View metadata, citation and similar papers at core.ac.uk

-

P
brought to you by .{ CORE

Title On a Waring - Goldbach-type problem for fourth powers
Author(s) Ren, X; Tsang, KM
Citation Journal Of Number Theory, 2004, v. 108 n. 1, p. 90-110
Issued Date | 2004
URL http://hdl.handle.net/10722/156211
Rights Creative Commons: Attribution 3.0 Hong Kong License



https://core.ac.uk/display/37976816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On a Waring-Goldbach type problem for fourth powers

Xiumin Ren ' ? and Kai-Man Tsang *

Department of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong

!Supported by Post-Doctoral Fellowship of The University of Hong Kong.
2E-mail address: xmren@maths.hku.hk
3E-mail address: kmtsang@maths.hku.hk



Abstract

In this paper, we prove that every sufficiently large positive integer satisfying some neces-
sary congruence conditions can be represented by the sum of a fourth power of integer and

twelve fourth powers of prime numbers.
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1. STATMENT OF THE RESULT

One of the problems of the Waring-Goldbach type is to find the least positive integer s
such that every sufficiently large integer satisfying some necessary congruence conditions can
be expressed by the sum of s fourth powers of primes. The expected value of s is 5, but this
is far from reach by techniques developed so far. The present machinery in the circle method
has been able to establish s = 14 which is due to Kawada and Wooley [7]. Precisely, they
have proved that for all sufficiently large integers n = 14(mod240), the equation

n:p%+p§+...+p‘114

is solvable in primes p;.
On the other hand, concerning the corresponding Waring’s problem, Thanigasalam [12]

has proved that
n:mzll—i—m%—i—...—l—mili;

is solvable for every sufficiently large integer n with n = r(mod16) where 1 < r < 13. Here
m; are positive integers. The number of variables 13 has been reduced to 12 by Vaughan
[13]. Kawada and Wooley [6] can further reduce 12 to 11 except for » = 11(mod16). In this

paper, we consider the expression
n=m"+p! +pj+ ...+ pls, (1.1)

where m is a natural number and p; are primes. Our result is the following.

Theorem 1. The equation (1.1) is solvable for all sufficiently large integers n subject to
n = a(mod240) for any a €, (1.2)
where

2A = {12, 13, 28, 93, 108, 157, 172, 237}.

Notation. As usual, ¢(n) and A(n) stand for the function of Euler and von Mangoldt
respectively, and d(n) is the divisor function. We use y mod ¢ and x° mod ¢ to denote a
Dirichlet character and the principal character modulo ¢, and L(s,x) is the Dirichlet L-
function. In our context, the letter NV stands for a large positive integer, and L = log N. The
symbol r ~ R means R < r < 2R. The letters ¢ and A denote positive constants which are
arbitrarily small and arbitrarily large, respectively. We use ¢; to denote an absolute positive
constant. The letter ¢ denotes an unspecified positive constant which is not neccesarily the

same at each occurrence.
2. OUTLINE OF THE METHOD
Following [7], we introduce some notations. Let Ao = 13/16 and

M=X=1, A=X=2MXy, A5=2X=2A\3, (2.1)

A7 =Ag = 91N\2/111, A9 = ... = \jg = T8AZ/111, (2.2)
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=14+ A+ ..+ A12)/4 =222+, (2.3)

U=NY2 — U;=U i=12..,12 (2.4)
In order to apply the circle method, we set

P=U% Q=NPL (2.5)
Then by Dirichlet’s Lemma on rational approximations for each o € [1/Q,1 4 1/Q)], there

are coprime integers a, ¢ satisfying 1 < a < ¢ < @ and
a=a/qg+A,  |[A[<1/qQ. (2.6)
We denote by 9t(q, a) the set of all « satisfying (2.6). These intervals all lie in [1/Q,1+1/Q)]
and for ¢ < P they are mutually disjoint, since 2P < @. Let the major arcs 9 and the minor

arcs m be defined as follows:

