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AUTOMORPHIC ORBIT PROBLEM FOR
POLYNOMIAL ALGEBRAS

JIE-TAI YU

Abstract. It is proved that every endomorphism preserving the au-
tomorphic orbit of a nontrivial element of the rank two polynomial
algebra over the complex number field is an automorphism.

1. Introduction and the main results

In [13], Shpilrain raised the following

Problem 1.1. (Automorphic orbit problem for free groups) Let
F,, be the free group of rank n, u € F,, — {e}, ¢ an endomorphism of
F,, preserving the automorphic orbit of u in F,, i.e. for each auto-

morphism a of F,, there exists an automorphism [ of F,, such that
d(a(u)) = B(u). Is ¢ an automorphism of F,,?

Problem 1.1 is solved affirmatively for n = 2 by Shpilrain [14] and
Ivanov [7], and completely solved in the positive by D.Lee [6]. The
automorphic orbit problem is solved affirmatively by A.A.Mikhalev
and J.-T.Yu [12] for free Lie algebras, and solved affirmatively by
A.A . Mikhalev, U.Umirbaev and J.-T.Yu for free non-associative alge-
bras.

In the sequel all automorphisms (endomorphisms) of a polynomial al-
gebra over a field K are always K-automorphisms (K-endomorphisms).
In view of Problem 1.1, it is natural and interesting to raise

Problem 1.2. (Automorphic orbit problem for polynomial al-
gebras) Let P, be the polynomial algebra of rank n over a field K,
p € P, — K, ¢ an endomorphism of P, preserving the automorphic
orbit of p in P,. Is ¢ an automorphism of P, ?

Recall that a polynomial p € P, is a coordinate if there exists an
automorphism 1 of P, taking z; to p. A special case of Problem 1.1
when w is a coordinate of P, is the following
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Problem 1.3 (Coordinate preserving problem). Let P, be the
polynomial algebra of rank n over a field K. Is every endomorphism ¢
of P, taking all coordinates of P, to coordinates an automorphism ¢

Problem 1.3 is solved affirmatively for n = 2 when K is an arbitrary
field by van den Essen and Shpilrain [3], and is solved affirmatively for
arbitrary n when K is an algebraically closed field of zero characteristic
by Jelonek [8].

In this paper we solve Problem 1.2 for n = 2 when K is the complex
number field:

Theorem 1.4. Let p € Clz,y] — C, ¢ an endomorphism of Clz,y]
preserving the automorphic orbit of p. Then ¢ is an automorphism of

Clz, y].

Recall the outer rank k of a polynomial p € P, is the minimal number
k such that under an automorphism ¢ of P,, ¢(p) € Py. See Shpilrain
and J.-T. Yu [15]. In our proof of Theorem 1.4, it is crucial to use the
result below based on a theorem of Shpilrain and J.-T.Yu [17], which
has its own interest.

Theorem 1.5. Let p € Clx,y| has outer rank 2. Then p is a test
polynomial recognizing automorphisms among injective endomorphisms
of Clz,y]. Or, more precisely, if ¢ is an injective endomorphism of
Clx,y] such that ¢(p) = p, then ¢ is an automorphism.

The above theorem can be viewed as an analogue of a result of Turner
[18] for free groups.

2. Preliminaries

First let us recall test polynomials and retracts of polynomial algebras.
See [4, 5, 9, 10, 16, 17].

A polynomial p € P, is called a test polynomial, if, for any endo-
morphism ¢ of P,, ¢(p) = p implies that ¢ is an automorphism. A
subalgebra R of P, is called a retract if there is a idempotent homo-
morphism (7 is called the retraction from P, to R) m of P, such that
7(P,) = R. By a theorem of Costa [1], every proper retract of K|z, y]
(a retract of K[z,y| different from K and K|x,y]) is of the form Klp]
for some p € K[x,y] for arbitrary field K. Recently Shpilrain and J.-
T.Yu [16, 17] have shown the close connection among test polynomials,
retracts, and the Jacobian conjecture. See also [2, 10].

Lemma 2.1 (Shpilrain and J.-T.Yu [16]). Let K be a field of zero
characteristic. A polynomial r € Klx,y| generates a proper retract
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of K|x,y] if and only if there is an automorphism « of Klx,y] such
that a(r) = x + yq for some q € K[x,y|. Moreover, under the above
condition the retraction from Clz,y] to Clr] is a ‘mwa, where m is the
retraction of Clx,y| to Clz+yq] defined by w(x) = x+yq and w(y) = 0.

The next lemma is based on the main theorem and its proof in Drensky
and J.-T.Yu [4].

Lemma 2.2. A polynomial p € Clz,y] belongs to a proper retract C[r]
if and only if p is fized by a non-injective endomorphism ¢ of Clx,yl.
Moreover, under the above condition, if p = f(r), f(t) € C[t] — C,
deg(f) = m, then m = ¢™ is the retraction from Clz,y| to C[r].

