-

th node. In other words, along each of the element edge, two out of the three entries in n
T
P 
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vanishes. This property can be employed to reduce the computational cost of forming the G- and 

H-matrices defined under Eq.(13) [28]. Note worthily, a mathematical proof on the completeness 

of the radial basis function technique using J0 is pending. However, the elements derived in this 

and last sections yield practically identical predictions.  

 It is equally possible to use the fundamental solution, i.e. Y0 or the singular zeroth order 

Bessel function of the second kind, outside the element as the domain modes. However, the 

computational advantage due to zero n
T
P would be lost. Moreover, the solution would be 

sensitive to the distance from the element boundary to the origins of the Y0’s [23,24].  

 

6.  Plane-Wave Modes Vanish along Element Edges 

For completeness, forward and backward plane-wave solutions are employed in pair in most, if 

not all, advanced finite element techniques. On the other hand, the nodal interpolation does not 

contain any directional property where as the variational functional in Eq.(7) enforces the equality 

of the domain field and boundary field which is constructed by nodal interpolation. Hence, it may 

be advantageous to employ domain modes that are similar to the boundary modes and disregard 

the pairwise inclusion of the plane-wave solutions. In this light, the following set of plane-wave 

modes are identified: 

   1 1sin[ ( ) ]Tk r r φ  , 2 2sin[ ( ) ]Tk r r φ   and   3 3sin[ ( ) ]Tk r r φ    (21) 

where ri = {xi,yi}
T
 and i is the unit vector defined at the i-th node of the element in Figure 2(a). 

Taking the first function as an example, it is identically zero along the edge defined by nodes 1 

and 2; when the nodal spacing is considerably smaller than the wavelength, the function increases 

monotonically and very much linearly from zero at nodes 1 and 2. These geometric properties are 

similar to those of the interpolation function of node 3.  

 

 

(a)    (b)     (c) 

 

(d)     (e)      (f) 

Figure 2. Directions of plane-wave modes for (a) edge modes, (b) node-orthocenter modes, (c) 

node-node modes, (d) node- centroid modes, (e) node- incenter modes, and (f) node-Fermat 

modes. 
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As each of the above modes vanishes at an element edge, they would be termed as edge modes 

for simplicity. With them taken to be domain modes, the resulting multi-field model is more 

accurate than the ones described in Sections 4 and 5.  

 

7.  Plane-Wave Modes Vanish at Element Nodes 

With the encouraging result of the edge modes, other modes which can be described by using 

different unit vectors in (21) are attempted. They include the node-orthocenter modes, node-node 

modes, node-centroid modes, node-incenter modes and node-Fermat modes. The unit vectors are 

portrayed in Figures 2(b), 2(c), 2(d), 2(e) and 2(f), respectively. They are self-defined by the 

nomenclature. For instance, the node-orthocenter modes employ the unit vectors which point 

from the nodes to the orthocenter which is the intersection of the altitudes. On the other hand, 

centroid and incenter are the intersection of the medians and the intersection of the angular 

bisectors, respectively; the three lines connecting the Fermat point to the corners of the triangle 

equally divide the 2 angular space [29].  

Unlike the edge modes, each of the plane-wave modes considered in this section vanish at 

only an element node but not an element edge. Hence, they would be termed as nodal modes for 

simplicity.  

 

8.  Numerical Examples 

In this section, the numerical predictions of the following three-node triangular element models 

are presented and compared: 

Conv – the conventional single-field model, see Section 2; 

Bes - the hybrid-Trefftz element formulated with the Bessel solution modes in Eq.(19); 

RBF – the multi-field element formulated with the distributed Bessel solution modes in Eq.(20); 

Edg – the multi-field element formulated with the edge modes, see Figure 2(a); 

Nod – the multi-field element formulated with the node-node modes, see Figure 2(c). 

 

Among the five multi-field models formulated with nodal modes, see Section 7, “Nod” which 

employs the node-node modes yields consistently more accurate predictions than the others 

whose results are not included for conciseness and graphical clarity. Moreover, along each of the 

element edge, one out of the three entries in n
T
P of “Nod” vanishes. Same as “RBF”, this 

feature can be employed to reduce the computational cost of forming the G- and H-matrices 

defined under Eq.(13).  

