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DEGREE ESTIMATE FOR COMMUTATORS

VESSELIN DRENSKY AND JIE-TAI YU

Abstract. Let K〈X〉 be a free associative algebra over a field K
of characteristic 0 and let each of the noncommuting polynomials
f, g ∈ K〈X〉 generate its centralizer. Assume that the leading ho-
mogeneous components of f and g are algebraically dependent with
degrees which do not divide each other. We give a counterexample
to the recent conjecture of Jie-Tai Yu that

deg([f, g]) = deg(fg − gf) > min{deg(f), deg(g)}.

Our example satisfies

1

2
deg(g) < deg([f, g]) < deg(g) < deg(f)

and deg([f, g]) can be made as close to deg(g)/2 as we want. We ob-
tain also a counterexample to another related conjecture of Makar-
Limanov and Jie-Tai Yu stated in terms of Malcev – Neumann
formal power series. These counterexamples are found using the
description of the free algebra K〈X〉 considered as a bimodule of
K[u] where u is a monomial which is not a power of another mono-
mial and then solving the equation [um, s] = [un, r] with unknowns
r, s ∈ K〈X〉.

Introduction

Let K be a field of characteristic zero and let X = {x1, . . . , xd} be
a finite set of variables. Let K[X] and K〈X〉 be, respectively, the
polynomial algebra and the free associative K-algebra generated by X.
If f, g are two polynomials in K[X] or K〈X〉, we want to estimate the
minimal degree of the elements of the subalgebra generated by them.
This problem is important in the study of tame automorphisms of K[X]
and K〈X〉.

If f and g are algebraically dependent in f, g ∈ K[X], then the
theorem of Zaks [Z], see also Eakin [E] for a simple proof and gen-
eralizations, gives that their integral closure in K[X] is a polynomial
subalgebra K[h]. If f and g are algebraically dependent in K〈X〉, then
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they commute, see Cohn [C], and the theorem of Bergman [B1] gives
that the centralizer of f is an algebra of the form K[h], h ∈ K〈X〉.
In both the cases not too much is known for the minimal degree of
the elements of the subalgebra generated by f and g. For example,
the famous Abhyankar – Moh – Suzuki theorem [AM, Su] gives that
if f, g ∈ K[x] generate the whole algebra K[x], then deg(f) divides
deg(g) or vice versa. Also, if ϕ = (f, g) is an automorphism of K[x, y]
or K〈x, y〉 (i.e., ϕ(x) = f , ϕ(y) = g), then f and g may be of arbitrary
high degrees. Then one of the degrees deg(f) and deg(g) divides the
other and one of the leading homogeneous components of f and g is a
power of the other. Clearly f and g generate the whole algebra K[x, y]
or K〈x, y〉. Hence there is no useful estimate of the minimal degree
of the subalgebra generated by f and g if there are no restrictions on
their properties. Several recent results have shown that the natural
statement of the problem is the following:

Problem 0.1. Let f and g be algebraically independent polynomials

in K[X] or K〈X〉 such that the homogeneous components of maximal

degree of f and g are algebraically dependent. If the degrees of f and g
do not divide each other, find an estimate of the minimal degree of the

nonconstant elements of the subalgebra generated by f and g.

Using Poisson brackets, Shestakov and Umirbaev [SU1] gave an esti-
mate for the polynomial case in terms of the degree of the commutator
[f, g] considered as an element of the free Poisson algebra generated
by X. This allowed them [SU2] to discover an algorithm which de-
cides whether an automorphsim of the polynomial algebra K[x, y, z] is
tame and to solve the famous Nagata Conjecture [N] that the Nagata
automorphism is wild. As a byproduct of their approach, Shestakov
and Umirbaev obtained aslo a new proof of the Jung – van der Kulk
theorem [J, K] that the automorphisms of K[x, y] are tame. Later, the
estimate was used by Umirbaev and Yu [UY] to solve a stronger version
of the Nagata Conjecture concerning the wildness of the coordinates of
a wild automorphism of K[x, y, z].

Recently Makar-Limanov and Yu [MLY] have developed a new method
based on the Lemma on radicals in the Malcev – Neumann algebra of
formal power series and have obtained an estimate for the minimal
degree of the elements of the subalgebra generated by f, g in K〈X〉
depending on the degree of the commutator [f, g]: If f and g are as in
Problem 0.1 and p(x, y) ∈ K〈x, y〉, then

deg(p(f, g)) ≥ D(f, g)wdeg(f),deg(g)(p),
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where

D(f, g) =
deg([f, g])

deg(fg)

and wdeg(f),deg(g)(p) is the weighted degree of p(x, y), defined by

wdeg(f),deg(g)(x) = deg(f), wdeg(f),deg(g)(y) = deg(g).