m=J) U Maa), m=[1/Q1+1/Q\m

<p a=1
=7 o=

For W > 0, we define

S(a, W) = > A(m)e(m*a), and T(a,W)= Y  e(m'a), (2.7)
m~W m~W

where e(z) = €2™%. Let

R(n) = > A(my) -+ A(mya),

—mé 4 4 4
n=m +m1+m2+4.4+m12
m~U, m;~U;

which is the number of weighted representations of (1.1). Then we have

12

141/Q
R(n) = /1 B {H

=1

S(a,Ui)}T(a,U)e(—na)da: /m+ /m . (2.8)

To handle the integral on the major arcs, we need the following
Theorem 2. For all n with N/2 <n < N, we have

12
/zm {H S(a, UZ)} T(a,U)e(—na)doa = &(n)3(n) + O(NHLL™4), (2.9)
=1

Here &(n) is the singular series defined in (4.1) which satisfies
1< 6(n) <1 (2.10)
for n satisfying (1.2); while J(n) is defined by (4.10) and satisfies

N+t <« 3(n) < NP1 (2.11)

Proof of Theorem 1. We first establish the following estimate on the minor arcs.

12
/ {Hs(aan)}T(Oz,U)e(—na)da
™ Li=1

4

< N#mLOL (2.12)




For a =a/q+ A € m, we have P < ¢ < @ and |\| < 1/¢Q. If ¢ > U, then it follows from
Weyl’s inequality [14, Lemma 2.4] that |T'(o, U)| < U™/3+¢. If P < ¢ < U, we apply Lemmas
6.1-6.3 in [14], to get

q—l/4U

1/2+€ UP—1/4 U1/2+€ U9/10‘
T2 NN TN +q < + <

IT(c,U)| <

Thus we can conclude that

max |T(c, U)| < U1,

acm

On the other hand, a slight modification of Theorem 3 for j = 1 in Thanigasalam [12] (or [7,
Lemma 4.3]) reveals that

i

12

[ 5. r)

=1

da < (UUy - - - Upg) 20", (2.13)

Therefore

{HSaU} (o, U)e(—na)da

HSaU

< U9/10+€(U1U2 L. U12)1/2 < N“_l'OI,

<<InaX|To< U)| /

by (2.1)-(2.4). This proves (2.12) which in combination with Theorem 2 and (2.8) gives
R(n) = &(n)3(n) + O(N*1L=4).

Theorem 1 now follows by summing over dyadic intervals. [

The following sections will be devoted to the proof of Theorem 2.

3. AN EXPLICIT EXPRESSION

In this section, we will establish in Lemma 3.1 an explicit expression for the left-hand side

of (2.9). For x mod ¢, we define

4 am*
C(x,a) = Z xX(m)e <q> and C(q,a) = C(x°,a). (3.1)

m=1
Then Vinogradov’s bound gives [15, Chapter VI, problem 14 ]
IC(x,a)| < 2¢"2d(q)*. (3.2)
For W > 0 and o = a/q + A with (a,q) = 1, we have

i () 5 Atmeowt) + 0

1 m~W
)=1 m=h( mod q)
5
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Introducing Dirichlet characters to the above sum over m, one can rewrite S (a, W) as

Cla.a) Z e(dm?*) + Z Choa) Z (A(m)x(m) = 8y )e(Am?) + O(L?).

elg) =, N wla) =,

Here and throughout, d, = 1 or 0 according as x is the principal character or not.
By Lemma 4.8 in [11], one has, for 0 < W < U and a = a/q + A subject to (2.6),

S e(umd) = / eyt 0(1),
w

m~W

Thus if we denote by ®(\, W) the above integral and write

VA W) = ) (A(m)x(m) — 8 )e(Am?),

m~W
then
S (o, W) = S1(A\ W) + So(\, W) + O(L?),
where
_ Clg,a) _ C(x,a)
S (W) = o BN, W), SQ(A,W)—X%(] o Uy, \, W).