 Unless stated otherwise, the boundary and domain integrals are evaluated by second order 

Gaussian quadrature and the three-point domain rule, respectively. In the latter, the sampling 

points are (1/6,1/6), (2/3,1/6) and (1/6, 2/3) with respect to the area coordinates (s,t). For 

comparing the element predictions, the following “normalized error” and “relative error” with 

respect to the error of “Conv” are defined: 
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1/2
2

2

| |

Normalized error
| |

exact

exact

u u d

u d





  
 

  
 

 




, 

1/2
2

2

| |

Relative error
| |

exact

Conv exact

u u d

u u d





  
 

  
  

 




 (22) 

where | | returns the magnitude of the embraced complex quantity. The errors will be evaluated by 

nodal integration with the area factor taken to be one-third of the total area in the elements 

sharing the node. Furthermore, the number of nodal spacings per wavelength  

     
wave length 2

nodal spacing Re( )
nN

k h


 


     (23) 

may be specified. In the expression, h denotes the nodal spacing. For the conventional linear 

element model, many literatures recommend Nn > 10 (see, e.g., [11,14] among others).  

 

8.1.  Integration schemes 

 The edge lengths of the element in Figure 3 are 1, 0.97 and 1.17 which give an average 

nodal spacing of ~1.01. Two wavenumbers k = 0.6(1+i) and 1.25(1+i) are considered. The 

relevant Nns are approximately equal to 10 and 5, respectively. Let || denote the eigenvalue 

magnitude of the element matrix Kc or Kh, ||max, ||min and the condition number Nc defined as 

||max/||min are computed. Table 1 lists the computed values of the elements when different 

integration schemes [27] are employed. When the domain integration scheme for “Conv” changes 

from the three-point to six-point rule and the boundary integration scheme for the multi-field 

models change from second to third order quadrature, the changes in Nc’s for all elements are less 

than 0.5%. These justify the employed integration schemes outlined at the beginning of Section 6. 

They are sufficiently accuracy even when Nn falls to 5. It can be noted that Nc of “Edg” changes 

considerably when the integration scheme changes from 1st to 2nd order quadrature.  

 

 

(a)      (b) 

Figure 3. The single-element problem for examining the condition number and invariance 

of the element matrices. (b) is obtained from (a) by rigid body translation and rotation. Moreover, 

A is the first element node in (a) whereas C is the first element node in (b). 
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Table 1.  ||max, ||min and Nc of the proposed elements under different orders. 

 

Re 

(k) 

 

model 

One-point domain rule
1
 

or 1st order quadrature
2
 

three-point domain rule
1
 

or 2nd order quadrature
2
 

Six-point domain rule
1
 

or 3rd order quadrature
2
 

||max ||min Nc ||max ||min Nc ||max ||min Nc 

0.6 

Conv 0.976  0.108  9.037  0.976  0.108  9.041  0.976  0.108  9.041  

Bes 0.976  0.108  9.039  0.977  0.108  9.044  0.977  0.108  9.043  

RBF 0.976  0.108  9.043  0.977  0.108  9.046  0.977  0.108  9.044  

Edg 0.976  0.081  12.05  0.977  0.108  9.053  0.978  0.108  9.053  

Nod 0.975  0.108  9.024  0.980  0.108  9.073  0.980  0.108  9.073  

1.25 

Conv 0.976  0.469  2.082  0.983  0.469  2.097  0.983  0.469  2.097  

Bes 0.978  0.468  2.089  0.986  0.467  2.110  0.987  0.468  2.108  

RBF 0.984  0.467  2.107  0.990  0.467  2.119  0.988  0.468  2.111  

Edg 0.975  0.351  2.778  1.002  0.467  2.148  1.007  0.468  2.150  

Nod 0.957  0.468  2.044  1.033  0.467  2.211  1.036  0.468  2.212  

1: used by “Conv” for domain integration. 2: used by multi-field models for boundary integration. 

 

8.2.  Invariant tests 

 The element in Figure 3(b) is obtained from that in Figure 3(a) by translation, rotation and 

change of connectivity. Other combinations of translation, rotation and connectivity have also 

been attempted. Under various settings, all the element eigenvalues remain unchanged. The 

invariance of the elements are confirmed.  

