

Title	Tame automorphisms fixing a variable of free associative algebras of rank three
Author（s）	Drensky，V；Yu，JT
Citation	International Journal Of Algebra And Computation，2007，v． 17 n. $5-6$, p． $999-1011$
Issued Date	2007
URL	http：／／hdl．handle．net／10722／156194
Rights	Creative Commons：Attribution 3．0 Hong Kong License

TAME AUTOMORPHISMS FIXING A VARIABLE OF FREE ASSOCIATIVE ALGEBRAS OF RANK THREE

VESSELIN DRENSKY AND JIE-TAI YU

Devoted to the 80th anniversary of Professor Boris Plotkin.

Abstract

We study automorphisms of the free associative algebra $K\langle x, y, z\rangle$ over a field K which fix the variable z. We describe the structure of the group of z-tame automorphisms and derive algorithms which recognize z-tame automorphisms and z-tame coordinates.

Introduction

Let K be an arbitrary field of any characteristic and let $K\left[x_{1}, \ldots, x_{n}\right]$ and $K\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be, respectively, the polynomial algebra in n variables and of the free associative algebra of rank n, freely generated by x_{1}, \ldots, x_{n}. We may think of $K\left\langle x_{1}, \ldots, x_{n}\right\rangle$ as the algebra of polynomials in n noncommuting variables. The automorphism groups Aut $K\left[x_{1}, \ldots, x_{n}\right]$ and Aut $K\left\langle x_{1}, \ldots, x_{n}\right\rangle$ are well understood for $n \leq 2$ only. The description is trivial for $n=1$, when the automorphisms φ are defined by $\varphi\left(x_{1}\right)=\alpha x_{1}+\beta$, where $\alpha \in K^{*}=K \backslash 0$ and $\beta \in K$. The classical results of Jung-van der Kulk [J, K] for $K\left[x_{1}, x_{2}\right]$ and of Czerniakiewicz-MakarLimanov Cz, ML1, ML2] give that all automorphisms of $K\left[x_{1}, x_{2}\right]$ and $K\left\langle x_{1}, x_{2}\right\rangle$ are tame. Writing the automorphisms of $K\left[x_{1}, \ldots, x_{n}\right]$ and Aut $K\left\langle x_{1}, \ldots, x_{n}\right\rangle$ as n-tuples of the images of the variables, and using x, y instead of x_{1}, x_{2}, this means that Aut $K[x, y]$ and Aut $K\langle x, y\rangle$ are generated by the affine automorphisms

$$
\psi=\left(\alpha_{11} x+\alpha_{21} y+\beta_{1}, \alpha_{12} x+\alpha_{22} y+\beta_{2}\right), \quad \alpha_{i j}, \beta_{j} \in K
$$

[^0](and $\psi_{1}=\left(\alpha_{11} x+\alpha_{21} y, \alpha_{12} x+\alpha_{22} y\right)$, the linear part of ψ, is invertible) and the triangular automorphisms
$$
\rho=\left(\alpha_{1} x+p_{1}(y), \alpha_{2} y+\beta_{2}\right), \quad \alpha_{1}, \alpha_{2} \in K^{*}, p_{1}(y) \in K[y], \beta_{2} \in K
$$

It turns out that the groups Aut $K\langle x, y\rangle$ and Aut $K[x, y]$ are naturally isomorphic. As abstract groups they are described as the free product $A *_{C} B$ of the group A of the affine automorphisms and the group B of triangular automorphisms amalgamating their intersection $C=A \cap B$. Every automorphism φ of $K[x, y]$ and $K\langle x, y\rangle$ can be presented as a product

$$
\begin{equation*}
\varphi=\psi_{m}^{\varepsilon_{m}} \rho_{m} \psi_{m-1} \cdots \rho_{2} \psi_{1} \rho_{1}^{\varepsilon_{1}} \tag{1}
\end{equation*}
$$

where $\psi_{i} \in A, \rho_{i} \in B\left(\varepsilon_{1}\right.$ and ε_{m} are equal to 0 or 1$)$, and, if φ does not belong to the union of A and B, we may assume that $\psi_{i} \in$ $A \backslash B, \rho_{i} \in B \backslash A$. The freedom of the product means that if φ has a nontrivial presentation of this form, then it is different from the identity automorphism.

In the case of arbitrary n, the tame automorphisms are defined similarly, as compositions of affine and triangular automorphisms. One studies not only the automorphisms but also the coordinates, i.e., the automorphic images of x_{1}.

