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Concavity of the Mutual Information Rate for
Input-Restricted Memoryless Channels at High SNR

Guangyue Han, Member, IEEE, and Brian H. Marcus, Fellow, IEEE

Abstract—We consider a memoryless channel with an input
Markov process supported on a mixing finite-type constraint.
We continue the development of asymptotics for the entropy
rate of the output hidden Markov chain and deduce that, at
high signal-to-noise ratio, the mutual information rate of such
a channel is concave with respect to “almost” all input Markov
chains of a given order.

Index Terms—Concavity, entropy rate, hidden Markov chain,
mutual information rate.

I. CHANNEL MODEL

I N this paper, we show that for certain input-restricted
memoryless channels, the mutual information rate, at high

signal-to-noise ratio (SNR), is concave with respect to almost
all input Markov chains, in the following sense: let denote
the set of all allowed (by the input constraint) first-order Markov
processes; at a given noise level, the mutual information rate is
strictly concave on a subset of which increases to the entire

as the noise level approaches zero. Here, we remark that
will be defined precisely immediately following Example

2.1 below, and a corresponding result holds for input Markov
chains for any fixed given order.

This partially establishes a very special case of a conjecture
of Vontobel et al. [17]. Namely, part of Conjecture 74 of that
paper states that for a very general class of finite-state joint
source/channel models, the mutual information rate is concave.
A proof of the full conjecture (together with other mild as-
sumptions) would imply global convergence of the generalized
Blahut–Arimoto algorithm developed in that paper. Our results
apply only to certain input-restricted discrete memoryless chan-
nels, only at high SNR, with a mild restriction on the class of
Markov input processes.

Our approach depends heavily on results regarding asymp-
totics and smoothness of the entropy rate in special parameter-
ized families of hidden Markov chains, such as those developed
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in [5], [6], [7], [9], [13], [14], [16], and [19], and continued here.
The new results along these lines in our paper are of interest, in-
dependent of the application to concavity.

We first discuss the nature of the constraints on the input. Let
be a finite alphabet. Let denote the set of words over

of length and let . We use the notation to
denote a sequence .

A finite-type constraint is a subset of defined by a finite
list of forbidden words [11], [12]; equivalently, is the set
of words over that do not contain any element in as a con-
tiguous subsequence. We define . The constraint

is said to be mixing if there exists a nonnegative integer
such that, for any and any , there is a
such that . To avoid trivial cases, we do not allow to
consist entirely of constant sequences for some symbol

.
In magnetic recording, input sequences are required to sat-

isfy certain constraints in order to eliminate the most damaging
error events [12]. The constraints are often mixing finite-type
constraints. The most well-known example is the -RLL
constraint [18], which forbids any sequence with fewer
than or more than consecutive zeros in between two succes-
sive 1s. For with , a forbidden set is

When , one can choose to be

in particular when , can be chosen to be .
The maximal length of a forbidden list is the length of the

longest word in . In general, there can be many forbidden lists
which define the same finite type constraint . However, we

may always choose a list with smallest maximal length. The
(topological) order of is defined to be , where

is the smallest maximal length of any forbidden list that
defines (the order of the trivial constraint is taken to be 0).
It is easy to see that the order of is when and
is when ; is mixing when .

For a stationary stochastic process over , the set of al-
lowed words with respect to is defined as

that is, the allowed words are those that occur with strictly pos-
itive probability.

Note that for any th-order stationary Markov process ,
the constraint is necessarily of finite type with order
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, and we say that is supported on . Also, is mixing
iff is mixing (recall that a Markov chain is mixing if its transi-
tion probability matrix, obtained by appropriately enlarging the
state space, is irreducible and aperiodic). Note that a Markov
chain with support contained in a finite-type constraint may
have order .

Now, consider a memoryless channel with inputs ,
outputs , and input sequences restricted to a mixing fi-
nite-type constraint . Any stationary input process must sat-
isfy . Let denote the stationary output process
corresponding to ; then, at any time slot, the channel is char-
acterized by the conditional probability

We are actually interested in families of channels, as previ-
ously, parameterized by such that for each and ,

is an analytic function of . Recall that an an-
alytic function is one that can be “locally” expressed as a con-
vergent power series ([3, p. 182]).

We assume that for all and , the probability is not
identically 0 as a function of . By a standard result in complex
analysis (see [3, p. 240]), this means that for sufficiently small

, ; it follows that for any input and suffi-
ciently small , any output can occur. We also assume that
there is a one-to-one (not necessarily onto) mapping from into

, , such that for any , ; so
can be regarded as a parameter that quantifies noise, and

is the noiseless output corresponding to input . The regime of
“small ” corresponds to high SNR.