The application of the Lemma on radicals to the commutative case
gives the estimate

deg(p(f, g)) ≥ D(f, g)wdeg(f),deg(g)(p),

where p(x, y) ∈ K[x, y],

D(f, g) =

[

1 −
(deg(f), deg(g))(deg(fg) − deg(df ∧ dg))

deg(f)deg(g)

]

,

(m, n) is the greatest common divisor of m, n and

df ∧ dg =
∑

(

∂f

∂xi

∂g

∂xj
−

∂f

∂xj

∂g

∂xi

)

(dxi ∧ dxj)

is the corresponding differential 2-form.
It is easy to see that in principal case (when p has outer rank two),

in noncommutative case we have deg(p(f, g)) ≥ deg([f, g]) and in com-
mutative case deg(p(f, g)) ≥ deg(J(f, g)) + 2. See, for instance, Gong
and Yu [GY2].

These estimates have been used by Jie-Tai Yu [Y1] and Gong and
Yu [GY1, GY2], to obtain new results on retracts and test elements of
K[x, y] and K〈x, y〉 as well as a new proof of the theorem of Czerni-
akiewicz and Makar-Limanov [Cz, ML] for the tameness of the auto-
morphisms of K〈x, y〉.

Umirbaev [U1] described the group of tame automorphisms of K[x, y, z]
in terms of generators and defining relations. As a consequence, in [U2]
he developed a method to recognize wild automorphisms of special kind
of the free algebra K〈x, y, z〉. In particular, he solved the well known
conjecture that the Anick automorphism of K〈x, y, z〉 is wild. The
method of Umirbaev [U2] was further developed by the authors [DY]
in the spirit of the results in [UY]. But up till now, there is no algorithm
which decides whether a given automorphism of K〈x, y, z〉 is tame or
wild. A serious obstacle to the solution of this problem is that there
is no estimate for the degree of the commutator [f, g] for f, g ∈ K〈X〉
being as in Problem 0.1.

In his survey [Y2] Jie-Tai Yu raised the following
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Conjecture 0.2. (Jie-Tai Yu) Let f and g be algebraically independent

polynomials in K〈X〉 such that the homogeneous components of maxi-

mal degree of f and g are algebraically dependent. Let f and g generate

their centralizers C(f) and C(g) in K〈X〉, respectively. If neither of

the degrees of f and g divides the other, then

deg([f, g]) > min{deg(f), deg(g)}.

The condition that the degrees of f and g do not divide each other
is essential. It does not hold when ϕ = (f, g) is an automorphism
of K〈x, y〉 when the commutator test of Dicks [D] gives that [f, g] =
α[x, y], 0 6= α ∈ K. The condition that f and g generate their central-
izers is also necessary. For example, if

f = y + (x + yk)m, g = (x + yk)n, m > n, k > 2,

then

[f, g] = [y, (x + yk)n].

The homogeneous component of maximal degree of [f, g] is equal to

[y, xyk(n−1) + y2xyk(n−2) + · · ·+ yk(n−1)x],

deg([f, g]) = k(n − 1) + 2 < kn = deg(g) < km = deg(f).

If this conjecture were true, it would give a nice description of the
group of tame automorphisms of K〈x, y, z〉, much better than the de-
scription of the group of tame automorphisms of K[x, y, z]. In the
approach of Makar-Limanov and Yu [MLY], they work in the Malcev
– Neumann algebra A(X) of formal power series with monomials from
the free group generated by X, allowing infinite sums of homogeneous
components of negative degree and only finite number of homogeneous
components of positive degree. Conjecture 0.2 would follow from the
following conjecture that was formulated by Makar-Limanov and Jie-
Tai Yu during their attempt to solve Conjecture 0.2.

Conjecture 0.3. (Makar-Limanov and Jie-Tai Yu) Let g ∈ K〈X〉
generate its centralizer and let the homogeneous component of maximal

degree of g is an n-th power of an element of K〈X〉. Then, for every

m > n which is not divisible by n, the formal power series gm/n ∈ A(X)
has a monomial of positive degree containing a negative power of a

generator.

The analogue of Conjecture 0.2 for polynomial algebras is: If f and

g are algebraically independent polynomials in K[X] such that the ho-

mogeneous components of maximal degree of f and g are algebraically

dependent, f and g generate their integral closures C(f) and C(g) in
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K[X], respectively, and neither of the degrees of f and g divides the

other, then

deg(df ∧ dg) > min{deg(f), deg(g)}.

Note that in the case of K[x, y]

deg(df ∧ dg) = deg(J(f, g)) + 2 = deg

(

∂f

∂x

∂g

∂y
−

∂f

∂y

∂g

∂x

)

+ 2.

Recently, Makar-Limanov has found a simple example of f, g ∈
K[x, y] such that f and g may be of arbitrary high degree but

deg(df ∧ dg) = 3.

It is easy to see that the analogue of Conjecture 0.3 does not hold in
the commutative case.

In the present paper we present a counterexample to Conjectures
0.2 and 0.3. The polynomials f and g in Conjecture 0.2 are of degree
3(2k + 1) and 2(2k + 1), respectively, where k ≥ 2, and the degree of
the commutator [f, g] is equal to 2k + 5 < deg(g) < deg(f). The same
element g serves as a counterexample to Conjecture 0.3. Comparing
with the commutative example of Makar-Limanov, we see that in the
commutative case the quotient

deg(df ∧ dg)

deg(fg)

can be very small. In our example, we have that

deg([f, g])

deg(g)
=

1

2
+

2

2k + 1

which can be very close to 1/2. We do not know how far is this quotient
from the minimal possible value of the fraction.