Proof. The first sentence is just the Theorem in [4]. Moreover, in the
proof of the Theorem in [4], it is actually proved that = = ¢™ is the
retraction from C[z,y| to Clr| with m = [C(r) : C(p)]. By elementary
algebra, m = deg(f), where f € K[t], and p = f(r). O

Lemma 2.3. Let K be an arbitrary field, u € K|x,y| with outer rank
1, ¢ an endomorphism preserving the automorphic orbit of u. Then ¢
s an automorphism.

Proof. Write u = f(p), where f € KJt], p is a coordinate of K[z,y].
We may assume p = z. For any automorphism «, ¢a(f(z)) = 5(f(x))
for some automorphism (3. Hence 8~ '¢a(f(z)) = f(z), therefore
f(Bpa(x)) = f(x). Let 8~ 'pa(x) = g(x,y). Compare the degrees of
y in both sides of f(g(x,y)) = f(x), g(z,y) = g(x,0) = h(x) € K|[z].
Compare the degrees in both sides of f(h(x)) = f(z), deg(h(x)) = 1,
that forces h(z) = B '¢a(xr) = cx, hence ¢a(r) = B(cx) for some
¢ € K* (in fact ¢ can only be some m-th root of unity, m = deg(f), but
we do not need that). Therefore ¢ preserves coordinates of K|z, y]. By
a result of Shpilrain and van den Essen [3], ¢ is an automorphism. [

Lemma 2.4. Let K be an arbitrary field, p € P, = Klxy,...,2,)
a test polynomial. Then every endomorphism ¢ of P, preserving the
automorphic orbit of p is an automorphism.

Proof. Since ¢(p) = a(p) for some automorphism « of P,, a~1¢(p) = p,
as p is a test polynomial, a~'¢, hence ¢, is an automorphism. O

The following lemma is the main result of Shpilrain and J.-T. Yu [17].

Lemma 2.5. A polynomial p € Clz,y| is a test polynomial if and only
if p does not belong to any proper retract of Clx,y].
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3. Proof of the main results

Proof of Theorem 1.5. Let p € Clz,y] has outer rank 2, ¢ an
injective endomorphism such that ¢(p) = p. Suppose on the contrary,
¢ is not an automorphism, then by Theorem 2 in [17], p has outer rank
1. This contradiction completes the proof.

Proof of Theorem 1.4. We may assume ¢(p) = p. By Lemma 2.4,
we may assume p is not a test polynomial. By Lemma 2.5, we may
assume p belongs to a proper retract C[r| of Clz,y]. By Lemma 2.3,
we may assume p has outer rank 2. By Theorem 1.5, we may assume
¢ is non-injective. Suppose p = f(r), where f € C[t] — C, deg(f) = m.
By Lemma 2.2, 7 = ¢™ is the retraction from Clz,y] to C[r]. As
¢ preserves the automorphic orbit of p, so does m = ¢™. Applying
Lemma 2.1 (suppose a(r) = = + yq(z,y), where ¢(x,y) ¢ Kly], a is
some automorphism of C[x, y], replace r by a(r), and 7 by ara™!), we
have reduced our proof to the proof of the following

Lemma 3.1. Let r = x + yq(x,y), where q(z,y) € Clz,yl, ¢(x,y) ¢
Cly], 7 the retraction of Clx,y| to C[r] defined by m(x) = = + yq(z,y),
o(y) =0, f € Clt] — C. Then m does not preserve the automorphic

orbit of f(r).

Proof. Suppose on the contrary, m preserves the automorphic orbit of
f(r). Then for any automorphism « of Clz,y|, ma(f(r)) = B(f(r)) €
C[r] for some automorphim 3 of C[x, y]. Note that 73(f(r)) = B(f(r)).
By Lemma 2.2, 798(/) = 7 is the retraction from C[z,y] to the re-
tract C[5(r)] taking S(r) to 5(r). By hypothesis, 7 is also the re-
traction of Clxz,y| to the retract C[r] taking r to r. This forces that
B(r) = r. Therefore G(z + yq(z,y)) = = + yq(z,y). Subsituting y = 0,
B(x) = z. Hence B(yq(x,y)) = yq(x,y). But § is an automorphism,
so B(y) = cy + h(z) where ¢ € C*, h(z) € C[z]. It follows easily that
B(y) =y, [ is the identity automorphism. We have conculde that for
all automorphisms « of Clz,y], ma(f(r)) = f(r). Let M be a positive
integer greater than deg(q(x,v)), it is easy to see that 2 — y does
not divide ¢(z,y) in C[z,y|. Let « be the automorphism of C[z,y]
defined by a(z) = z, a(y) = y + 2. Then easy calculation shows
that ma(f(r)) = f(r+rMq(r,r™)). As 2™ —y does not divide g(x,y),
q(r,r™) # 0. Therefore ma(f(r)) = f(r + rMq(r,r™)) # f(r). This
contradiction completes the proof. 0
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