 

8.3.  Plane-wave problems  

 Figure 4 depicts a LL problem domain modelled by the 44 mesh which contains 244 

triangular elements and L is set to be 2. With  = 1, the entire domain boundary is prescribed with 

the Robin boundary condition:  

     T T exact exactu iku u iku    n n       (24) 

in which Re(k) = Im(k) and the exact solution is:  

     exact exp[ ] exp[ ( cos sin )]Tu ik ik x y   r     (25) 

where  is the wave propagation direction. Owing to the mesh topology and domain geometry, 

the errrors are symmetric about  = 45 and 135. Hence, only the errors for 45    135 are 

presented. Figures 5 and 6 show the normalized errors for Re(kL) = 4 and 16, respectively. Nn is 

fixed at 3 by employing the 66 and 2424 meshes, respectively. “Bes”, “RBF” and “Edg” 

produce graphically indistinguishable results which are not separately presented in the figures for 

clarity.  One can see that the the results in the two figures are fairy similar. The same  observation  
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Figure 4.  The plane-wave problem modelled by the uniform 44 mesh. 
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(b) 

Figure 5. Normalized errors in the plane-wave problem for (a) Re(k) L = 4 and (b) Re(k) L = 16. 

The number of nodal spacings per wavelength Nn is fixed at 3.  
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also applies to the results for Re(kL) = 8 and 12. The average relative errors bearing the following 

definition:  

   Average relative error 
1

1 error of the element at the i-th 

error of "Conv" at the i-th 

pn

ipn





    (26) 

are computed for both the real and imginary parts of the predictions, see Table 2. In the equation, 

np denotes the number of data points. As seen in the table, the average relative errors for “Bes” 

and “Nod” vary from 0.74 to 0.79 and from 0.58 to 0.66, respectively. The closeness of the 

predictions from “Bes”, “RBF” and “Edg * can also be noted. 
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(c) 

Figure 6. Convergence studies for the plane-wave problem. The number of elements along a 

domain edge varies from 8 (Nn = 4) to 100 (Nn = 12.5). The wave propagation directions   are 

(a) 45, (b) 90 and (c) 135. 

 

Table 2. Average relative errors for the errors presented in the format of Figure 5 (np = 7).  

 

Re(kL) 

 

Mesh 

Real part of the prediction Imaginary part of the prediction 

Conv Bes RBF Edg Nod Conv Bes RBF Edg Nod 

4 66 1.000 0.795 0.794 0.799 0.663 1.000 0.793 0.784 0.789 0.652 

8 1212 1.000 0.787 0.784 0.791 0.651 1.000 0.755 0.748 0.753 0.597 

12 1818 1.000 0.785 0.781 0.787 0.643 1.000 0.745 0.742 0.748 0.586 

16 2424 1.000 0.779 0.774 0.781 0.632 1.000 0.760 0.759 0.762 0.607 

 

     By fixing Re(kL) to 16, the number of nodal spacings per domain edge is varied from 8 (Nn = 

) to 128 (Nn = 16) for convergence studies. Figures 6(a), (b) and (c) show the normalized errors 

of the elements for   = 45, 90 and 135, respectively. The convergence rates of all elements at 

the three and all other ’s are essentially the same. The behaviour is well-expected as the rate 

should be controlled by the nodal interpolation order. Table 3 lists the average relative errors for 

both the real and imginary parts of the predictions at five ’s ranging from 45 to 135. As seen 

in the table, the average relative errors for “Bes” and “Nod” vary from 0.67 to 0.88 and from 0.47 

to 0.80, respectively. 

 

 



 

 

P
ag

e1
4

 

Table 3. Average relative errors for the errors presented in the format of Figure 6 (np = 5).  

 Real part of the prediction Imaginary part of the prediction 

Conv Bes RBF Edg Nod Conv Bes RBF Edg Nod 

45 1.000 0.889 0.894 0.879 0.803 1.000 0.864 0.856 0.884 0.795 

67. 5 1.000 0.796 0.795 0.823 0.703 1.000 0.854 0.854 0.859 0.755 

90 1.000 0.672 0.662 0.724 0.474 1.000 0.697 0.693 0.700 0.521 

112.5 1.000 0.678 0.617 0.691 0.525 1.000 0.721 0.720 0.741 0.553 

135 1.000 0.797 0.764 0.801 0.653 1.000 0.691 0.759 0.699 0.679 

 

8.4.  Cylindrical-wave problems with one, two and four layers of media 

Figures 7(a), 7(b) and 7(c) show a single-, two- and four-layered cylinders formed by two media 

“A” and “B” which are non-hatched and hatched, respectively. The outer diameters of the 

cylinders are 8 and the interfaces between different media, if any, are at radial distances r = 1, 2 

and 3 from the centers. The specific volumes and wavenumbers of the media are vA = 4, vB = 1, kA 

= 1 and kB = 2. In the innermost or the first layer, the exact solution is: 

      
1 0 1( )u J k r  

and the exact solution for the i-th layer (i  2) assumes the following form due to axial symmetry: 

      0 0( ) ( )i i i i iu a J k r bY k r   

 

(a)    (b)    (c)    (d) 

Figure 7.  The 8 cylinder with (a) single, (b) two and (c) four layers of media. (d) The mesh with 

8 nodal spacings along the x-axis for a /3 sectorial subdomain of the 8 cylinder.  