For T'(a,U), we apply Theorem 4.1 in [14] to get
T(a,U) =T (N + O(¢"/*%),

where

T\ = 5*(3’“)¢(A, U) with S*(¢,a ie <“m )
=1

Let A(\) be defined by

12 12
[T, Ui) =] S1(\U3) + A,
=1

and let )
= zq: ( ;) /UqQ {H& \U;) } Ae(—nA)dA,

q<P a=1 1/QQ
< D=1

J=> Z < )/WQ AT (N)e(—nX)dA.

g<P a=1 -1/¢Q
(a,q)=1

Then we have

/ {HS‘“U } (o, U)e(~ nooda:I+J+o{p1/2+z-:/1
0

where, by (2.13) and (2.1)-(2.5), the above O-term is

< UYL Uy - - - Upg) V2 < NF1LA,
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Therefore we have proved the following.
Lemma 3.1. For all n with N/2 < n < N, we have

/ {HSa U;) } a,Ue(— ”a)da:I%—J—I—O(N“_lL—A).

In the following sections we will prove that I produces the main term, while J contributes

to the error term.

4. ESTIMATION OF [

Let C(q,a) and S*(g,a) be defined by (3.1) and (3.5), respectively. We define

q

B(n,q)= > e <—aqn> C"(q,a)5"(q,a),

and write

Ay = 20D () =3 A, g). (4.1)

q=1
Lemma 4.1. The singular series &(n) is absolutely convergent and satisfies (2.10).

Proof. By (3.2) and the well known bound [S*(g, a)| < ¢*/**¢, one easily obtains
[A(n, q)| < g~ 2/4t. (4.2)

Therefore the singular series is absolutely convergent and satisfies the second inequality in

(2.10). Moreover we have

Y Aln,q) = &(n) + O(P17/4), (4.3)

q<P

To prove the first inequality in (2.10), we first note that A(n,q) is multiplicative with
respect to q. We next prove that

An,p") =0 for t>a, (4.4)

where

|2, if p>3,
0‘_{ 5 if p=2.

Actually, when (a,p) = 1 and ¢ > 2, we have

i—1

Pt p—1 p i 1 4
. +m
Clia) = (2 ) > ¥ (> )
(=1 O (et
p=lop dakm3p~! + am? n am*\ 22 [ 4ak
= XX (M) S (M) e (M) )

=0 m=1 p m=1 /= \P

(m,p)=1 (m,p)=1



When p > 3, the inner sum is 0, and hence A(n,p’) = 0. When p = 2 and i > 5, it follows
from (4.5) that

21'—1 4 2271 2i—3 i—3 4
; am a(k2'=° +m)
cew =2 Y o)=Y X ()

m=1 k:[) m=1
(m,2)=1 (m,2)=1
21'—3 4 1
am ak
m=1 —
(m,2)=1 k=0

Thus A(n,2%) = 0 for 4 > 5. This proves (4.4).
By (4.4) and the multiplicity of A(n,q), we can now write

S(n) = (1 + A(n,2) + A(n, 22) + A(n, 23) + A(n, 24)) H (1+ A(n,p)). (4.6)
p>2
Since S*(p,a) = C(p,a) + 1 and |C(p,a)| < 8p'/2, by (3.2), we have
13,11/2 | Q125
S THSR
(p—DM

where c¢; is some positive constant. Hence

I[] @+ A(n.p) =c>o0. (4.7)

p>c1

|A(n7p)| < when D > C1,

On the other hand, we have

M(2%n
14 A(n,2) 4+ A(n,2%) + A(n,2°) + A(n,2") = (236)
and for p > 2,
_ M(p,n)
1+ A(n,p) = (p— 112

Here M (p’,n) is the number of solutions of the congruence
m? +m] 4+ mi + ... + miy = n(modp’)
subject to
1<m<yp/, 1<m;y<p’ with ptm; i=1,2,..,12.