Problem 0.4. If f, g ∈ K〈X〉 are as in Conjecture 0.2, does there

exist a positive constant a such that

deg([f, g]) > adeg(g)?

If the answer to this problem is affirmative, this still would simplify
the study of the group of tame automorphisms of K〈x, y, z〉.

Although our counterexample is quite simple, in order to find it we
have studied the structure of the free algebra K〈X〉 as a bimodule of
K[u], where u is a monomial which is not a proper power. It has turned
out that K〈X〉 is a direct sum of three types of bimodules: the poly-
nomial algebra K[u], free bimodules generated by a single monomial,
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and two-generated bimodules with a nontrivial defining relation. Then
we have solved the equation

[um, s] = [un, r]

with unknowns r, s ∈ K〈X〉. Due to the existence of the K[u]-bimodules
of the third kind in K〈X〉, we have succeeded to construct the coun-
terexample.

An essential part of the combinatorial theory of free associative al-
gebras is based on the FIR (free ideal ring) property and the weak
Eucledian algorithm [C]. Also, the theory of equations in K〈X〉 may
be considered in the framework of the recently developed universal al-
gebraic geometry, see the survey by Plotkin [P], and in the spirit of
algebraic geometry over groups, see [BMR, MR]. Another possibility
to consider equations in K〈X〉 is from algorithmic point of view. For
example Gupta and Umirbaev [GU] proved the algorithmic solvabil-
ity of the problem whether or not a given system of linear equations
with coefficients in K〈X〉 is consistent. But very little is known about
the concrete form of the solutions of an explicitly given equation. For
example, recently Remeslennikov and Stöhr [RS] studied the equation
[x, a]+[y, b] = 0 with unknowns x, y in the free Lie algebra L(X) where
a, b are free generators of L(X). Hence the description of K〈X〉 as a
K[u]-bimodule and the solution of the equation [um, s] = [un, r] are
naturally related with the combinatorial and algorithmic properties of
free algebras.

1. The example of Makar-Limanov

In this section we present the example of Makar-Limanov of two
polynomials f, g ∈ K[x, y] such that the degrees of f and g are arbitrary
high, do not divide each other and the degree of the Jacobian of f and
g is equal to 1, that answered the commutative version of Conjecture
0.3 negatively. It shows that it is unlikely to solve the famous Jacobian
conjecture by degree estimate, as suggested in [SU1]. The example was
communicated by Makar-Limanov to Jie-Tai Yu in August 2007 when
they were trying to attack Conjecture 0.2 and Conjecture 0.3.

Example 1.1. Let a > b be positive integers such that a − b > 1 and
a − b divides a + 1. Let

c = a − b, k =
a + 1

c
,

f(x, y) = yp(xayb), g(x, y) = xy(1 + xayb),
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where p(z) ∈ K[z] is a polynomial of degree k. Then

deg(f) = (a+b)k+1 = (a+b)
a + 1

a − b
+1 =

(a + b + 2)a

a − b
=

(a + b + 2)a

c
,

deg(g) = a + b + 2 < (a + b + 2)
a

a − b
= deg(f).

Clearly, a−b cannot divide a because divides a+1 and a−b > 1. Also,
the degree of f and g can be made as large as we want. Since f cannot
be presented in the form q(h) for a polynomial h of lower degree, it
generates its integral closure in K[x, y], and similarly for g.

Direct computations show that

J(f, g) =
∂f

∂x

∂g

∂y
−

∂f

∂y

∂g

∂x

= y
[

−(1 + (a + 1)xayb)p(xayb) + (a − b)xayb(1 + xayb)p′(xayb)
]

,

where p′(z) is the derivative of p(z). We want to choose p(z) in such a
way that J(f, g) = y. This is equivalent to the condition

−(1 + kcz)p(z) + cz(1 + z)p′(z) = 1.

Let

p(z) = −1 + p1z + p2z
2 + . . . + pk−1z

k−1 + pkz
k, pi ∈ K.

Then

1 = −(1 + kcz)p(z) + cz(1 + z)p′(z)

= −(1+kcz)(−1+p1z+p2z
2+. . .+pkz

k)+cz(1+z)(p1+2p2z+. . .+kpkz
k−1)

= 1 − (p1 − kc)z − (p2 + kcp1)z
2 − · · · − (pk + kcpk−1)z

k − kcpkz
k+1

+cp1z + c(2p2 + p1)z
2 + · · ·+ c(kpk + (k − 1)pk−1)z

k + kcpkz
k+1

= 1+((c−1)p1+kc)z+((2c−1)p2+c(1−k)p1)z
2+((3c−1)p3+c(2−k)p2)z

3

+ · · ·+ ((kc − 1)pk − cpk−1)z
k.