Note that the output process depends on the
input process and the parameter value ; we will often sup-
press the notational dependence on or , when it is clear
from the context. Prominent examples of such families include
input-restricted versions of the binary symmetric channel with
crossover probability [denoted by BSC( ], and the binary era-
sure channel with erasure rate [denoted by BEC( ].

Recall that the entropy rate of is, as usual,
defined as

where

The mutual information rate between and can be defined
as

where

Given the memoryless assumption, one can check that the
second term above is simply and, in particular, does
not depend on .

Under our assumptions, if is a Markov chain, then for each
, the output process is a hidden Markov

chain and in fact satisfies the “weak Black Hole” assumption of
[7], where an asymptotic formula for is developed; the
asymptotics are given as an expansion in around . In
Section II, we further develop these ideas to establish smooth-
ness properties of as a function of and the input Markov
chain of a fixed order. In particular, we show that for small

, can be expressed as ,
where and are smooth (i.e., infinitely differ-
entiable) functions of and of the parameters of the first-order
Markov chain supported on (see Theorem 2.18). The
term arises from the fact that the support of will be con-
tained in a nontrivial finite-type constraint and so will nec-
essarily have some zero transition probabilities; this prevents

from being smooth in at 0. It is natural to ask if
and are in fact analytic; we are only able to show that

is analytic.
It is well known that for a discrete input random variable over

a memoryless channel, mutual information is concave as a func-
tion of the input probability distribution (see [4, Th. 2.7.4]). In
Section III, we apply the above smoothness results to show that
for a mixing finite-type constraint of order 1, and sufficiently
small , for each , both and
the mutual information rate are strictly concave
on the set of all first-order Markov chains whose nonzero
transition probabilities are not “too small” (here, the input
processes are parameterized by their joint probability distri-
butions). This implies that there are unique first-order Markov
chains such that maximizes

and maximizes . It also fol-
lows that converges exponentially to uniformly
over . These results are contained in Theorem 3.1.
The restriction to first-order constraints and first-order Markov
chains is for simplicity only. By a simple recoding via enlarging
the state spaces, the results apply to arbitrary mixing finite-type
constraints and Markov chains of arbitrary fixed order . As

, the maxima converge to channel capacity [1].

II. ASYMPTOTICS OF THE ENTROPY RATE

A. Key Ideas and Lemmas

For simplicity, we consider only mixing finite-type con-
straints of order 1, and correspondingly only first-order input
Markov processes with transition probability matrix such
that (the higher order case is easily reduced to this).
For any , define the matrix with entries

(1)

Note that implicitly depends on through . One
checks that

and

(2)
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where is the stationary vector of and is the all 1’s column
vector.

For a given analytic function around , let
denote its order with respect to , i.e., the degree

of the first nonzero term of its Taylor series expansion around
. Thus, the orders determine the orders

and, similarly, the orders of conditional probabil-
ities .

Example 2.1: Consider a binary symmetric channel with
crossover probability and a binary input Markov chain
supported on the -RLL constraint with transition prob-
ability matrix

where . The channel is characterized by the condi-
tional probability

if
if

Let be the corresponding output binary hidden Markov chain.
Now, we have

The stationary vector is , and one
computes, for instance,

which has order 1 with respect to .
Let denote the set of all first-order stationary Markov

chains satisfying . Let , , denote the
set of all such that for all .
Note that whenever , i.e., , is mixing
(thus its transition probability matrix is primitive) since is
mixing, so is completely determined by its transition proba-
bility matrix . For the purposes of this paper, however, we find
it convenient to identify each with its vector of joint
probabilities on words of length 2 instead:

sometimes we write . This is the same parameteriza-
tion of Markov chains as in [17, Def. 33].

In the following, for any parameterized sequence of functions
( is real or complex) with ranging within a parameter

space , we use

to mean that there exist constants , such
that for all , all and all

Note that on implies that there exists
and such that for all , all

and large enough . One also checks that a term
is unaffected by multiplication by an exponential function in
(and thus a polynomial function in , since, roughly speaking,
a polynomial function does not grow as fast as an exponential
function as tends to infinity) and a polynomial function in ;
in particular, we have the following.

Remark 2.2: For any given , there exists
and such that ,

for all , all , all polynomial functions
, and large enough .

Of course, the output joint probabilities and condi-
tional probabilities implicitly depend on and
. The following result asserts that for small , the total proba-

bility of output sequences with “large” order is exponentially
small, uniformly over all input processes.