By Lemma 8.8 in [3], we deduce that M (p,n) > 0 for all n and p > 7, and therefore

II a+AMmp)=e>o0. (4.8)

7<p<c

Moreover, a direct investigation reveals that M (2%, n) > 0 for n = 12, 13( mod 16); M (3,n) >
0 forn=0, 1 (mod 3) and M(5,n) > 0 for n = £2 (mod 5). These estimates together with
(4.6)-(4.8) prove that for n satisfying (1.2), &(n) > ¢4 > 0. Lemma 4.1 is thus established. [J

Lemma 4.2. Let I be defined by (3.7). Then for alln € [N/2, N] subject to (1.2), we have

I =6(n)3(n) + O(NFLL=4),
8



where J(n) is defined by (4.10) and satisfies (2.11).

Proof. By definition we have

1/qQ (12
=Y A(n,q)/ {H (N, Ui)} B\, U)e(—nA)dA. (4.9)
q<P —1/4Q ;=1
Let
s (12
I(n) :/ {H @(A,Ui)} DN, U)e(—nA)dA. (4.10)
% li=1
On using the elementary estimate
, 1
|®(A, V)| < min (I/V, W’) , (4.11)
one easily obtains
12
U3U3 - Uljs NH
O\ U;) p @\, U) < < . 4.12
{kH ( )} e SRR P VT A (N PV (412

It therefore follows that

12

o I

k=1

(N, U;)

* dA
o N# e < NPT (gQ/N)?.
PO U <N [ < N @)

Thus
1/9Q (12
/ {H 2 Ui>} (N, U)e(=nA)dA = 3(n) + O(N* "' P~2¢?).
71/(]@ k=1

Putting this in (4.9) and then making use of (4.3) and (4.2), we get

I = 3(n)Y A(ng) +ON*1P 23" ?|A(n,q)|)

q<P q<P
= 3(n)&(n) + O(N*1P2), (4.13)

subject to the validity of (2.11). Now it remains to check (2.11) of which the second inequality
is an immediate derivation of (4.12). To prove the first inequality, we apply Fourier’s integral

formula to get

1 _ _ _
J(n) = iE /D Uy 3/4u2 3/4. 'u123/4u73/4du1du2 - duqa,

where u =n —u; — ... — w12, and D is the set of all vectors (uq,ug, ..., u12) subject to
Ut <u; < (2U;)%, and U* <u< (20)4
Let D* be the set of those vectors (uj,ug, ..., u12) such that

Ut <u; < (3U;/2)* for i=1, 2,..,12.
9



Then it is easy to check that U* < u < (2U)% holds for (u1,us,...,u12) € D*. This means
that D* is a nonempty subset of D, and hence

J(n) > / u173/4u273/4~'u;23/4u_3/4du1du2--~du12
D*

> UUUy - Upg > NFL

This proves (2.11), and hence finishes the proof of Lemma 4.2. [J

5. ESTIMATION OF J
Lemma 5.1. Let J be as defined in (3.8). Then we have

J < NH-1p=4A,

To prove Lemma 5.1, we need the following lemma whose proof will be given in the next
section.

Lemma 5.2. Let W >1, R>1 and 1 < q < W with d > 1. Then for k>1 and A € R
subject to |\|W* < R, we have

D

x mod g

> Alm)x(m)e(rm")

< {(R+(WR)1/2) q+W4/5q1/2+W}LC. (5.1)
m~W

Proof of Lemma 5.1. In view of (3.6) and (3.8), we see that J consists 3'2 — 1 terms of

the form

3 Zq: e<—“;> /l/qQ {ﬁE()\,Ui)}T(/\)e(—n)\)d)\,

g<P a=1 1/4Q ;=1
- (a,q9)=1

where E(\,U;) = S1(\, U;), S2(A\, U;) or L? with the exception that E(\, U;) = S1(\, U;) holds
for all : =1, 2, ..., 12. Here S1(\,U;), S2(X, U;) are defined by (3.4). On using (3.2), we see
that