Hence

p1 = −
kc

c − 1
, p2 =

(k − 1)c

2c − 1
p1, p3 =

(k − 2)c

3c − 1
p2, · · · , pk =

c

kc − 1
pk−1.

Since p1 6= 0, we obtain that pi 6= 0 for all i. Hence the degree of f is
really equal to the prescribed

deg(f) =
(a + b + 2)a

c

and

deg(J(f, g)) = deg(y) = 1.
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2. The free algebra as a bimodule

Let 〈X〉 be the free semigroup generated by X. In this section we fix
a monomial u ∈ 〈X〉 of positive degree which is not a proper power of
another monomial. We consider the algebra K〈X〉 as a K[u]-bimodule.
Equivalently, K〈X〉 is a K[u1, u2]-module with action of u1 and u2

defined by

u1w = uw, u2w = wu, w ∈ 〈X〉.

Clearly, K〈X〉 decomposes as a K[u1, u2]-module as

K[u]
⊕

(

∑

K[u1, u2]v
)

,

where the inner sum runs on all v ∈ 〈X〉 which do not commute with
u. We want to find the complete description of the K[u1, u2]-module
K〈X〉. If v1, v2 ∈ 〈X〉, we call v1 a beginning, respectively a tail of v2

if there exists w ∈ 〈X〉 such that v2 = v1w, respectively v2 = wv1.

Theorem 2.1. As a K[u1, u2]-module, K〈X〉 is a direct sum of three

types of submodules: (i) K[u]; (ii) K[u1, u2]t; (iii) K[u1, u2]t1+K[u1, u2]t2,
where:

(i) K[u] is generated as a K[u1, u2]-module by 1, and up = up
1 · 1.

The defining relation for this submodule is u1 · 1 = u2 · 1;
(ii) K[u1, u2]t is a free K[u1, u2]-module and u is neither a beginning

nor a tail of t. If t is a beginning, respectively a tail of u, and t′ is

the tail, respectively the beginning of u of the same degree as t, then

tu 6= ut′, respectively ut 6= t′u;

(iii) t1 and t2 are of the same degree and are, respectively, a proper

beginning and a proper tail of u such that t1u = ut2. The defining

relation of this submodule is u2t1 = u1t2. There exist v1, v2 ∈ 〈X〉 with

v1v2 6= v2v1 and a positive integer k such that

u = (v1v2)
kv1, t1 = v1v2, t2 = v2v1.

Proof. The statement (i) is obvious so we only concentrate on (ii) and
(iii). Each v ∈ 〈X〉 has the form v = uav′, where u is not a beginning of
v′. Similarly, v′ = tub, where u is not a tail of t. Hence, by the property
that u is not a proper power of another monomial, we conclude that
K〈X〉 is generated as a K[u1, u2]-module by 1 and monomials t which
do not commute with u and u is neither a beginning nor a tail of t. Let

(1)

p
∑

i=1

γiu
aitiu

bi = 0, 0 6= γi ∈ K,

be a relation between such ti, where the triples (ai, bi, ti) are pairwise
different, with possible ti = tj for some i 6= j. We may assume that this
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relation is homogeneous, i.e., (ai +bi)deg(u)+deg(ti) is the same for all
monomials. For each ti there exists a tj such that uaitiu

bi = uaj tju
bj .

Let ua1t1u
b1 = ua2t2u

b2 . We may assume that a1 ≤ a2. We cancel ua1

and obtain that t1u
b1 = uat2u

b2 , a = a2 − a1. Similarly, if b1 ≤ b2, then
t1 = uat2u

b, b = b2 − b1. By the choice of t1, t2 we derive that t1 = t2,
a = b = 0, which contradicts with (a1, b1, t1) 6= (a2, b2, t2). If b1 > b2,
then for b = b1 − b2

t1u
b = uat2, a, b > 0.

If deg(t1) ≥ deg(u), then u is a beginning of t1 which is impossible.
Hence t1 is a beginning of u. Similarly if deg(t2) ≥ deg(u), then u is
a tail of t2 which is also impossible. Hence t2 is a tail of u. In this
way, in the relation (1) all ti are beginnings or tails of u. Since (1) is
homogeneous, the degree of ti is equal to the residue of the division of
the degree of the relation by the degree of u. Hence all ti are of the
same degree smaller than the degree of u. Since the beginnings and
the tails of u are determined by their degrees, we obtain that in (1)
p = 2 and t1 is a beginning and t2 is a tail of u. Let u = t1w1 = w2t2,
w1, w2 ∈ 〈X〉. Since deg(t1) = deg(t2) < deg(u),

deg(w1) = deg(u) − deg(t1) = deg(u) − deg(t2) = deg(w2).

Replacing u = t1w1 = w2t2 in t1u
b = uat2, we obtain

t1u
b = t1(w2t2) · · · (w2t2) = (t1w1) · · · (t1w1)t2 = uat2.

Both sides of this equality start with t1w2 and t1w1, respectively. Since
w1 and w2 are of the same degree, this implies that w1 = w2 = w and
u = t1w = wt2. Hence

t1u = t1(wt2) = (t1w)t2 = ut2.