Lemma 2.3: For any fixed

Proof: Note that for any hidden Markov chain sequence
, we have

(3)

Now consider with . One checks
that for small enough, there exists a positive constant such
that for all with , and thus
the term as in (3) is upper bounded by ,
which is upper bounded by for . Noticing that

, we then have, for small enough

which immediately implies the lemma.

Remark 2.4: Note that for any with ,
one immediately has

(4)

for a suitable and small enough . However, this may de-
pend on and , so (4) does not imply Lemma 2.3.

By Lemma 2.3, the probability measure is concentrated
mainly on the set of output sequences with relatively small
order, and so we can focus on those sequences. For a fixed
positive , a sequence is said to be -typical if

; let denote the set of all -typical -se-
quences with length . Note that this definition is independent
of .
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For a smooth mapping from to and a nonnegative
integer , denotes the th total derivative with respect to ;
for instance:

In particular, if or ,
this defines the derivatives or . We
shall use to denote the Euclidean norm of a vector or a matrix

(for a matrix , ), and we shall use

to denote the matrix norm, i.e.,

It is well known that .
In this paper, we are interested in functions of .

For any and any smooth
function of , define

where denotes the order of the th derivative of with re-
spect to and is defined as

The next result shows, in a precise form, that for -typical
sequences , the derivatives, of all orders, of the difference
between and converge exponentially in

, uniformly in and . For , define

We then have the following proposition, whose proof is deferred
to Section II-B.

Proposition 2.5: Assume . Given ,
there exists such that for any

The proof of Proposition 2.5 depends on estimates of deriva-
tives of certain induced maps on a simplex, which we now de-
scribe. Let denote the unit simplex in , i.e., the set of non-
negative vectors, which sum to 1, indexed by the joint input-state
space . For any , induces a mapping defined on

by

(5)

Note that implicitly depends on the input Markov chain
and , and thus so does . While can vanish at

, it is easy to check that for all ,
exists, and so can be defined at . Let denote the
largest order of all entries of (with respect to ) for all ,
or equivalently, the largest order of over all possible

.

For , let

Lemma 2.6: Given , there exists and
such that on for all , on the
entire simplex .

Proof: Given , there exist and such
that for any , , we have, for all

We then apply the quotient rule for derivatives to establish the
lemma.

For any sequence , define

Similar to (5), induces a mapping on by

By the chain rule, Lemma 2.6 gives upper bounds on derivatives
of . However, these bounds can be improved considerably

in certain cases, as we now describe. A sequence is
-allowed if there exists such that

where . Note that
is -allowed iff . So, the -allowed

sequences are those output sequences resulting from noiseless
transmission of input sequences that satisfy the constraint.

Since is a primitive matrix, by definition, there exists a
positive integer such that (i.e., all entries of the matrix
power are strictly positive). We then have the following lemma.

Lemma 2.7: Assume that . For any -allowed se-
quence (here, ), if

, we have

for any and any with .
Proof: The rough idea is that to minimize the order, a se-

quence must match as closely as possible. Given the re-
strictions on initial and terminal states, the length must be
sufficiently long to overwhelm edge effects.

For any , we have

It, then, follows that
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Since

we have

where the minimization is over all sequences such that
.

Since , there exists some such that
and , and there

exists some such that and .
It then follows from that, as long
as , for any fixed and any choice
of order minimizing sequence , there exist

such that
if and only if and
. One further checks that, for any choice of

order minimizing sequences corresponding to ,

does not depend on , whereas if and only if
. This immediately implies the lemma.

Example 2.8: (continuation of Example 2.1)
Recall that

First, observe that the only -allowed sequences are ;
then straightforward computations show that

One checks that for each of these three matrices, there is a
unique column, each of whose entries minimizes the orders over
all the entries in the same row. Note that, putting this example
in the context of Lemma 2.7, we have , which is smaller
than .

Now fix . Note that the mapping implic-

itly depends on , so for any , is in fact a

function of . Let be the point defined by
for with and 0 otherwise. If is -allowed, then
by Lemma 2.7, we have

Thus, in this limiting sense, at , maps the entire

simplex to a single point . The following lemma says
that if is -allowed, then in a small neighborhood of

, the derivative of is much smaller than what
would be given by repeated application of Lemma 2.6.

Lemma 2.9: Given , there exists and
such that on , if is -allowed, then

on some neighborhood of .
Proof: By the previous observations, for all , we

have

where is a rational vector-valued function with common
denominator of order 0 (in ) and leading coefficient uniformly
bounded away from 0 near over all .
The lemma, then, immediately follows.