We shall mention few facts related with the topic of the present paper, for z-automorphisms of $K[x, y, z]$ and $K\langle x, y, z\rangle$, i.e., automorphisms fixing the variable z. For more details we refer to the books by van den Essen [E], Mikhalev, Shpilrain, and Yu [MSY], and our survey article DY1.

Nagata [N] constructed the automorphism of $K[x, y, z]$

$$
\nu=\left(x-2\left(y^{2}+x z\right) y-\left(y^{2}+x z\right)^{2} z, y+\left(y^{2}+x z\right) z, z\right)
$$

which fixes z. He showed that ν is nontame, or wild, considered as an automorphism of $K[z][x, y]$, and conjectured that it is wild also as an element of Aut $K[x, y, z]$. This was the beginning of the study of z-automorphisms.

It is relatively easy to see (and to decide algorithmically) whether an endomorphism of $K[z][x, y]$ is an automorphism and whether this automorphism is z-tame, or tame as an automorphism of $K[z][x, y]$. When char $K=0$, Drensky and Yu [DY2] presented a simple algorithm which decides whether a polynomial $f(x, y, z) \in K[x, y, z]$ is a z-coordinate and whether this coordinate is z-tame. This provided many new wild automorphisms and wild coordinates of $K[z][x, y]$. These results in

DY2] are based on a similar algorithm of Shpilrain and Yu SY1] which recognizes the coordinates of $K[x, y]$. Shestakov and Umirbaev [SU1, SU2, SU3] established that the Nagata automorphism is wild. They also showed that every wild automorphism of $K[z][x, y]$ is wild as an automorphism of $K[x, y, z]$. Umirbaev and Yu [UY] proved that the z-wild coordinates in $K[z][x, y]$ are wild also in $K[x, y, z]$. In this way, all z-wild examples in [DY2 give automatically wild examples in $K[x, y, z]$.

Going to free algebras, the most popular candidate for a wild automorphism of $K\langle x, y, z\rangle$ is the example of Anick $(x+(y(x y-y z), y, z+$ $(z y-y z) y) \in$ Aut $K\langle x, y, z\rangle$, see the book by Cohn [C], p. 343. It fixes one variable and its abelianization is a tame automorphism of $K[x, y, z]$. Exchanging the places of y and z, we obtain the automorphism $(x+z(x z-z y), y+(x z-z y) z, z)$ which fixes z (or a z automorphism), and refer to it as the Anick automorphism. It is linear in x and y, considering z as a "noncommutative constant". Drensky and Yu [DY3] showed that such z-automorphisms are z-wild if and only if a suitable invertible 2×2 matrix with entries from $K\left[z_{1}, z_{2}\right]$ is not a product of elementary matrices. In particular, this gives that the Anick automorphism is z-wild. When char $K=0$, Umirbaev [U] described the defining relations of the group of tame automorphisms of $K[x, y, z]$. He showed that $\varphi=(f, g, h) \in$ Aut $K\langle x, y, z\rangle$ is wild if the endomorphism $\varphi_{0}=\left(f_{0}, g_{0}, z\right)$ of $K\langle x, y, z\rangle$ is a z-wild automorphism, where f_{0}, g_{0} are the linear in x, y components of f, g, respectively. This implies that the Anick automorphism is wild. Recently Drensky and Yu DY4, DY5 established the wildness of a big class of automorphisms and coordinates of $K\langle x, y, z\rangle$. Many of them cannot be handled with direct application of the methods of [DY3] and [U]. These results motivate the needs of systematic study of z-automorphisms of $K\langle x, y, z\rangle$. As in the case of z-automorphisms of $K[x, y, z]$, they are simpler than the arbitrary automorphisms of $K\langle x, y, z\rangle$ and provide important examples and conjectures for Aut $K\langle x, y, z\rangle$.