EW\U) < ¢ V2l Uy),

where H (), U;) represents any one of the following three expressions

LIPW AT L 70V WA L

x mod g
Using the well known bound S*(¢,a) < ¢3/*t¢ in (3.5), we also see that
TN < g Ve[ (\ U)).
Therefore we get
21/4+ = 1/eQ
J < q ¢ max H(\U; / DN, U)|dA,
s e (o) [ woo

where H(X\,U;) # |®(\, U;)| happens for at least one of i = 1, 2, ...,12. Without loss of

generality, we assume H (A, Uz) # |®(A, U2)|.
10



By (4.11) one easily obtains

1/qQ )
/ |®(\, U)|d\ < UT3L,
—1/4qQ

and hence
12
J < UBLY ¢ ?Y** max H\U;
qZI:D [A<1/4Q }_[1 ( )
= U_3L (Jl + JQ) . (52)

Here J; and J, represent sums over ¢ < L? and L? < ¢ < P, respectively with B = 4A. So

to prove Lemma 5.1, we only need to prove that
Ji, Jo K UrUs -+~ Upa L™
One notes that for |A\| < 1/¢Q,
INUL < P/q, for i=1,2; and MU <1, for i=3, 4,..,12.

Therefore it follows by trivial estaimates and Lemma 5.2 that for ¢ < P = U?/5,
H\ U, HO\Us) < {(qu)l/2 + U2 4 U}LC < ULS, (5.3)

and
HOU) < {qu/2 + g 2UM 4 Ui} L¢ for i=3,4,..,12. (5.4)

Thus we have
12
Jo < UUs - - Upp L° Z q—21/4+a H(qUi_1/2 + ql/QUi_l/B i 1)
LB<q<P =3
Let
M3 = g4 = (1 — )\0)/2, Wi = 1— 5)\1/4 for i > 5,
where \; are defined by (2.1) and (2.2). Here p; are so chosen that for 1 < ¢ < P,

iU+ g PUT P 1) <1, for i=3,4,..,12.
Write
p*=21/4 — (ug+ ... + p12) = 2.38 - - - .
Then
Jo KUWUp -+ Upl® Y q " < UhUy-- UL~ (5.5)
LB<qg<P

Now we turn to Ji. For ¢ < LP, we see from (5.3) and (5.4) that H(\, U;) < U;L° for
i1=1, 3, 4,...,12. Hence
Ji < U Us--- U L® Z ¢ 2/ max H(A,Us), (5.6)
o<LB [AI<1/4@Q

11



where H(A, Uz) = >°, 110a 4P (X, A, U2)| or q*/*L?, by assumption. The desired assertion is
obvious if H(X,Us) = ¢'/?L?. Otherwise we recall the explicit formula [1, §17, (9)-(10); §19,

(4)-(9)]:

xP z(log qxT)?
Z A(m)x(m) = 0yx — Z —+0 <T> ,

m<x vI<T P

where 2 < T' < z is a parameter and p = § + iy is a typical nontrivial zero of the Dirichlet
L-function L(s,x). Let T = PLP. Then by integrating by parts,

2U5
VOGN = / eut)d 3 (A(m)x(m) — 6y)

U2 m<u

2U3
= - ) / wre(Mut)du + O (UPL*B(1 + |M\U3))
hi<pLe U2

< Y US+Ug 'L
[v|I<PLB

Thus we get

HM\U) < Uy Y Y U + LB,
x mod ¢ |y|<PLB

By Satz VIIIL.6.2 of Prachar [8] and Siegel’s theorem [1, §21], there exists a positive constant

cs such that for ¢ < LB ] L(s, x) is zero-free in the region

x mod g
o >1—¢s/max{logq, log*/° z}, |t] < x.