B. Proof of Proposition 2.5

Before giving the detailed proof of Proposition 2.5, let us
roughly explain the proof only for the special case ,
i.e., convergence of the difference between and

. Let be as above and for simplicity consider
only output sequences of length a multiple : . We
can compute an estimate of by using the chain rule
(with appropriate care at ) and multiplying the estimates
on given by Lemmas 2.6 and 2.9. This yields

an estimate of the form, for some
constants and , on the entire simplex . If is sufficiently
small and is -typical, then the estimate from Lemma 2.9
applies enough of the time that exponentially contracts
the simplex. Then, interpreting elements of the simplex as con-
ditional probabilities , we obtain exponential
convergence of the difference in ,
as desired.

Proof of Proposition 2.5: For simplicity, we only consider
the special case that for
a fixed ; the general case can be easily reduced
to this special case. For the sequences , define their
“blocked” versions by setting

We first consider the case .
Let

where denotes the possible states of the Markov chain . Then,
one checks that

(6)

and satisfies the following iteration:
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and the following iteration (corresponding to the blocked chain
):

(7)

starting with

Similarly, let

which also satisfies the same iterations as previously, however
starting with

For any , we say continues between
and if is -allowed; on the other hand, we say
breaks between and if it does not continue

between and , namely, if any one of the following
occurs:

1) is not -allowed;
2) is not -allowed;
3) both and are -allowed; however, is not

-allowed.
Iteratively applying Lemma 2.6, there is a positive constant

such that

(8)

on the entire simplex . In particular, this holds when
“breaks” between and . When “continues” be-
tween and , by Lemma 2.9, we have that if is small
enough, there is a constant such that

(9)

on .
Now, applying the mean value theorem, we deduce that there

exist , (here, is a convex combination of
and ) such that

If satisfies the hypothesis of Proposition 2.5, then it
is -typical (recall the definition of ). It follows that

breaks for at most values of (since, roughly
speaking, each non- -allowed block contributes at most
twice to the number of breakings); in other words, there are at

least ’s corresponding to (9) and at most ’s
corresponding to (8). We, then, have

(10)

Let . Evidently, when ,
is strictly positive. We then have

(11)

It then follows from (6) that

This completes the proof for the special case .
The general case follows along the same lines as in the

special case, together with the following lemmas, whose proofs
are deferred to the appendixes.

Lemma 2.10: For each , there is a positive constant
such that

here, the superscript denotes the th-order derivative with
respect to . In fact, the partial derivatives with respect
to are upper bounded in norm by .

Lemma 2.11: For each

Note that Proposition 2.5 in full generality does indeed follow
from (6) and Lemma 2.11.

C. Asymptotic Behavior of the Entropy Rate

The parameterization of as a function of fits in the frame-
work of [7] in a more general setting. Consequently, we have
the following three propositions.

Proposition 2.12: Assume that . For any sequence
, and are analytic

around . Moreover, .
Proof: Analyticity of follows from [7,

Proposition 2.4]. It then follows from
and the fact that any row sum of is nonzero

when that is analytic with
.

Proposition 2.13: (see [7, Proposition 2.7]) Assume that
. For two fixed hidden Markov chain sequences

such that
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for some and some , we have for with

where the derivatives are taken with respect to .
Remark 2.14: It follows from Proposition 2.13 that for

any -typical sequence with small enough and large
enough,

Proposition 2.15: (see [7, Th. 2.8]) Assume that .
For any

(12)
where ’s and ’s depend on (but not on ), the transition
probability matrix of .

For any , consider a first-order Markov chain
with transition probability matrix (note that is necessarily
mixing). We will need the following complexified version of .

Let denote a complex “transition probability matrix” ob-
tained by perturbing all entries of to complex numbers, while
satisfying for all in . Then, through solving
the following system of equations:

one can obtain a complex “stationary probability” , which
is uniquely defined if the perturbation of is small enough. It,
then, follows that under a complex perturbation of , for any
Markov chain sequence , one can obtain a complex ver-
sion of through complexifying all terms in the following
expression:

namely

In particular, the joint probability vector can be complexified
to as well. We then use , , to denote the -per-
turbed complex version of ; more precisely

which is well defined if is small enough. Furthermore, to-
gether with a small complex perturbation of , one can obtain a
well-defined complex version of through com-
plexifying (1) and (2).

Using the same argument as in Lemma 2.3 and applying the
triangle inequality to the absolute value of (3), we have the
following.