In the present paper we describe the structure of the group of z-tame automorphisms of $K\langle x, y, z\rangle$ as the free product of the groups of z-affine automorphisms and z-triangular automorphisms amalgamating the intersection. We also give algorithms which recognize z-tame automorphisms and coordinates of $K\langle x, y, z\rangle$. As an application, we show that all the z-automorphisms of the form $\sigma_{h}=(x+z h(x z-z y, z), y+h(x z-$ $z y, z) z$) are z-wild when the polynomials $h(x z-z y, z)$ are of positive
degree in x. This kind of automorphisms appear in DY4, DY5 but the considerations there do not cover the case when $h(x z-z y, z)$ belongs to the square of the commutator ideal of $K\langle x, y, z\rangle$. Besides, the polynomial $x+z h(x z-z y, z)$ is a z-wild coordinate. Finally, we show that the z-endomorphisms of the form $\varphi=(x+u(x, y, z), y+v(x, y, z))$, where $(u, v) \neq(0,0)$ and all monomials of u and v depend on both x and y, are not automorphisms. A partial case of this result was an essential step in the proof of the theorem of Czerniakiewicz and Makar-Limanov for the tameness of Aut $K\langle x, y\rangle$. The paper may be considered as a continuation of our paper DY3.

1. The group of z-Tame automorphisms

We fix the field K and consider the free associative algebra $K\langle x, y, z\rangle$ in three variables. We call the automorphism φ of $K\langle x, y, z\rangle$ a z automorphism if $\varphi(z)=z$, and denote the automorphism group of the z-automorphisms by $\operatorname{Aut}_{z}\langle x, y, z\rangle$. Since we want to emphasize that we work with z-automorphisms, we shall write $\varphi=(f, g)$, omitting the third coordinate z. The multiplication will be from right to left. If $\varphi, \psi \in \operatorname{Aut}_{z} K\langle x, y, z\rangle$, then in $\varphi \psi$ we first apply ψ and then φ. Hence, if $\varphi=(f, g)$ and $\psi=(u, v)$, then

$$
\varphi \psi=(u(f, g, z), v(f, g, z)) .
$$

The z-affine and z-triangular automorphisms of $K\langle x, y, z\rangle$ are, respectively, of the form

$$
\psi=\left(\alpha_{11} x+\alpha_{21} y+\alpha_{31} z+\beta_{1}, \alpha_{12} x+\alpha_{22} y+\alpha_{32} z+\beta_{2}\right),
$$

$\alpha_{i j}, \beta_{j} \in K$, the 2×2 matrix $\left(\alpha_{i j}\right)_{i, j=1,2}$ being invertible,

$$
\rho=\left(\alpha_{1} x+p_{1}(y, z), \alpha_{2} y+p_{2}(z)\right)
$$

$\alpha_{j} \in K^{*}, p_{1} \in K\langle y, z\rangle, p_{2} \in K[z]$. The affine and the triangular z-automorphisms generate, respectively, the subgroups A_{z} and B_{z} of $\mathrm{Aut}_{z} K\langle x, y, z\rangle$. We denote by $\mathrm{TAut}_{z} K\langle x, y, z\rangle$ the group of z-tame automorphisms which is generated by the z-affine and z-triangular automorphisms. Of course, we may define the z-affine automorphisms as the z-automorphisms of the form $\psi=(f, g)$, where the polynomials $f, g \in K\langle x, y, z\rangle$ are linear in x and y. But, as we commented in [DY3], this definition is not convenient. For example, the Anick automorphism is affine in this sense but is wild.

In the commutative case, the z-automorphisms of $K[x, y, z]$ are simply the automorphisms of the $K[z]$-algebra $K[z][x, y]$. A result of

Wright Wr states that over any field K the group TAut ${ }_{z} K[x, y, z]$ has the amalgamated free product structure

$$
\operatorname{TAut}_{z} K[x, y, z]=A_{z} *_{C_{z}} B_{z},
$$

where A_{z} and B_{z} are defined as in the case of $K\langle x, y, z\rangle$ and $C_{z}=A_{z} \cap$ B_{z}. (The original statement in Wr holds in a more general situation. In the case of $K[x, y, z]$ it involves affine and linear automorphisms with coefficients from $K[z]$ but this is not essential because every invertible matrix with entries in $K[z]$ is a product of elementary and diagonal matrices.)

Every z-tame automorphism φ of $K\langle x, y, z\rangle$ can be presented as a product in the form (11) where $\psi_{i} \in A_{z}, \rho_{i} \in B_{z}\left(\varepsilon_{1}\right.$ and ε_{m} are equal to 0 or 1), and, if φ does not belong to the union of A_{z} and B_{z}, we may assume that $\psi_{i} \in A_{z} \backslash B_{z}, \rho_{i} \in B_{z} \backslash A_{z}$. Fixing the linear nontriangular z-automorphism $\tau=(y, x)$, we can present φ in the canonical form

$$
\begin{equation*}
\varphi=\rho_{n} \tau \cdots \tau \rho_{1} \tau \rho_{0} \tag{2}
\end{equation*}
$$