Let n(N) = ¢s log~*/® N. By integrating by parts, and then making use of the following

well-known zero-density estimates (see for example [4, (1.1)] and [5, Theorem 1])

> N 1) < (@)900, 1p <o <,
x mod g

we have for ¢ < LB,

HO\Uy) < Uy max  (Pr2B)PH0 oty g 24
1/2<0<1-n(N)

< Uy max (]2(0_1)/30 + UQL_2A
1/2<o<1-n(N)

& Uyexp(—cgLY?) + UsL724 <« Uy L 724,
This together with (5.6) prove
Ji < UUy - - Upp L4,

With this, Lemma 5.1 follows from (5.2) and (5.5). O
12



6. PROOF OF LEMMA 5.2.

Let M > 1 be a real number. For j = 1,...,10, let M; be positive integers such that
2710M < My My <2M, and 2Ms,...,2My < (2M)'/°. (6.1)
For a positive integer m, let
logm, if j=1,
aj(m) =< 1, if j=2,..,5, (6.2)
u(m), if j=6,...,10.

We define the following functions of a complex variable s:

fis0 = S S p ) = s o) (63)

ms
mn~M;

To prove Lemma 5.2, we need the following mean value estimate for F'(1/2 + it, x).
Lemma 6.1. Letd>1 andg>1. For2<T <MY and 1< q < Md, we have

> / (1/2 +it, x)| dt < {qT + (qT)/*M3/10 + MV/2}Le. (6.4)
Xmodq -
x#x0

To prove Lemma 6.1, we quote the following two well known results (see for example [10,
Theorems 2.5 and 3.17]).
Lemma 6.2. Letq>1,T > 1, My > 1 and D > 1. Let a,, be complex numbers. Then

we have
Mo-',-D a ) 2 Mo+D
3 / X | Gy ST (T ) a2
x mod q” ~* Im=My m=DMy

Lemma 6.3. Let ag =5 and a; = 9. Then forq>2,T >2 andv =0, 1, we have

$ / )(1/2 + it, X)] dt < qT log® (qT).

x mod g

Proposition 6.4. If there exist M; and M; with 1 < i < j <5 such that M;M; > M2/5,
then (6.4) is true.

Proof. Without loss of generality, we may suppose that ¢ = 1 and j = 2. Using Perron’s
summation formula [11, Lemma 3.12] and then shifting the path of integration to the left, we
get for x # Xo

1 1/241/L+iTy (2M1)w

L 2+it,x) = —— L'(1/2 + it +w, )
210 J1 241/ L—iTy w

1 —iTp iTt 1/241/L+iTy
R Y
2mi | Jijo41/-iry  J-imy  Jim
13
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(2M1)" — My

where Ty = M9, One notes that the function -

w = 0. Thus, on the above vertical segment from —iTy to i1y, we have

has a removable singularity at

2IM w __Jv[iv 1
(200)" L « .
v 1+ ||

On using the well-known bounds (see for example [9, pp.271, Exercise 6 and pp.269, (13)]):
Forg>1, x #x% and v > 0,

LW (o +it,x) < log®™* V) (q(Jt] +2)) max{l, q<1—0>/21tyl—0}, o >0,

we see that the contribution from the two horizontal segments is

< L? max U202y 4 e/ T < L2(]1/4T0_1/2 < 1,
0<u<l1/2+1/L

since ¢ < M? < Ty. Therefore we get

Ty i
fi(/2+it, x) < / L/ (1/2 + it + iv, X)| ——— + L%,
—To 1 + |’U|
and by Hélder’s inequality,
T
> [ ozt
x mod ¢ =T
x#x0
T dudt
<L / / L'(1/2+it +iv,x)|" —— + O(qT'L?). 6.5
jz: =T —YB‘ ( / )‘ 1‘+’U| ( ) ( )

x mod g

Write ff%o = f\v|<2T+f2T<\v|<To' Then the first term in (6.5) splits into two quantities,
which we denote by X and Y, respectively. By Lemma 6.3, we have