If t1 = t2, then t1u = ut1 which is impossible because u is not a
proper power and generates its centralizer. Hence t1 6= t2. Using the
relation t1u = ut2 we present the elements of K[u1, u2]t1 + K[u1, u2]t2
as linear combinations of ua

1t1 = uat1 and ub
1u

c
2t2 = ubt2u

c. It is easy to
see that ub1t2u

c1 6= ub2t2u
c2, because t2u 6= ut2 and (b1, c1) 6= (b2, c2).

Similarly uat1 = ubt2u
c is also impossible, because t1 is not a tail of

u (hence c = 0) and deg(t1) = deg(t2), t1 6= t2. Hence all relations
in the K[u1, u2]-module generated by t1 and t2 follow from t1u = ut2.
Let u = tk1v1, where k is maximal with this property. Then t1u = ut2
implies that

tk+1
1 v1 = tk1v1t2, t1v1 = v1t2.

Since t1 is not a beginning of v1 (otherwise u = tk+1
1 v′

1), we obtain that
v1 is a beginning of t1 and t1 = v1v2 for some v2 ∈ 〈X〉. Now t1v1 = v1t2
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gives v1v2v1 = v1t2 and t2 = v2v1. Hence

u = (v1v2)
kv1, t1 = v1v2, t2 = v2v1

and v1v2 6= v2v1 because u is not a proper power. �

Remark 2.2. For a fixed u ∈ 〈X〉 there may be several pairs (t1, t2)
satisfying the condition (iii) of Theorem 2.1 but all of them have to be
of different degree. For example, if u = (xy)kx, k > 1, then for any
positive ℓ ≤ k the monomials t1ℓ = (xy)ℓ, t2ℓ = (yx)ℓ satisfy t1ℓu = ut2ℓ.

Now we are going to solve the equation [um, s] = [un, r]. It is more
convenient to replace m and n with ℓm and ℓn, respectively, where m
and n are coprime.

Example 2.3. Let u ∈ 〈X〉 be a monomial of positive degree which
is not a power of another polynomial. Let ℓ, m, n be positive integers
such that m > n and m, n are coprime. We consider the equation

(2) [uℓm, s] = [uℓn, r].

Applying Theorem 2.1, we write r and s in the form

r = r1(u)+
∑

pt+
∑

(p1t1+p2t2), r1 ∈ K[u], p, p1, p2 ∈ K[u1, u2],

s = s1(u)+
∑

qt+
∑

(q1t1 +q2t2), s1 ∈ K[u], q, q1, q2 ∈ K[u1, u2],

where the sums run, respectively, on all monomials t and t1, t2 described
in parts (ii) and (iii) of Theorem 2.1. Clearly, r1(u) and s1(u) may be
arbitrary polynomials and we have to solve the following systems for
each t and t1, t2:

(3) [uℓm, q(u1, u2)t] = [uℓn, p(u1, u2)t],

(4) [uℓm, q1t1 + q2t2] = [uℓn, p1t1 + p2t2].

We rewrite (3) in the form

(uℓm
1 − uℓm

2 )q(u1, u2) = (uℓn
1 − uℓn

2 )p(u1, u2).

Since m and n are coprime, the greatest common divisor of the poly-
nomials uℓm

1 − uℓm
2 and uℓn

1 − uℓn
2 is equal to uℓ

1 − uℓ
2 and we obtain

that

p(u1, u2) =
uℓm

1 − uℓm
2

uℓ
1 − uℓ

2

r2(u1, u2), q(u1, u2) =
uℓn

1 − uℓn
2

uℓ
1 − uℓ

2

r2(u1, u2),

where r2(u1, u2) ∈ K[u1, u2] is an arbitrary polynomial.
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Now we assume that deg(t1) = deg(t2) < deg(u) and u, t1, t2 satisfy
the condition t1u = ut2. Using this relation we present p1t1 + p2t2 and
q1t1 + q2t2 in (4) in the form

p1t1+p2t2 = p1(u1)t1+p2(u1, u2)t2, q1t1+q2t2 = q1(u1)t1+q2(u1, u2)t2

and rewrite (4) as

(uℓm
1 −uℓm

2 )(q1(u1)t1+q2(u1, u2)t2) = (uℓn
1 −uℓn

2 )(p1(u1)t1+p2(u1, u2)t2).

We replace u2t1 with u1t2 and obtain

uℓm
1 q1t1 − u1u

ℓm−1
2 q1t2 + (uℓm

1 − uℓm
2 )q2t2

= uℓn
1 p1t1 − u1u

ℓn−1
2 p1t2 + (uℓn

1 − uℓn
2 )p2t2.

Comparing the coefficients of t1 and t2, we derive

uℓm
1 q1(u1) = uℓn

1 p1(u1),

−u1u
ℓm−1
2 q1 + (uℓm

1 − uℓm
2 )q2 = −u1u

ℓn−1
2 p1 + (uℓn

1 − uℓn
2 )p2.