where $\rho_{0}, \rho_{1}, \ldots, \rho_{n} \in B_{z}$ and only ρ_{0} and ρ_{n} are allowed to belong to A_{z}, see for example p. 350 in [C]. Let
$\rho_{i}=\left(\alpha_{i} x+p_{i}(y, z), \beta_{i} y+r_{i}(z)\right), \quad \alpha_{i}, \beta_{i} \in K^{*}, p_{i} \in K\langle y, z\rangle, r_{i} \in K[z]$.
Using the equalities for compositions of automorphisms

$$
(\alpha x+p(y, z), \beta y+r(z))=\left(x+\alpha^{-1}(p(y, z)-p(0, z)), y\right)(\alpha x+p(0, z), \beta y+r(z))
$$

$(\alpha x+p(z), \beta y+r(z)) \tau=(\beta y+r(z), \alpha x+p(z))=\tau(\beta x+r(z), \alpha y+p(z))$, $p(z), r(z) \in K[z]$, we can do further simplifications in (2), assuming that $\rho_{1}, \ldots, \rho_{n-1}$ are not affine and, together with ρ_{n}, are of the form $\rho_{i}=\left(x+p_{i}(y, z), y\right)$ with $p_{i}(0, z)=0$ for all $i=1, \ldots, n$. We also assume that $\rho_{0}=\left(\alpha_{0} x+p_{0}(y, z), \beta_{0} y+r_{0}(z)\right)$. The condition that $\rho_{1}, \ldots, \rho_{n-1}$ are not affine means that $\operatorname{deg}_{y} p_{i}(y, z) \geq 1$ and if $\operatorname{deg}_{y} p_{i}(y, z)=1$, then $\operatorname{deg}_{z} p_{i}(y, z) \geq 1, i=1, \ldots, n-1$.

The following result shows that the structure of the group of z-tame automorphisms of $K\langle x, y, z\rangle$ is similar to the structure of the group of z-tame automorphsims fo $K[x, y, z]$.

Theorem 1.1. Over an arbitrary field K, the group $\operatorname{TAut}_{z} K\langle x, y, z\rangle$ of z-tame automorphisms of $K\langle x, y, z\rangle$ is isomorphic to the free product $A_{z} *_{C_{z}} B_{z}$ of the group A_{z} of the z-affine automorphisms and the group B_{z} of z-triangular automorphisms amalgamating their intersection $C_{z}=A_{z} \cap B_{z}$.

Proof. We define a bidegree of $K\langle x, y, z\rangle$ assuming that the monomial w is of bidegree bideg $w=(d, e)$ if $\operatorname{deg}_{x} w+\operatorname{deg}_{y} w=d$ and $\operatorname{deg}_{z} w=e$. We order the bidegrees (d, e) lexicographically, i.e., $\left(d_{1}, e_{1}\right)>\left(d_{2}, e_{2}\right)$ means that either $d_{1}>d_{2}$ or $d_{1}=d_{2}$ and $e_{1}>e_{2}$. We denote by \bar{p} the leading bihomogeneous component of the nonzero polynomial $p(x, y, z)$. Let $\varphi=(f, g)$ be in the form (2), with all the restrictions fixed above, and let $q_{i}(y, z)$ be the leading component of $p_{i}(y, z)$. Direct computations give that, if ρ_{n} is not linear and $p_{0}(y, z) \neq \gamma_{0} y+p_{0}^{\prime}(z)$ in $\rho_{0}=\left(\alpha_{0} x+p_{0}(y, z), \beta_{0} y+r_{0}(z)\right)$, then

$$
\begin{gather*}
\bar{f}=q_{0}\left(q_{1}\left(\ldots q_{n-1}\left(q_{n}(y, z), z\right) \ldots, z\right), z\right), \tag{3}\\
\bar{g}=\beta_{0} q_{1}\left(\ldots q_{n-1}\left(q_{n}(y, z), z\right) \ldots, z\right),
\end{gather*}
$$

and bideg $\bar{f}>(1,0)$. Hence φ is not the identity automorphism. Similar considerations work when at least one of the automorphisms ρ_{0} and ρ_{n} is affine. For example, if $\rho_{0}=\left(\alpha_{0}+\gamma_{0} y+p_{0}^{\prime}(z), \beta_{0} y+r_{0}(z)\right)$, $\gamma_{0} \in K^{*}$, and bideg $p_{n}(y, z)>(1,0)$, then

$$
\begin{aligned}
& \bar{f}=\gamma_{0} q_{1}\left(\ldots q_{n-1}\left(q_{n}(y, z), z\right) \ldots, z\right), \\
& \bar{g}=\beta_{0} q_{1}\left(\ldots q_{n-1}\left(q_{n}(y, z), z\right) \ldots, z\right) .
\end{aligned}
$$

