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Abstract: - This paper studies Markovian queueing model for exible manufacturing system.
The manufacturing system consists of multiple unreliable machines. Hedging point policy is
applied to the system as production control. We model the machine states and inventory levels
of the system as a multi-server queueing system. Fast numerical algorithm is presented to solve
the steady state probability distribution of the system. Using the probability distribution, the
system performance and the e�ect of machine reliability and maintainability can be evaluated.
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1 Introduction

In recent years there has been an increasing
role of computer in manufacturing. An im-
portant area of the Computer Aided Manu-
facturing (CAM) is the Flexible Manufactur-
ing System (FMS). The advantage of FMS is
that it can reduce work-in-progress and in-
crease machine utilization when suitable pro-
duction policy is implemented. Moreover, it
can also reduce manufacturing lead time and
labor. However, the drawbacks of FMS are
the cost in setting up, maintenance of ma-
chines and management of material, see Buza-
cott and Shanthikumar [2] for instance. Due
to the high capital investment, FMS is consid-
ered to operate economically if a high level of
system performance is obtained. Mathemati-
cal modelling can help with decision required
to design and manage an FMS. Queueing the-
ory is an useful tool for many inventory mod-

els and manufacturing systems that can assist
with long-run decision, see Ching and Zhou
[5, 6, 7, 10] for instance. In fact, most ana-
lytic models describe FMS as a queueing sys-
tem, in which the customer are jobs to pro-
cessed or product in inventory and the servers
are simply the reliable machines (workstation)
in the system, Buzacott and Yao [3]. However,
the assumption that the machines are reliable
can greatly a�ect the performance evaluation
of a FMS. Furthermore the e�ect of machine
maintainability is also signi�cant in FMS per-
formance. These are taken into account in our
proposed model.
In this paper, we consider FMS of s unreli-

able machines producing one type of product.
When a machine breaks down, it is subject
to a repairing process if there is maintenance
facility available, otherwise it will queue up
and repair in the �rst come �rst serve princi-
ple. There are r(� s) maintenance facilities
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in the FMS. For simplicity of discussion, we
assume the machines are all identical. The up
time and down time of each machine are as-
sumed to be exponentially distributed. We as-
sume in�nite supply of raw material in the sys-
tem. Usually, proper positive inventory level
is maintained to hedge against the uncertain-
ties in supply, demand or breakdowns of the
machine, [1, 12]. Here we consider a order-
to-make manufacturing system and Hedging
Point Policy (HPP) is applied as the produc-
tion control. The HPP is characterized by
a non-negative number h. The system (ma-
chines) keeps on producing products at its max-
imum rate if the inventory level is less than h.
When the inventory level h is reached, all the
machines are shut down. In fact, the opti-
mal value of h is the best amount of inventory
to store in order to hedge against the uncer-
tainty. It is well known that the hedging point
policy is optimal for one-machine manufactur-
ing systems in some simple situations, in the
sense that it minimizes the average running
cost (or maximize the average pro�t) of the
system, see [1, 12] for instance. When the op-
timal policy is a zero-inventory policy (i.e. the
hedging point is zero), then the policy matches
with the just-in-time (JIT) policy. The JIT
policies have strongly been favored in real-life
production systems for process discipline rea-
sons even when they are not optimal.
In our model, we assume that the inter-

arrival time for a demand and processing time
for one unit of product are exponentially dis-
tributed. The demand is served in a �rst come
�rst serve principle. Furthermore, we allow a
maximum backlog of m in the system. Ex-
cessive demand will be rejected and there is
a penalty cost associated with the rejection.
We are interested in solving the steady state
probability distribution for the system because
many important performance measures such
as the system throughput and machine uti-
lization can be written in terms of the prob-

ability distribution. Moreover, we are partic-
ularly interested in the average running cost
of the system which can also be written down
in terms of the steady state probability dis-
tribution. The optimal hedging point can be
obtained by varying di�erent values of h. Let
us give the following notations for our discus-
sion throughout the paper.
1=� : the mean arrival time for a demand;
1=� : the mean processing time for one unit
of product;
1=� : the mean repair time for a machine;
1= : the mean up time of a machine;
s : number of machines (workstation) in the
system;
r : number of maintenance facilities;
m : maximum allowable backlog;
b : the maximum inventory capacity;
h(� b) : the hedging point;
cI > 0 : the unit inventory cost;
cB > 0 : the unit backlog cost;
cO > 0 : operation cost of a machine per unit
time;
cR > 0 : repairing cost of a machine per unit
time;
cD > 0 : penalty cost for rejecting an unit of
demand;
cP > 0 : pro�t per unit product.