Lemma 2.16: For any , there exists such that for
any fixed

We will also need the following result, which may be well
known. We give a proof for completeness.

Lemma 2.17: Fix . As tends to infinity,
converges to uniformly over all .

Proof: Let and fix
. By [4, Th. 4.4.1], we have for any

(13)

and

(14)

Moreover, is monotonically decreasing in , and
is monotonically increasing in . It then follows from (13) and
(14) that, for any , there exists such that

Since are continuous functions of , there
exists a neighborhood of such that on

which, together with (13) and the monotonicity of and
, implies that for all

on . The lemma, then, follows from the compactness of
.

The following theorem strengthens Proposition 2.15 in the
sense that it describes how the coefficients ’s and ’s vary
with respect to the input Markov chain. We first introduce some
necessary notation. We shall break into a sum of
and , where and

are smooth; precisely, we have

where

(15)

and

(16)
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and

(note that is well defined since is
analytic with respect to (see Proposition 2.12); note also that

).

Theorem 2.18: Let . For sufficiently small , we
have the following.

1) On , there is an analytic function and a
smooth (i.e., infinitely differentiable) function
such that

(17)

Moreover

where ’s and ’s are the corresponding functions as in
Proposition 2.15.

2) Define . Then, is analytic on
.

3) For any , there exists (possibly depending on
) such that on

and

for sufficiently large .
Proof:
Part 1: Recall that

We now define

Here, recall that denotes the set of all -typical -sequences
with length . It follows from a compactness argument as in
Lemma 2.17 that uniformly converges to on the
parameter space for any positive ; applying Lemma
2.3, we deduce that uniformly converges to on

as well.
By Proposition 2.12, is analytic with

. It then follows that for any with
(we will choose to be smaller later if necessary)

where

and

The idea of the proof is as follows. We first show that
uniformly converges to a real analytic function . We then
prove that and its derivatives with respect to also
uniformly converge to a smooth function . Since
uniformly converges to , , satisfy (17). The
“Moreover” part then immediately follows by equating (12) and
(17) to compare the coefficients.

We now show that uniformly converges to a real
analytic function ; also note the equation shown at the
bottom of the page. By Remark 2.14, we have
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Applying Lemma 2.3, we have

(18)

which implies that there exists such that is ex-
ponentially Cauchy (i.e., the difference between two successive
terms in the sequence is exponentially small) and thus uniformly
converges on to a continuous function .

Let denote the complexified on
with and . Then, using Lemma 2.16 and
a similar argument as earlier, we can prove that

(19)

and hence for a complex analytic function (which is
necessarily the complexified version of )

(20)

In other words, for some , is exponentially
Cauchy and thus uniformly converges to on all
with and . Therefore, is analytic
with respect to on .

We now prove that and its derivatives with respect
to uniformly converge to a smooth function and
its derivatives.

Although the convergence of and its derivatives can
be proven through the same argument at once, we first prove the
convergence of only for illustrative purposes.

For any , we have

(21)

Note that the following is contained in Proposition 2.5 ( )

(22)
One further checks that by Proposition 2.12, there exists a pos-
itive constant such that for small enough and for any se-
quence

and thus

(23)

Using (21), (22), (23), and Lemma 2.3, we have (24), as
shown at the bottom of the page, which implies that there ex-
ists such that uniformly converges on .
With this, the existence of immediately follows.

(24)
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Applying the multivariate Faa Di Bruno formula [2], [10] to
the function , we have for with

where the summation is over the set of unordered sequences of
nonnegative vectors with
and is the corresponding coefficient. Then,
for any , applying the multivariate Leibniz rule, we have (25),
as shown at the bottom of the page.

We tackle the last term of (25) first. Using (21) and (22)
and with a parallel argument obtained through replacing

in (24) by , respec-
tively, we can show the second equation given at the bottom
of the page, where we used the fact that for any and ,

is [see (40)]. And using the
identity

we have the last equation shown at the bottom of the page.
Now, applying the inequality

we have for any

It follows from multivariate Leibniz rule and Lemma 2.10 that
there exists a positive constant such that for sufficiently small

and and for any

(26)

(25)
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and, furthermore, there exists a positive constant such that
for sufficiently small and for any

(27)

Combining (23), (25)–(27), and Proposition 2.5 gives us

(28)

This implies that there exists such that and its
derivatives with respect to uniformly converge on
to a smooth function and correspondingly its derivatives
(here, by Remark 2.2, does not depend on ).