5 2T dv T+v , 4
Py L L' (1/2+1 d
LS Z /—2T L+ vl Joryy } (1/2+w, X)’ v

3T
< 'Y L/ (1/2 + iw, x)|* dw < ¢T L',

x mod ¢ —3T

As regards Xy, let v = w — t. Note that 2T < |w —t| < Tp and [¢t| < T imply |w — t| > |w|/2
and T < |w| < 2Tp. Therefore

2Ty dw
Y < TL / L' (1/2 + iw, )|
x mod g
< TL' max — > = L (1/2 + iw, x)|* dw < T L™
T<X<To X X ’ '
x mod g
by Lemma 6.3. Collecting these estimates, we get
T
> / |1 (1/2 4 it, x)|* dt < qTL*3. (6.6)
x mod g =T
x#x0

14



A similar argument also leads to

T
Ej/ |f2 (1/2 4 it, x)[* dt < qTL°. (6.7)
-T

x mod g
x#x0

On the other hand, we have

1 b(m)x(m)
Hfj(1/2+it,X): Z T2t
Jj=3 M3---M1o<m<28 M3z---Mio

where |b(m)| < dg(m). Thus by Lemma 6.2,

T | 10 2
3 / 15 (/2 +it, )| dt
x mod g =T j:3
x#xY
< > (qT +m) ds(m) < <qT + M3/5) L* (6.8)
m b

Ms--M1o<m<28Ms---Mig

since Mg --- Myg < M/(MyMy) < M3/>. Writing
10
F(1/2+it,x) = fr(1/2+it,x) f2 (1/2+it,x) [ ] £5 (1/2 + it, x) ,

Jj=3

then by Holder’s inequality and (6.6)-(6.8), we get

2T
> /} |F(1/2 +it, x)|dt

x mod g
x#xY
1/4
2 oT or| 10 2 1/2
<< 11 / £ (1/2 + it x)[* dt / [1# a/2+itx)| dt
j:l x mod g T x mod g T j:3
x#x0 x#x0

1/2
< (qT)Y? <qT + M3/5) I¢ < (qT n (qT)1/2M3/10) Ic

This proves Proposition 6.4. [
Proposition 6.5. If there is a partition {J1, J2} of the set {1,...,10} such that

1T A5 + T M5 < M35,
VIS JEJ2

then (6.4) is true.
Proof. For v = 1,2, define

Fy(s,x) = [ fitsx) = > M,

ns
]GJU nSNl/
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where N, =[], (2M;) and by (n) < Ldig(n). By Lemma 6.2, we have

2T
Z/ |Fy(1/2 +it, X)) <<ZqT+n )| < (qT + N1) L,

x mod g n<N1
x#x0
and similarly
2T
Z / |Fy (1/2 +it, x))* < (¢T + Np)L°.
x mod ¢
x#x0
Write F(s,x) = Fi(s, x)Fa2(s, x). Then by Cauchy’s inequality we get
2T
> / F(1/24it,x)|dt < (¢T + N)Y? (qT + Ny)Y? L¢

x mod q
x#x0

< (qT+ (qT)1/2M3/10—1—M1/2) e
since N1 + Ny < M3/5, and NN, <« M. This proves Proposition 6.5. []

Proof of Lemma 6.1. In view of Proposition 6.4, we may assume that M;M; < M?/5
for all 7,5 with 1 <14 < j < 5. It follows that there is at most one M; with 1 < j < 5 such
that M; > M /5 Without loss of generality, we can suppose this exceptional M; is My, so
we have M; < MY5 for j = 2,...,5, and also for j = 6, ..., 10, by assumption. Let [ be the
integer with 2 <1 < 8 such that

My My < M?5, but M- My, > M5,

Let J; = {1,2,..,1+ 1} and Jy = {l + 2,...,10}. And write Ny = M;---M;;; and Ny =
M- Myg. Then we have

M?*P® <« Ny < M?PMyy < M?PMYP < M3°, and Ny < M/N; < M3/5.