The remainder of this paper is organized
as follow. In x2, we formulate the FMS as a
machine-inventory model, and write down the
balanced equations of the steady state prob-
ability distribution in form of matrix equa-
tions. A numerical algorithm is presented in
Appendix to solve the system steady state prob-
ability distribution. In x3, we illustrate by
some numerical examples of our proposed model
that the reliability and maintainability of the
machines may greatly a�ect the performance
of the FMS. Finally a summary is given in x4
to conclude the paper.



2 The FMS Model

In this section, we establish the mathematical
model for the discussed FMS. We construct
the balanced equations for the steady state
distribution of the machine-inventory system
in form of matrix equations.
Under the hedging point policy, the maxi-

mum possible inventory level is h. Since the
maximum backlog is m, the total number of
possible inventory levels is n = m + h + 1.
In practice the value of n can easily go up to
thousands. The number of normal machines
can take values in f0; 1; � � � ; sg. If we let �(t)
be the number of normal machines and x(t) be
the inventory level at time t then the machine-
inventory process

f�(t); x(t)); t � 0g (1)

is a continuous time Markov chain taking val-
ues in the state space

S = f(�(t); x(t)) : �(t) = 0; � � � ; s;
x(t) = �m; � � � ; h:g:

(2)

The total number of states in S is n(s + 1).
Each time when visiting a state, the process
stays there for a random period of time that
has an Exponential distribution and is inde-
pendent of the past behavior of the process.
If we order the machine states and the in-
ventory levels lexicographically: the machine
states are ordered in ascending order of num-
ber of normal machines and the inventory lev-
els are ordered in descending order. The steady
state probability distribution p is the solution
of the following linear system:

Ap = 0 and

(s+1)nX
i=1

pi = 1: (3)

Here the column vector

p = (p0�n+1; � � � ;p0�n+n;p1�n+1; � � � ;p2�n;
� � � ;ps�n+1; � � � ;p(s+1)n)

t

is our required steady state probability dis-
tribution with pi�n+j being the steady state
probability that the inventory level is (h�j+1)
(negative inventory means backlog) and num-
ber of normal machine is i. The system gener-

ator is given by the following tridiagonal block
matrix: A =
0
BBBBBB@
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and Mi = minfs� i; rgIn+

0
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(5)

for i = 0; 1; � � � ; s. Here In is the n � n iden-
tity matrix. The solution of the steady state
probability distribution of the system has the
following meaning:

p(�; x) = limt!1 Prob(�(t) = �; x(t) = x)
(� = 0; � � � ; s; x = �m; � � � ; h):

Unfortunately there is no analytic solution for
p. A numerical algorithm is proposed in Ap-
pendix to solve the problem.
For the FMS, we are interested in the through-

put, machine idle time and of course the aver-
age pro�t of the system. Now we let

p(i) =
sX

k=0

p(k; i); i = �m; � � � ; 0; � � � ; h (6)

be the marginal steady state probability of the
inventory levels of the FMS and

q(k) =
hX

i=�m

p(k; i); k = 0; 1; � � � ; s (7)



be the marginal steady state probability of the
machine states of the FMS. The throughput of
the manufacturing system is then given by

T (h;m) = �(1� p(�m)): (8)

The expected inventory management cost can
be written as the sum of inventory cost and
backlog cost. The sum of inventory cost, back-
log cost and rejection cost is given by

I(h;m) = cI

hX
i=1

ip(i)�cB

�1X
i=�m

ip(i)�cDp(�m):

(9)
The machine operating cost consists of ma-
chine repairing cost and machine running cost
and is given by

M(h;m) = cO
Ps

k=0 kq(k)
+ cR

Ps�r
k=0 rq(k)

+ cR
Ps

k=s�r+1(s� k)q(k):
(10)

Thus the average pro�t of the FMS is

PT (h;m) = cPT (h;m) � I(h;m)�M(h;m):
(11)

In the following section, we are going to give
some numerical demonstration of the our pro-
posed model.

3 Numerical Examples

In the following numerical examples, for sim-
plicity, we consider FMS with no permitted
backlog (i.e. m = 0) and zero rejection cost.
We let the demand arrival rate � be 3, the pro-
duction rate � of each machine be 1 and the
machine repairing rate � be 1. We also �x the
unit inventory cost cI , operating cost cO per
unit time, repairing cost cR per unit time, and
the unit product pro�t cP to be $5; $5; $20 and
$60 respectively.
In the �rst example, we demonstrate the re-

liability of machine is an important factor in
the performance of a FMS. We consider the

system performance by varying the value of ,
the machine breaking down rate. We test two
values of . The �rst case is  = 0:01 which
represents the case that the machine seldom
breaks down and is highly reliable. The sec-
ond case is  = 1, the machine is highly un-
reliable and breaks down very often. In the
numerical examples below, we �x the number
of machines s = 4 and vary the values of r
from 1 to 4. Using our proposed model and
the BGS algorithm in Appendix, we compute
the following tuples (TH; h; IT; PT ) for the
mentioned values of r and . Here TH is the
system throughput, h and IT are respectively
the optimal hedging point and the percentage
of machine idle time and PT is the optimal
average pro�t under the optimal HPP.