It is sufficient to solve these equations when pi, qi are homogeneous.
We may assume that deg(q1) = deg(q2) = a, deg(p1) = deg(p2) =
a + ℓ(m − n). Hence

p1(u1) = ξu
a+ℓ(m−n)
1 , q1(u1) = ξua

1, ξ ∈ K,

−ξua+1
1 uℓm−1

2 + (uℓm
1 − uℓm

2 )q2 = −ξu
a+ℓ(m−n)+1
1 uℓn−1

2 + (uℓn
1 − uℓn

2 )p2,

(uℓm
1 − uℓm

2 )q2 + ξua+1
1 uℓn−1

2 (u
ℓ(m−n)
1 − u

ℓ(m−n)
2 ) = (uℓn

1 − uℓn
2 )p2.

Defining the polynomial

Φb(u1, u2) =
uℓb

1 − uℓb
2

uℓ
1 − uℓ

2

= u
ℓ(b−1)
1 + u

ℓ(b−2)
1 uℓ

2 + · · · + u
ℓ(b−1)
2 , b ≥ 1,

and using that

Φm(u1, u2) = u
ℓ(m−n)
1 Φn(u1, u2) + uℓn

2 Φm−n(u1, u2),

the equation for ξ, p2, q2 becomes

(u
ℓ(m−n)
1 Φn + uℓn

2 Φm−n)q2 + ξua+1
1 uℓn−1

2 Φm−n = Φnp2,

(p2 − u
ℓ(m−n)
1 q2)Φn = uℓn−1

2 (u2q2 + ξua+1
1 )Φm−n.

Since the polynomials Φn(u1, u2) and uℓn−1
2 Φm−n(u1, u2) are coprime,

we obtain

p2 − u
ℓ(m−n)
1 q2 = uℓn−1

2 Φm−nr3, u2q2 + ξua+1
1 = Φnr3,

where r3(u1, u2) ∈ K[u1, u2]. Hence it is sufficient to solve the equation

u2q2(u1, u2) + ξua+1
1 = Φn(u1, u2)r3(u1, u2)
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for ξ ∈ K and for homogeneous q2, r3 ∈ K[u1, u2]. Comparing the

coefficients of ua+1
1 and using that Φn = u

ℓ(n−1)
1 + uℓ

2Φn−1, we obtain

a + 1 ≥ deg(Φn) = ℓ(n − 1),

r3(u1, u2) = ξu
a−ℓ(n−1)+1
1 + u2s3(u1, u2), s3 ∈ K[u1, u2],

q2(u1, u2) = (u
ℓ(n−1)
1 + uℓ

2Φn−1)s3 + ξu
a−ℓ(n−1)+1
1 uℓ−1

2 Φn−1,

for any ξ ∈ K and arbitrary homogeneous polynomial s3(u1, u2) ∈
K[u1, u2] of degree a − ℓ(n − 1).

It is naturally to ask whether the structure of K〈X〉 considered as
a bimodule of K[f ], when f ∈ K〈X〉 is an arbitrary polynomial, is
similar to that in Theorem 2.1. The following example shows that in
this case some phenomena appear similar to those in the Buchberger
algorithm for the Gröbner basis of an ideal. We do not expect a nice
bimodule structure of K〈X〉 in the general case.

Example 2.4. Let us order the monomials of 〈x, y〉 first by degree and
then lexicographically, assuming that x > y. Let

f = xyx + yxx, u = xyx, t1 = xy, t2 = yx.

The leading monomial of f is u and we have t1u = ut2. Direct compu-
tation gives that

ft1 − ft2 + t2f = (xy + yx)yxx

belongs to the K[f ]-bimodule generated by t1 and t2 but its leading
monomial xyyxx neither starts or ends with u.

3. The counterexample to Conjecture 0.2

The following result presents a counterexample to Conjecture 0.2.

Theorem 3.1. Let X = {x, y}, k ≥ 2, and let

u = (xy)kx, v = xy, w = yx,

f = u3 + r, r = uv + uw + wu,

g = u2 + s, s = v + w.

Then f and g are algebraically independent polynomials which generate

their centralizers C(f) and C(g) in K〈x, y〉. The homogeneous com-

ponents of maximal degree of f and g are algebraically dependent and

neither of the degrees of f and g divides the other. Then

deg([f, g]) < deg(g) < deg(f).
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The quotient

deg([f, g])

deg(g)
=

1

2
+

2

2k + 1

is bigger that 1/2 but can be made as close to 1/2 as we want by in-

creasing k.

Proof. Since [f, g] 6= 0, we derive that f and g are algebraically inde-
pendent. The homogeneous components of maximal degree of f and
g are u3 and u2, respectively, and are algebraically dependent. Their
degrees 6k+3 and 4k+2 do not divide each other. Direct computations
give

[f, g] = [u3, s] + [r, u2] + [r, s].

Since, as in Theorem 2.1 (iii)

vu = (xy)(xy)kx = (xyx)k(yx) = uw,

we obtain that

[u3, s] = [u3, v + w] = u3(v + w) − (v + w)u3

= u3v + u3w − vu3 − wu3 = u3v + u3w − uwu2 − wu3,

[r, u2] = (uv + uw + wu)u2 − u2(uv + uw + wu)

= uvu2 + uwu2 + wu3 − u3v − u3w − u2wu

= u2wu +uwu2 +wu3 −u3v−u3w−u2wu = uwu2 +wu3 −u3v−u3w,

[u3, s] + [r, u2] = 0.