 

In the last expression, Y0 is the zeroth order Bessel function of the second kind. The coefficients 

ai and bi can be solved by the compatibility and reciprocity conditions at the interface between the 

(i-1)-th and i-th layers, i.e. 

      1i iu u   , 1
1

i i
i i

du du
v v

dr dr


 .  

Owing to symmetry, only a /3 sector of the problem domain is considered and Figure 7(d) 

shows the mesh in which the number of nodal spacings along the x-axis equal to 8 (h = 1/2). 



 

 

P
ag

e1
5

 

Along the circular boundary of the sector (r = 4), essential boundary condition is prescribed. The 

two straight edges of the sector are prescribed with n
T
u = 0. Three other meshes with 16 (h = 

1/4), 24 (h = 1/6) and 32 (h = 1/8) nodal spacings along the x-axis are also employed.  
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(b) 

Figure 8. Nodal predictions along the x-axis and convergence study for the 8 cylinder with 

single layer of media, see Figures 7(a) and 7(d). 

 

 Figures 8(a), 9(a) and 10(a) plot the nodal predictions of “Conv” and “Nod” for h = 1/2 as 

well as the exact solutions along the x-axis for the single-, two- and four-layered problems, 

respectively. For clarity, the predictions of “RBF” and “Edg” are not included in the figures. 
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Their predictions, however, are between those of “Conv” and “Nod” as shown in the convergence 

plots in Figures 8(b), 9(b) and 10(b) for the single-, two- and four-layered problems, respectively. 

For the four-layered problem, all finite element models produce grahically indistinguishable 

results in Figure 10(a). Their difference, however, can be seen in Figure 10(b). Table 4 lists the 

average relative errors of the convergence plots. Among the multi-field models, “Edg” and “Nod” 

offer the best accuracy. 
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(b) 

Figure 9. Nodal predictions along the x-axis and convergence study for the 8 cylinder with two 

layer of media, see Figures 7(b) and 7(d). 
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(b) 

Figure 10. Nodal predictions along the x-axis and convergence study for the 8 cylinder with four 

layers of media, see Figure 7(c) and 7(d). 

 



 

 

P
ag

e1
8

 

Table 4. Average relative errors for results presented in Figures 8(b), 9(b) and 10(b) (np = 4).  

Number of layers Conv Bes RBF Edg Nod 

1 1 0.7044 0.7023 0.6374 0.5757 

2 1 0.6638 0.6608 0.5944 0.5197 

4 1 0.7217 0.7159 0.6448 0.6202 

 

9.  Closure 

In this paper, four rank sufficient and invariant three-node triangular finite element models which 

can readily be incorporated into the standard finite element program framework are devised via a 

multi-field variational functional. The first element is a typical hybrid-Trefftz element in the 

sense that the domain modes are truncated from the Bessel solution set. In the second model, the 

three domain modes are the three zeroth order Bessel functions of the first kind with their origins 

at the element nodes. For the last two models, the common practice of using both the forward and 

backward plane-wave solutions is abandoned and the solutions in the form of sin[k(r-ri)
T
i] in 

which ri is the position vector of the i-th element node and i is the traversing direction are 

adopted. In the third and fourth models, i is perpendicular to and along the element edge, 

respectively. Numerical studies indicate that the first two multi-field models always yield 

graphically indistinguishable results. The fourth model is markedly more accurate than the first 

three models and, in most examples, is 1/3 to 1/2 more accurate than the conventional single-field 

model.  

Domain modes in the form of cos[k(r-ri)
T
i] are also attempted. However, the resulting 

models are even less accurate than the conventional single-field model and sometimes non-

convergent. The observable may be explained by the leading terms of the cos and sin functions 

which are the constant and linear terms, respectively. The latter fits the linear nodal interpolation 

functions whereas the employed functional aims to minimize the domain nodal interpolated fields.  
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