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AUTOMORPHIC ORBIT PROBLEM FOR
POLYNOMIAL ALGEBRAS

JIE-TAI YU

Abstract. It is proved that every endomorphism preserving the au-
tomorphic orbit of a nontrivial element of the rank two polynomial
algebra over the complex number field is an automorphism.

1. Introduction and the main results

In [13], Shpilrain raised the following

Problem 1.1. (Automorphic orbit problem for free groups) Let
Fn be the free group of rank n, u ∈ Fn − {e}, φ an endomorphism of
Fn preserving the automorphic orbit of u in Fn, i.e. for each auto-
morphism α of Fn, there exists an automorphism β of Fn, such that
φ(α(u)) = β(u). Is φ an automorphism of Fn?

Problem 1.1 is solved affirmatively for n = 2 by Shpilrain [14] and
Ivanov [7], and completely solved in the positive by D.Lee [6]. The
automorphic orbit problem is solved affirmatively by A.A.Mikhalev
and J.-T.Yu [12] for free Lie algebras, and solved affirmatively by
A.A.Mikhalev, U.Umirbaev and J.-T.Yu for free non-associative alge-
bras.

In the sequel all automorphisms (endomorphisms) of a polynomial al-
gebra over a fieldK are alwaysK-automorphisms (K-endomorphisms).
In view of Problem 1.1, it is natural and interesting to raise

Problem 1.2. (Automorphic orbit problem for polynomial al-
gebras) Let Pn be the polynomial algebra of rank n over a field K,
p ∈ Pn − K, φ an endomorphism of Pn preserving the automorphic
orbit of p in Pn. Is φ an automorphism of Pn?

Recall that a polynomial p ∈ Pn is a coordinate if there exists an
automorphism ψ of Pn taking x1 to p. A special case of Problem 1.1
when u is a coordinate of Pn is the following
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Problem 1.3 (Coordinate preserving problem). Let Pn be the
polynomial algebra of rank n over a field K. Is every endomorphism φ
of Pn taking all coordinates of Pn to coordinates an automorphism ?

Problem 1.3 is solved affirmatively for n = 2 when K is an arbitrary
field by van den Essen and Shpilrain [3], and is solved affirmatively for
arbitrary n when K is an algebraically closed field of zero characteristic
by Jelonek [8].
In this paper we solve Problem 1.2 for n = 2 when K is the complex
number field:

Theorem 1.4. Let p ∈ C[x, y] − C, φ an endomorphism of C[x, y]
preserving the automorphic orbit of p. Then φ is an automorphism of
C[x, y].

Recall the outer rank k of a polynomial p ∈ Pn is the minimal number
k such that under an automorphism φ of Pn, φ(p) ∈ Pk. See Shpilrain
and J.-T. Yu [15]. In our proof of Theorem 1.4, it is crucial to use the
result below based on a theorem of Shpilrain and J.-T.Yu [17], which
has its own interest.

Theorem 1.5. Let p ∈ C[x, y] has outer rank 2. Then p is a test
polynomial recognizing automorphisms among injective endomorphisms
of C[x, y]. Or, more precisely, if φ is an injective endomorphism of
C[x, y] such that φ(p) = p, then φ is an automorphism.

The above theorem can be viewed as an analogue of a result of Turner
[18] for free groups.

2. Preliminaries

First let us recall test polynomials and retracts of polynomial algebras.
See [4, 5, 9, 10, 16, 17].
A polynomial p ∈ Pn is called a test polynomial, if, for any endo-
morphism φ of Pn, φ(p) = p implies that φ is an automorphism. A
subalgebra R of Pn is called a retract if there is a idempotent homo-
morphism (π is called the retraction from Pn to R) π of Pn such that
π(Pn) = R. By a theorem of Costa [1], every proper retract of K[x, y]
(a retract of K[x, y] different from K and K[x, y]) is of the form K[p]
for some p ∈ K[x, y] for arbitrary field K. Recently Shpilrain and J.-
T.Yu [16, 17] have shown the close connection among test polynomials,
retracts, and the Jacobian conjecture. See also [2, 10].

Lemma 2.1 (Shpilrain and J.-T.Yu [16]). Let K be a field of zero
characteristic. A polynomial r ∈ K[x, y] generates a proper retract



AUTOMORPHIC ORBIT PROBLEM 3

of K[x, y] if and only if there is an automorphism α of K[x, y] such
that α(r) = x + yq for some q ∈ K[x, y]. Moreover, under the above
condition the retraction from C[x, y] to C[r] is α−1πα, where π is the
retraction of C[x, y] to C[x+yq] defined by π(x) = x+yq and π(y) = 0.

The next lemma is based on the main theorem and its proof in Drensky
and J.-T.Yu [4].

Lemma 2.2. A polynomial p ∈ C[x, y] belongs to a proper retract C[r]
if and only if p is fixed by a non-injective endomorphism φ of C[x, y].
Moreover, under the above condition, if p = f(r), f(t) ∈ C[t] − C,
deg(f) = m, then π = φm is the retraction from C[x, y] to C[r].

Proof. The first sentence is just the Theorem in [4]. Moreover, in the
proof of the Theorem in [4], it is actually proved that π = φm is the
retraction from C[x, y] to C[r] with m = [C(r) : C(p)]. By elementary
algebra, m = deg(f), where f ∈ K[t], and p = f(r). �

Lemma 2.3. Let K be an arbitrary field, u ∈ K[x, y] with outer rank
1, φ an endomorphism preserving the automorphic orbit of u. Then φ
is an automorphism.