Hence,

[f, g] = [r, s] = uvv + uwv + wuv + uvw + uww + wuw

−vuv − vuw − vwu− wuv − wuw − wwu

= uvv + uwv + uvw + uww − vuv − vuw − vwu − wwu

= uvv + uwv + uvw + uww − uwv − uww − vwu − wwu

= uvv + uvw − vwu − wwu

= (xy)kx(xy)(xy)+(xy)kx(xy)(yx)−(xy)(yx)(xy)kx−(yx)(yx)(xy)kx 6= 0,

deg([f, g]) = deg(r) + deg(s) = 4 + deg(u) = 2k + 5 < 4k + 2 = deg(g).

Clearly, for k sufficiently large, we can make the quotion of the degrees
of [f, g] and g as close to 1/2 as we want. �
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The counterexample of Theorem 3.1 has been found applying Theo-
rem 2.1 and Example 2.3. We start with

u = (xy)kx, v = t1 = xy, w = t2 = yx.

Hence vu = uw. Working in the K[u]-subbimodule of K〈x, y〉 gener-
ated by t1 and t2, we search for r and s such that [um, s] = [un, r].
Then for

f = um + r, g = un + s,

where m > n > 1 and n does not divide m, we obtain

[f, g] = [um, s] + [r, un] + [r, s] = [r, s].

By Example 2.3 the equation [um, s] = [un, r] has a partial solution

r = ut1 + ut2 + t2u, s = t1 + t2

obtained for

m = 3, n = 2, p1 = u1, p2 = u1 + u2, q1 = q2 = 1.

But this approach does not allow to find a solution with deg([f, g]) ≤
deg(g)/2.

Trying to decrease the degree of [f, g] further, as in the example of
Makar-Limanov, we may add new homogeneous summands to f , e.g.

f = um + r + r1, deg(r1) < deg(r),

such that [r, s] + [r1, u
n] = 0. But we face computational (and maybe

principal) difficulties: The monomials of [r, s] are of the form uatiu
btju

c,
ti, tj = v, w. Using the relation vu = uw, we may assume that b = 0 if
ti = v or tj = w. Hence

[r, s] =
∑

hbwubv + h11vv + h12vw + h22ww, hb, hij ∈ K[u1, u2].

Since the monomials wubv, vv, vw, ww are neither beginnings nor tails
of u, we have to work in a free K[u]-bimodule and do not know how
to find r, s, r1 of sufficiently small degree such that [f, g] = [r1, s] and
deg([f, g]) ≤ deg(g)/2. The computations become even worst if we try
to add one more component to g:

f = um+r+r1, deg(r1) < deg(r), g = un+s+s1, deg(s1) < deg(s).

4. Working in the Malcev – Neumann algebra

Let F (X) be the free group generated by X. We define the total
degree of u = x±1

i1
· · ·x±1

ik
∈ F (X) in the usual way, assuming that

deg(x±1
i ) = ±1. By the theorem of Neumann – Shimbireva [N1, S], the

group F (X) can be ordered linearly in many ways. In particular, see
Theorem 2.3 in [N1], if H is a linearly ordered factor group of F (X),
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then the order of H can be lifted to a linear order of F (X). Defining a
partial order on the free abelian group generated by X by total degree
and then refining it in an arbitrary way, e.g. lexicographically, we
obtain a linear order on F (X) such that if deg(u1) < deg(u2), then
u1 < u2. Since 〈X〉 ⊂ F (X), we assume that the elements of 〈X〉 are
linearly ordered in the same way. If

g = g(X) =

p
∑

i=1

αiui, 0 6= αi ∈ K, ui ∈ 〈X〉, u1 > u2 > · · · > up,

we denote by ν(g) the leading monomial α1u1 of g. We denote by A(X)
the Malcev – Neumann algebra of formal power series used by Malcev
and Neumann [M, N2] to show that the group algebra of an ordered
group can be embedded into a division ring. The algebra A(X) consists
of all formal sums

τ =
∑

u∈∆

αuu, αu ∈ K,

where ∆ is a well ordered subset of F (X). (For commutative objects
this construction was used by Hahn [H].) We shall use A(X) in the
spirit of Makar-Limanov and Yu [MLY] and shall assume that ∆ is well
ordered relative to the opposite ordering, i.e., any nonempty subset of
∆ has a largest element. Again, if 0 6= τ ∈ A(X), we denote by ν(τ)
its leading monomial α1u1, α1 ∈ K, u1 ∈ F (X). The following Lemma
on radicals of Bergman [B2, B3] plays a crucial role in [MLY].

Lemma 4.1. If 0 6= τ ∈ A(X) and ν(τ) = (βu)n, β ∈ K, u ∈ F (X),
is an n-th root, then there exists a ρ ∈ A(X) such that τ = ρn.