If bideg $p_{0}(y, z)>(1,0)$ and $\rho_{n}=\left(x+\gamma_{n} y, y\right), \gamma_{n} \in K^{*}$, then

$$
\begin{gathered}
\bar{f}=q_{0}\left(q_{1}\left(\ldots q_{n-1}\left(q_{n}(x+\gamma y, z), z\right) \ldots, z\right), z\right), \\
\bar{g}=\beta_{0} q_{1}\left(\ldots q_{n-1}\left(q_{n}(x+\gamma y, z), z\right) \ldots, z\right) .
\end{gathered}
$$

In all the cases, φ is not the identity automorphism. Hence, if φ has a nontrivial presentation in the form (2), then it is different from the identity automorphism, and we conclude that $\mathrm{TAut}_{z} K\langle x, y, z\rangle$ is a free product with amalgamation of the groups A_{z} and B_{z}.

Following our paper DY3 we identify the group of z-automorphisms which are linear in x and y with the group $G L_{2}\left(K\left[z_{1}, z_{2}\right]\right)$. Let $f \in$ $K\langle x, y, z\rangle$ be linear in x, y. Then f has the form

$$
f=\sum \alpha_{i j} z^{i} x z^{j}+\sum \beta_{i j} z^{i} y z^{j}, \quad \alpha_{i j}, \beta_{i j} \in K .
$$

The z-derivatives f_{x} and f_{y} are defined by

$$
f_{x}=\sum \alpha_{i j} z_{1}^{i} z_{2}^{j}, \quad f_{y}=\sum \beta_{i j} z_{1}^{i} z_{2}^{j}
$$

Here f_{x} and f_{y} are in $K\left[z_{1}, z_{2}\right]$ and are polynomials in two commuting variables. The z-Jacobian matrix of the linear z-endomorphism $\varphi=$
(f, g) of $K\langle x, y, z\rangle$ is defined as

$$
J_{z}(\varphi)=\left(\begin{array}{ll}
f_{x} & g_{x} \\
f_{y} & g_{y}
\end{array}\right)
$$

By [DY3] the mapping $\varphi \rightarrow J_{z}(\varphi)$ is an isomorphism of the group of the z-automorphisms which are linear in x, y and $G L_{2}\left(K\left[z_{1}, z_{2}\right]\right)$. Also, such an automorphism is z-tame if and only if its z-Jacobian matrix belongs to $G E_{2}\left(K\left[z_{1}, z_{2}\right]\right)$. (By the further development of this result by Umirbaev [U], the z-wild automorphisms of the considered type are wild also as automorphisms of $K\langle x, y, z\rangle$.)

Corollary 1.2. The group $\operatorname{TAut}_{z} K\langle x, y, z\rangle$ is isomorphic to the free product with amalgamation $G E_{2}\left(K\left[z_{1}, z_{2}\right]\right) *_{C_{1}} B_{z}$, where $G E_{2}\left(K\left[z_{1}, z_{2}\right]\right)$ is identified as above with the group of z-tame automorphisms which are linear in x and y, and $C_{1}=G E_{2}\left(K\left[z_{1}, z_{2}\right]\right) \cap B_{z}$.

Proof. Everything follows from the observations that: (i) in the form (22), $\rho_{j} \tau \cdots \tau \rho_{i} \in G E_{2}\left(K\left[z_{1}, z_{2}\right]\right)$ if and only if all $\rho_{j}, \ldots, \rho_{i}$ belong to $G E_{2}\left(K\left[z_{1}, z_{2}\right]\right)$; (ii) $\rho_{j} \tau \cdots \tau \rho_{i} \in C_{1}$ if and only if $i=j$ and $\rho_{i} \in$ $G E_{2}\left[z_{1}, z_{2}\right]$; (iii) $\tau \in G E_{2}\left(K\left[z_{1}, z_{2}\right]\right)$.