r  = 0:01  = 1

1 (2.77,5,30%,131.4) (0.98,23,0%,31.0)
2 (2.77,5,30%,132.2) (1.70,16,0%,55.2)
3 (2.77,5,30%,132.2) (1.95,14,0%,77.2)
4 (2.77,5,30%,132.3) (1.99,14,0%,93.4)

Table 1

From the numerical results above and many
other tested numerical examples, we observe
that under optimal HPP, for a given mainte-
nance level r, there are large deviations in av-
erage pro�t and machines idle time for di�er-
ent machine reliability . Thus the reliability
of machines should be taken in account in the
FMS modelling. We also observe that when
the machines are highly reliable ( = 0:01),
the number of maintenance facility can be kept
at a minimum level. However, when the ma-
chines are highly unreliable ( = 1), the num-
ber of maintenance facilities available is an
important factor for the system performance.
Furthermore, we also observed that the more
reliable the machines are, the less inventory
we need to keep in the system.
The second example is related to the de-

sign of the FMS. Suppose that in the FMS,



there can be only one maintenance facility, i.e.
r = 1. Moreover, due to limited capital, at
most four machines can be implemented in the
system and each machine has a failure rate 
of 1. Assuming the other systems parameters
are kept the same as in Example 1. What is
the optimal number of machines to be placed
in the system? Again use our proposed model
and the BGS algorithm in Appendix, we com-
pute the following results.

s = 1 s = 2

(0.8,26,0%,26.2) (0.5,27,0%,17.4)

s = 3 s = 4

(0.94,24,0%,29.9) (0.98,23,0%,31.0)

Table 2

In this case, the optimal number of machines
to be placed in the system is 4.
In the third example, we consider the prob-

lem of minimum maintenance facility. Sup-
pose there are eight (s = 8) moderate reliable
( = 0:1) in the FMS. Assuming the other
systems parameters are kept the same as in
Example 1. what is the optimal number of
maintenance facility should be placed in the
system?

Maintenance Performance
Facilities Measure

r = 1 (2.8,4,54%,112.2)
r = 2 (2.8,4,59%,117.9)
r = 3 (2.8,3,60%,123.1)
r = 4 (2.8,3,60%,124.6)
r = 5 (2.8,3,60%,124.9)
r = 6 (2.8,3,60%,124.9)
r = 7 (2.8,3,60%,124.9)
r = 8 (2.8,3,60%,124.9)

Table 3

In this case, the minimum number of mainte-
nance facility to be placed in the system is 5.
Further increase in maintenance facility does
not improve the performance of the FMS.

4 Summary

A Markovian multi-server queueing model is
proposed for exible manufacturing system of
multiple unreliable machines under HPP pol-
icy. A numerical algorithm, the BGS method
is presented to solve the steady state proba-
bility distribution. Advanced numerical meth-
ods based on preconditioned conjugate gradi-
ent methods for solving the probability vec-
tor can be found in [4, 10]. Numerical ex-
amples are given to demonstrate that the ma-
chine reliability and maintainability have im-
portant e�ects on the performance of the sys-
tem. Other applications of the model are also
illustrated.
Our proposed model can still cope with the

case when machines are not identical. It is in-
teresting to extend our model to non Marko-
vian repairing and production processes. For
example, our model can be extended to han-
dle the case when the repairing process is a
sequence of exponential distributed repairing
steps.

5 Appendix

Block Gauss-Seidel (BGS) Algorithm

A numerical algorithm namely Block Gauss-
Seidel (BGS) is proposed here to solve the
steady state probability distribution in (3). Let
p = (p0;p1; � � � ;ps)

t be the steady state prob-
ability distribution. Each vector pi is a n� 1
vector representing the steady state inventory
level when the number of normal machines in
the system is i. The BGS algorithm reads (see
Golub and van Loan [11] for more detail about
the algorithm):
Initialize p = (0; 0; � � � ; 0; 1)t;
Initialize error = 1;
While error > 10�10 do the following: (where
10�10 is the error tolerance)
for i = 1 to s do
pi�1 = ipi;



end;
ps = 0; (where 0 is the zero vector)
p0 =M�1

0 p0;
for i = 1 to s do
pi =M�1

i (pi + �min(s� i+ 1; r)pi�1);
end;
p = p=(1tp); ( where 1 is the column vector
with all entries being one)
error =

p
(Ap)t � (Ap);

end;

All the computations are done in a NEC
Celeron 300Hz notebook with MATLAB. We
remark that the BGS algorithm converges [11]
for our problem and the total computational
cost is around O(n2(s + 1)2), see [10] for in-
stance.
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