Now we shall show that the polynomial g from the conuterexample
to Conjecture 0.2 serves as a counterexample also to Conjecture 0.3.

Theorem 4.2. Let X = {x, y}, k ≥ 2, and let

u = (xy)kx, v = xy, w = yx,

g = u2 + s, s = v + w.

Then g generates its centralizer C(g) in K〈x, y〉 and its homogeneous

component of maximal degree is a square in K〈x, y〉. If ρ ∈ A(x, y) is

such that g = ρ2, then ρ3 has no monomial of positive degree containing

a negative power of x or y.

Proof. We may assume that

ρ = g1/2 = u + a1 + a2 + · · · ,

where ai are homogeneous polynomials such that

2k + 1 = deg(u) > deg(a1) > deg(a2) > · · · .
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These polynomials are determined step-by-step in a unique way from
the condition

g = u2 + s = ρ2 = u2 + (ua1 + a1u) + (a2
1 + ua2 + a2u) + · · · .

Comparing the homogeneous components of g and ρ2 and their degrees,
we obtain

ua1 + a1u = s, deg(a1) = deg(s) − deg(u) = 1 − 2k,

a2
1 + ua2 + a2u = 0, deg(a2) = 2deg(a1) − deg(u) = 1 − 6k,

deg(ai) = deg(a1) + deg(ai−1) − deg(u) = 1 − 2(2i − 1)k.

As in the proof of Theorem 3.1, we have vu = uw. Hence wu−1 satisfies

u(wu−1) + (wu−1)u = (uw)u−1 + w = (vu)u−1 + w = v + w = s,

we conclude that a1 = wu−1. Now

ρ3 = u3+
∑

(u2ai+uaiu+aiu
2)+

∑

(uaiaj+aiuaj+aiaju)+
∑

aiajal,

deg(u2a1) = 2(2k + 1) + (1 − 2k) = 2k + 3,

deg(u2ai) ≤ deg(u2a2) = 2(2k + 1) + (1 − 6k) = 3 − 2k < 0, i ≥ 2,

deg(uaiaj) ≤ deg(ua2
1) = deg(u2a2) < 0, i, j ≥ 1,

deg(aiajak) < 0,

and we obtain that the component of positive degree of ρ3 is

u3 + (u2ai + uaiu + aiu
2) = u3 + (u2(wu−1) + u(wu−1)u + (wu−1)u2)

= u3 + (u(uw)u−1 + (uw)(u−1u) + w(u−1u)u)

= u3 + (uv + uw + wu) = u3 + r = f,

where f = u3 + r is the other polynomial from Theorem 3.1. Hence ρ3

does not contain monomials of positive degree with negative powers of
variables x and y. �

5. Acknowlegement

The authors are grateful to Leonid Makar-Limanov for his helpful
comments and suggestions, and especially for his kind permission to
include Example 1.1.



DEGREE ESTIMATE FOR COMMUTATORS 17

References

[AM] S.S. Abhyankar, T.T. Moh, Embeddings of the line in the plane, J. Reine
Angew. Math. 276 (1975), 148-166.

[BMR] G. Baumslag, A. Myasnikov, V. Remeslennikov, Algebraic geometry over

groups. I. Algebraic sets and ideal theory, J. Algebra 219 (1999), No. 1,
16-79.

[B1] G.M. Bergman, Centralizers in free associative algebras, Trans. Amer. Math.
Soc. 137 (1969), 327-344.

[B2] G.M. Bergman, Conjugates and nth roots in Hahn-Laurent group rings, Bull.
Malaysian Math. Soc. 1 (1978), 29-41.

[B3] G.M. Bergman, Historical addendum to: “Conjugates and nth roots in

Hahn-Laurent group rings”, Bull. Malaysian Math. Soc. 2 (1979), 41-42.
[C] P.M. Cohn, Free Rings and Their Relations, Second edition, London Math-

ematical Society Monographs, 19, Academic Press, Inc., London, 1985.
[Cz] A.J. Czerniakiewicz, Automorphisms of a free associative algebra of rank 2.

I, II, Trans. Amer. Math. Soc. 160 (1971), 393-401; 171 (1972), 309-315.
[D] W. Dicks, A commutator test for two elements to generate the free algebra

of rank two, Bull. London Math. Soc. 14 (1982), No. 1, 48-51.
[DY] V. Drensky, J.-T. Yu, The strong Anick conjecture is true, J. Eur. Math.

Soc. 9 (2007), 659-679.
[E] P. Eakin, A note on finite dimensional subrings of polynomial rings, Proc.

Amer. Math. Soc. 31 (1972) 75-80.
[GY1] S.-J. Gong, J.-T. Yu, Test elements, retracts and automorphic orbits,

J.Algebra, to appear.
[GY2] S.-J.Gong, J.-T. Yu, The preimage of a coordinate, Algebra Colloquium, to

appear.
[GU] C.K. Gupta, U.U. Umirbaev, Systems of linear equations over associative

algebras and the occurrence problem for Lie algebras, Comm. Algebra 27

(1999), No. 1, 411-427.
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