Part 2: This statement immediately follows from the ana-
lyticity of and the fact that .

Part 3: Note that

Applying the multivariate Leibniz rule, by Proposition 2.12,
(26), (40), and Lemma 2.3, we have for any

(29)

It follows from (19), (20), and the Cauchy integral formula ([3,
p. 157]) that

and

which, together with (29), implies that

It then follows that there exists such that, for any , there
exists (here, depends on ) such that on

and further

for sufficiently large .
Similarly, note that

Then, by (26), (27), (23), and Lemma 2.3, we have for any

which, together with (28), implies that there exists such
that for any , there exists such that on

for sufficiently large .

III. CONCAVITY OF THE MUTUAL INFORMATION

Recall that we are considering a parameterized family of
finite-state memoryless channels with inputs restricted to a
mixing finite-type constraint . Again for simplicity, we as-
sume that has order 1.

For parameter value , the channel capacity is the supremum
of the mutual information of and over all stationary
input processes such that . Here, we use only
first-order Markov input processes. While this will typically not
achieve the true capacity, one can approach the true capacity by
using Markov input processes of higher order. As in Section II,
we identify a first-order input Markov process with its joint
probability vector , and we write ,
thereby sometimes notationally suppressing dependence on
and .

Precisely, the first-order capacity is

(30)

and its th approximation is

(31)
As mentioned earlier, since the channel is memoryless, the
second terms in (30) and (31) both reduce to , which
can be written as

Note that this expression is a linear function of and for all it
vanishes when . Using this and the fact that for a mixing
finite-type constraint there is a unique Markov chain of maximal
entropy supported on the constraint (see [15] or [11, Section
13.3]), one can show that for sufficiently small
and all

(32)

(33)
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For instance, to see (33), we argue as follows.
First, it follows from the fact that for any , is a con-

tinuous function of and uniform convergence (Lemma
2.17) that is a continuous function of (the continuity
was also noted in [8]). Let denote the unique Markov
chain of maximal entropy for the constraint. It is well known
that and (see [11, Section 13.3]).
Thus, there exists and such that

Here, note that , since we assumed that
there is a one-to-one mapping from into , , such
that for any , .

Thus, there exists such that for all

and

This gives inequality (33) without the conditional entropy term.
In order to incorporate the latter, notice that vanishes
at and simply replace and with appropriate smaller
numbers and .

Theorem 3.1: Let be as in (32) and (33). For any
, there exist such that for all :
1) the functions and are

strictly concave on , with unique maximizing
and ;

2) the functions and
uniquely achieve their maxima on all of at and

;
3) there exists such that

Proof:
Part 1: Recall that

By Part 1 of Theorem 2.18, for any given , there exists
, such that and are smooth on , and

moreover

uniformly on . Thus

(34)

again uniformly on . Since is negative def-
inite on (see [6]), it follows from (34) that for sufficiently
small , is also negative definite on , and
thus is also strictly concave on .

Since for all , is a linear function of ,
is strictly concave on . This establishes

Part 1 for . By Part 3 of Theorem 2.18, for suf-
ficiently large ( ), we obtain the same result (with the

same and ) for . For each ,
one can easily establish strict concavity on for some

, and then replace by and re-
place by .

Part 2: Choose and further , where is
as in (32) and (33). Part 2 then follows from Part 1 and (32) and
(33).

Part 3: For notational simplicity, for fixed ,
we rewrite as function

, respectively. By the Taylor formula with re-
mainder, there exist such that

(35)

(36)

where the superscript denotes the transpose.
By Part 2 of Theorem 3.1

(37)

By Part 3 of Theorem 2.18, with , there exists
such that

(38)
Combining (35)–(38), we have

Since and are strictly concave on (see Part 1),
are both negative definite. Thus there

exists some positive constant such that

which implies the existence of .

Example 3.2: Consider Example 2.1. For sufficiently small
and bounded away from 0 and 1, Part 1 of Theorem 2.18

gives an expression for and Part 1 of Theorem 3.1
shows that is strictly concave and thus has negative
second derivative. In this case, the results boil down to the strict
concavity of the binary entropy function; that is, when ,

, and one
computes with the second derivative with respect to

So, there is an such that whenever , .

APPENDIX A
PROOF OF LEMMA 2.10

To illustrate the idea behind the proof, we first prove the
lemma for . Recall that
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Let be a component of . Then

We first consider the partial derivative with respect to , i.e.,
. Since the first factor is bounded above by 1, it suffices to show

that both terms of the second factor are (applying the
argument to both and and recalling that

). We will prove this only for , with the
proof for the other term being similar. Now

(39)

where

Clearly, is . Thus, each
is . Each is lower bounded by a posi-
tive constant, uniformly over all . Thus, each

is . It then follows from (39) that
, as desired.