Proof. Write u = f(p), where f ∈ K[t], p is a coordinate of K[x, y].
We may assume p = x. For any automorphism α, φα(f(x)) = β(f(x))
for some automorphism β. Hence β−1φα(f(x)) = f(x), therefore
f(β−1φα(x)) = f(x). Let β−1φα(x) = g(x, y). Compare the degrees of
y in both sides of f(g(x, y)) = f(x), g(x, y) = g(x, 0) = h(x) ∈ K[x].
Compare the degrees in both sides of f(h(x)) = f(x), deg(h(x)) = 1,
that forces h(x) = β−1φα(x) = cx, hence φα(x) = β(cx) for some
c ∈ K∗ (in fact c can only be some m-th root of unity, m = deg(f), but
we do not need that). Therefore φ preserves coordinates of K[x, y]. By
a result of Shpilrain and van den Essen [3], φ is an automorphism. �

Lemma 2.4. Let K be an arbitrary field, p ∈ Pn = K[x1, . . . , xn]
a test polynomial. Then every endomorphism φ of Pn preserving the
automorphic orbit of p is an automorphism.

Proof. Since φ(p) = α(p) for some automorphism α of Pn, α−1φ(p) = p,
as p is a test polynomial, α−1φ, hence φ, is an automorphism. �

The following lemma is the main result of Shpilrain and J.-T. Yu [17].

Lemma 2.5. A polynomial p ∈ C[x, y] is a test polynomial if and only
if p does not belong to any proper retract of C[x, y].
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3. Proof of the main results

Proof of Theorem 1.5. Let p ∈ C[x, y] has outer rank 2, φ an
injective endomorphism such that φ(p) = p. Suppose on the contrary,
φ is not an automorphism, then by Theorem 2 in [17], p has outer rank
1. This contradiction completes the proof.

Proof of Theorem 1.4. We may assume φ(p) = p. By Lemma 2.4,
we may assume p is not a test polynomial. By Lemma 2.5, we may
assume p belongs to a proper retract C[r] of C[x, y]. By Lemma 2.3,
we may assume p has outer rank 2. By Theorem 1.5, we may assume
φ is non-injective. Suppose p = f(r), where f ∈ C[t]−C, deg(f) = m.
By Lemma 2.2, π = φm is the retraction from C[x, y] to C[r]. As
φ preserves the automorphic orbit of p, so does π = φm. Applying
Lemma 2.1 (suppose α(r) = x + yq(x, y), where q(x, y) /∈ K[y], α is
some automorphism of C[x, y], replace r by α(r), and π by απα−1), we
have reduced our proof to the proof of the following

Lemma 3.1. Let r = x + yq(x, y), where q(x, y) ∈ C[x, y], q(x, y) /∈
C[y], π the retraction of C[x, y] to C[r] defined by π(x) = x+ yq(x, y),
φ(y) = 0, f ∈ C[t] − C. Then π does not preserve the automorphic
orbit of f(r).

Proof. Suppose on the contrary, π preserves the automorphic orbit of
f(r). Then for any automorphism α of C[x, y], πα(f(r)) = β(f(r)) ∈
C[r] for some automorphim β of C[x, y]. Note that πβ(f(r)) = β(f(r)).
By Lemma 2.2, πdeg(f) = π is the retraction from C[x, y] to the re-
tract C[β(r)] taking β(r) to β(r). By hypothesis, π is also the re-
traction of C[x, y] to the retract C[r] taking r to r. This forces that
β(r) = r. Therefore β(x+ yq(x, y)) = x+ yq(x, y). Subsituting y = 0,
β(x) = x. Hence β(yq(x, y)) = yq(x, y). But β is an automorphism,
so β(y) = cy + h(x) where c ∈ C∗, h(x) ∈ C[x]. It follows easily that
β(y) = y, β is the identity automorphism. We have conculde that for
all automorphisms α of C[x, y], πα(f(r)) = f(r). Let M be a positive
integer greater than deg(q(x, y)), it is easy to see that xM − y does
not divide q(x, y) in C[x, y]. Let α be the automorphism of C[x, y]
defined by α(x) = x, α(y) = y + xM . Then easy calculation shows
that πα(f(r)) = f(r+ rMq(r, rM)). As xM − y does not divide q(x, y),
q(r, rM) 6= 0. Therefore πα(f(r)) = f(r + rMq(r, rM)) 6= f(r). This
contradiction completes the proof. �
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Algebra 197 (1997) 546-558.

[16] V.Shpilrain, J.-T.Yu, Polynomial retracts and the Jacobian conjecture,
Tran.Amer.Math.Soc. 352 (2000) 477-484.

[17] V.Shpilrain, J.-T.Yu, Test polynomials, retracts, and the Jacobian conjecture,
in Affine Algebraic Geometry, Contemp. Math. 369 (2005) 253-259, Amer.
Math. Soc. Series, Providence, RI.

[18] E.Turner, Test words for automorphisms of free groups, Bull.London.Math.Soc.
28 (1996) 255-263.

Department of Mathematics, The University of Hong Kong, Hong
Kong SAR, CHINA

E-mail address: yujt@hkucc.hku.hk, yujietai@yahoo.com