This proves Ny + Ny < M3/5_ i.e. the assumption of Proposition 6.5 is satisfied. Lemma 6.1
thus follows. O

Proof of Lemma 5.2. For W > 0, one has

Z ZA e(Amk)

x mod q Im~W

_‘ D> Am)edmF)| + DT [>T Am)x(m)e(Am")|. (6.9)
m~W x mod q [m~W
(m,q)=1 X#X

Obviously the first term is bounded by W. By integrating by parts, we have

2W
ZA Ye(AmF) = / e(MP)d Z A(m
m~W w W<m<u
16



Now we apply Heath-Brown'’s identity [2, Lemma 1] for &k = 5 which states that for m < 2W,

5 /e .
A(m)zz(.)<—1>f S (logma)ulmys) - plmay).

J

my-mgg=m

Jj=1
Miqsme;<(2W)H/5

With this, the sum > -, <, A(m)x(m) decomposes into a linear combination of O(L'"Y)

terms, each of which is of the form

SwM)= > - > ay(ma)x(ma)---ai(mio)x(mao),

my~M; mio~Mig
W<my--mio<u
where a;(m) are given by (6.2), and M; are positive integers satisfying (6.1) with M = W.
Here M denotes the vector (Mj, Ma, ..., Mjg). We notice that for j = 1, 2, ...,10, the
function f;(s,x) in (6.3) is a finite sum and has no poles for ¢ > 1/2. So by applying
Perron’s summation formula and then shifting the contour to the left, the above X'(u; M)
becomes
1 1+1/L+iT1 us — W

— F(s,x)———ds+ O (L?
2mi 1+1/L—iTy (%) s ( )

1 1/2—iT 1/24iT1 14+1/L+iT
=— / + / + / +0 (L%,
2mi 1+1/L—iTy 1/2—iTy 1/2+iTy
where T = 4kw(R + W). The integral on the two horizontal segments above is bounded by

,LLCT
ma; Flo£ily,x)| = < L,
1/2§a§1x+1/L‘ (o ! X)’Tl

since W < u < 2W and

10 10
|F(o iy, x)| < [ Ifi(c £iT, )| < LT[ M}~ < W7 L.
j=1 j=1
Thus we get
1 T u1/2+it - Wl/Q"rit
D(u; M) = — F(1/2 +it dt + O(L?).
(us M) 27r/T1 (1/2-+ i) et + O(12)

And therefore

2w
/ e(AuF)d X (u; M)
w
1 Ty 2W )
F(l/2—|—z’t,x)/ w2 e (b )dudt + (1 + |(NWF)L2.
w

17
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Here by making use of Lemmas 4.3 and 4.5 in [11], the inner integral is

1 1
min [t + 2kmAv|’ + [¢]
Wk<o<(2W)k

L if |t| < 4k7R

< Wl2) i+’ - ’
T if |t| > 4k7R,

[t

< Wl? min{

since |\|[W* < R. Therefore we have

ST T A W)

x mod ¢
x#x0

dt

M Xmodq \<4k;7rR
x#x0

+WY N / F(1/2 + it, X)\ 7 by qRrL™.

M x mod g k:71'R<|t|<T1
x#x0

By Lemma 6.1, we have

dt
3 / PO+ 0] e

X"wdq |<4ka
x#x0

1

F(1/2+1it dt
ISTI"nSaQ)IiﬂRm ‘ ( / +1 7X)’

T<|t|<2T

<L

x mod ¢
x#x0

1
< max —— (qT+ (qT)1/2W3/10 + W1/2) Ic
1<T<2knR \/1+T

< (qR1/2 Jr(]1/21/1/3/10 + W1/2> Ic.
Similarly we have

Z / 1/2+’Lt X)| dt <q+q1/2w3/10R*1/2 +W1/2R*1) Lc
ot 4k7rR<\t|<T1 |t|

x#x0

These estimates together with (6.9) show that

> 1D Am)x(m)e(Am”)

< {(R + (WR)1/2> g+ WHog% 4 W}LC
x mod q Im~W

This finishes the proof of Lemma 5.2. [J
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