For the partial derivatives with respect to , we observe that
and (here, is

a component of ) are , with uniform constant over all
. We then immediately establish the lemma for .

We now prove the lemma for a generic .
Applying the multivariate Faa Di Bruno formula (for the

derivatives of a composite function) [2], [10] to the function
(here, is a function), we have for with

where the summation is over the set of unordered sequences of
nonnegative vectors with
and is the corresponding coefficient. For any
, define ; and for any (every component

of is less than or equal to the corresponding one of ), define
. Then for any , applying the multivariate

Leibniz rule, we have the equation shown at the bottom of the
page. Then, similarly as above, one can show that

(40)

which implies that there is a positive constant such that

Obviously, the same argument can be applied to upper bound

.

APPENDIX B
PROOF OF LEMMA 2.11

We first prove this for . Again, let be a component
of . Then, for , we have

(41)

and

(42)

Taking the difference, we then have
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This last expression is the sum of three terms, which we will
refer to as , , and .

From Lemma 2.6, one checks that for all ,
and

(Here, we remark that there are many different constants in this
proof, which we will often refer to using the same notation ,
making sure that the dependence of these constants on various
parameters is clear.) It then follows from the mean value the-
orem that for each

By the mean value theorem and Lemma 2.10

And finally

Thus

Iteratively apply this inequality to obtain (43), as shown at the
bottom of the page.

Now, applying the mean value theorem, we deduce that there
exist , (here, is a convex combination
of and ) such that

Then, recall that an -typical sequence breaks at most
times. Thus, there are at least ’s where we can use
the estimate (9) and at most ’s where we can only use
the weaker estimates (8). Similar to the derivation of (10), with
Remark 2.2, we derive that for any , every term on the
right-hand side of (43) is on (we use
Lemma 2.10 to upper bound the first term). Again, with Remark
2.2, we conclude that

which, by (6), implies the proposition for , as desired.
The proof of the lemma for a generic is rather similar, how-

ever very tedious. We next briefly illustrate the idea of the proof.
Note that (compare the following two equations with (41), (42)
for )

and

where the first “others” is a linear combination of terms taking
the following forms (below, can be 0, which corresponds to
the partial derivatives of with respect to the first argument ):

(43)
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and the second “others” is a linear combination of terms taking
the following forms:

here , and for all . Using Lemma 2.10
and the fact that there exists a constant (by Lemma 2.6) such
that

we then can establish (compare the following inequality with
(43) for )

where “others” is the sum of finitely many terms, each of which
takes the following form (see the th term of (43) for ):

(44)

where , is a constant dependent on . Then, induc-
tively, one can use the similar approach to establish that (44) is

on , which implies the lemma for a generic

.

ACKNOWLEDGMENT

We are grateful to the anonymous referee and especially the
associate editor Pascal Vontobel for numerous comments that
helped greatly to improve this paper.

REFERENCES

[1] J. Chen and P. H. Siegel, “Markov processes asymptotically achieve
the capacity of finite-state intersymbol interference channels,” IEEE
Trans. Inf. Theory, vol. 54, no. 3, pp. 1295–1303, Mar. 2008.

[2] G. Constantine and T. Savits, “A multivariate Faa Di Bruno formula
with applications,” Trans. Amer. Math. Soc., vol. 348, no. 2, pp.
503–520, 1996.

[3] J. Brown and R. Churchill, Complex Variables and Applications, 7th
ed. New York: McGraw-Hill, 2004.

[4] T. Cover and J. Thomas, Elements of Information Theory. : , 1991,
Wiley Series in Telecommunications.

[5] G. Han and B. Marcus, “Analyticity of entropy rate of hidden Markov
chains,” IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5251–5266, Dec.
2006.

[6] G. Han and B. Marcus, “Asymptotics of input-constrained binary
symmetric channel capacity,” Ann. Appl. Probabil., vol. 19, no. 3, pp.
1063–1091, 2009.

[7] G. Han and B. Marcus, “Asymptotics of entropy rate in special families
of hidden Markov chains,” IEEE Trans. Inf. Theory, vol. 56, no. 3, pp.
1287–1295, Mar. 2010.

[8] T. Holliday, A. Goldsmith, and P. Glynn, “Capacity of finite state chan-
nels based on Lyapunov exponents of random matrices,” IEEE Trans.
Inf. Theory, vol. 52, no. 8, pp. 3509–3532, Aug. 2006.

[9] P. Jacquet, G. Seroussi, and W. Szpankowski, “On the entropy of a
hidden Markov process,” Theor. Comput. Sci., vol. 395, pp. 203–219,
2008.

[10] R. Leipnik and T. Reid, “Multivariable Faa Di Bruno formulas,”
presented at the presented at the Electron. Proc. 9th Annu. Int. Conf.
Technol. Collegiate Math., Reno, NV, 1996.

[11] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and
Coding. Cambridge, U.K.: Cambridge Univ. Press, 1995.

[12] B. Marcus, R. Roth, and P. Siegel, “Constrained systems and coding
for recording channels,” in Handbook of Coding Theory, V. S. Pless
and W. C. Huffman, Eds. New York: Elsevier, 1998, ch. 20.

[13] E. Ordentlich and T. Weissman, “New bounds on the entropy rate of
hidden Markov processes,” in Proc. IEEE Inf. Theory Workshop, San
Antonio, TX, 2004, pp. 117–122.

[14] E. Ordentlich and T. Weissman, “Bounds on the entropy rate of binary
hidden Markov processes,” in Entropy of Hidden Markov Processes
and Connections to Dynamical Systems. Cambridge, U.K.: Cam-
bridge Univ. Press, 2011, vol. 385, London Math. Soc. Lecture Notes,
pp. 117–171.

[15] W. Parry, “Intrinsic Markov chains,” Trans. Amer. Math. Soc., vol. 112,
pp. 55–66, 1964.

[16] Y. Peres and A. Quas, “Entropy rate for hidden Markov chains with
rare transistions,” in Entropy of Hidden Markov Processes and Con-
nections to Dynamical Systems. Cambridge, U.K.: Cambridge Univ.
Press, 2011, vol. 385, London Math. Soc. Lecture Notes, pp. 172–178.

[17] P. O. Vontobel, A. Kavcic, D. Arnold, and H.-A. Loeliger, “A general-
ization of the Blahut-Arimoto algorithm to finite-state channels,” IEEE
Trans. Inf. Theory, vol. 54, no. 5, pp. 1887–1918, May 2008.

[18] E. Zehavi and J. Wolf, “On runlength codes,” IEEE Trans. Inf. Theory,
vol. 34, no. 1, pp. 45–54, Jan. 1988.

[19] O. Zuk, E. Domany, I. Kantor, and M. Aizenman, “From finite-system
entropy to entropy rate for a hidden Markov process,” IEEE Signal
Process. Lett., vol. 13, no. 9, pp. 517–520, Sep. 2006.

Guangyue Han (M’08) received the B.S. and M.S. degrees in mathematics from
Peking University, China, and the Ph.D. degree in mathematics from University
of Notre Dame, U.S.A. in 1997, 2000, and 2004, respectively. After three years
with the Department of Mathematics at University of British Columbia, Canada,
he joined the Department of Mathematics at University of Hong Kong, China in
2007. His main research areas are analysis and combinatorics, with an emphasis
on their applications to coding and information theory.

Brian H. Marcus (SM’84–F’08) received his B.A. from Pomona College in
1971 and Ph.D. in mathematics from UC-Berkeley in 1975. He held the IBM T.
J. Watson Postdoctoral Fellowship in mathematical sciences in 1976–7. From
1975–1985 he was Assistant Professor and then Associate Professor of Math-
ematics (with tenure) at the University of North Carolina – Chapel Hill. From
1984–2002 he was a Research Staff Member at the IBM Almaden Research
Center. He is currently Head and Professor of Mathematics at the University of
British Columbia. He has been Consulting Associate Professor in Electrical En-
gineering at Stanford University (2000–2003) and Visiting Associate Professor
in Mathematics at UC-Berkeley (1986). He was a co-recipient of the Leonard
G. Abraham Prize Paper Award of the IEEE Communications Society in 1993
and gave an invited plenary lecture at the 1995 International Symposium on In-
formation Theory. He is the author of more than fifty research papers in refereed
mathematics and engineering journals, as well as a textbook, An Introduction
to Symbolic Dynamics and Coding (Cambridge University Press, 1995, co-au-
thored with Doug Lind). He also holds ten U.S. patents. He is an IEEE Fellow, a
member of Phi Beta Kappa, and served as an elected Member of the American
Mathematical Society Council (2003–2006). His current research interests in-
clude constrained coding, error-correction coding, information theory and sym-
bolic dynamics.