2. RECOGNIZING z-TAME AUTOMORPHISMS AND COORDINATES

Now we use Theorem 1.1 to present algorithms which recognize z tame automorphisms and coordinates of $K\langle x, y, z\rangle$. Of course, in all algorithms we assume that the field K is constructive. We start with an algorithm which determines whether a z-endomorphism of $K\langle x, y, z\rangle$ is a z-tame automorphism. The main idea is similar to that of the well known algorithm which decides whether an endomorphism of $K[x, y]$ is an automorphism, see Theorem 6.8.5 in [C], but the realization is more sophisticated. In order to simplify the considerations, we shall use the trick introduced by Formanek [F] in his construction of central polynomials of matrices.

Let H_{n} be the subspace of $K\langle x, y, z\rangle$ consisting of all polynomials which are homogeneous of degree n with respect to x and y. We define an action of $K\left[t_{0}, t_{1}, \ldots, t_{n}\right]$ on H_{n} in the following way. If

$$
w=z^{a_{0}} u_{1} z^{a_{1}} u_{2} \cdots z^{a_{n-1}} u_{n} z^{a_{n}},
$$

where $u_{i}=x$ or $u_{i}=y, i=1, \ldots, n$, then

$$
t_{0}^{b_{0}} t_{1}^{b_{1}} \cdots t_{n}^{b_{n}} * w=z^{a_{0}+b_{0}} u_{1} z^{a_{1}+b_{1}} u_{2} \cdots z^{a_{n-1}+b_{n-1}} u_{n} z^{a_{n}+b_{n}}
$$

and then extend this action by linearity. Clearly, H_{n} is a free $K\left[t_{0}, t_{1}, \ldots, t_{n}\right]$ module with basis consisting of the 2^{n} monomials $u_{1} \cdots u_{n}$, where $u_{i}=x$ or $u_{i}=y$. The proof of the following lemma is obtained by easy direct computation.

Lemma 2.1. Let $\beta \in K^{*}$,

$$
\begin{equation*}
v(x, y, z)=\sum \theta_{i}\left(t_{0}, t_{1}, \ldots, t_{k}\right) * u_{i_{1}} \cdots u_{i_{k}} \in H_{k}, \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
q(y, z)=\omega\left(t_{0}, t_{1}, \ldots, t_{d}\right) * y^{d} \in H_{d} \tag{5}
\end{equation*}
$$

where $\theta_{i} \in K\left[t_{0}, t_{1}, \ldots, t_{k}\right], \omega \in K\left[t_{0}, t_{1}, \ldots, t_{d}\right], u_{i_{j}}=x$ or $u_{i_{j}}=y$. Then

$$
\begin{aligned}
u(x, y, z)= & q(v(x, y, z) / \beta, z)=\omega\left(t_{0}, t_{d}, t_{2 d}, \ldots, t_{k d}\right) / \beta^{d} \\
& \left(\sum \theta_{i}\left(t_{0}, t_{1}, \ldots, t_{k}\right) * u_{i_{1}} \cdots u_{i_{k}}\right)
\end{aligned}
$$

$$
\begin{gather*}
\left(\sum \theta_{i}\left(t_{0}, t_{1}, \ldots, t_{k}\right) * u_{i_{1}} \cdots u_{i_{k}}\right) \\
\left(\sum \theta_{i}\left(t_{k}, t_{k+1}, \ldots, t_{2 k}\right) * u_{i_{1}} \cdots u_{i_{k}}\right) \cdots \tag{6}\\
\left(\sum \theta_{i}\left(t_{k(d-1)}, t_{k(d-1)+1}, \ldots, t_{k d}\right) * u_{i_{1}} \cdots u_{i_{k}}\right) .
\end{gather*}
$$

Algorithm 2.2. Let $\varphi=(f, g)$ be a z-endomorphism of $K\langle x, y, z\rangle$. We make use of the bidegree defined in the proof of Theorem 1.1.

Step 0. If some of the polynomials f, g depends on z only, then φ is not an automorphism.

Step 1. Let u, v be the homogeneous components of highest bidegree of f, g, respectively. If both u, v are of bidegree $(1,0)$, i.e., linear, then we check whether they are linearly independent. If yes, then φ is a product of a linear automorphism (from $G L_{2}(K)$) and a translation $(x+p(z), y+r(z))$. If u, v are linearly dependent, then φ is not an automorphism.

Step 2. Let bideg $u>(1,0)$ and bideg $u \geq \operatorname{bideg} v$. Hence $u \in H_{l}$, $v \in H_{k}$ for some k and l. Taking into account (3), we have to check whether $l=k d$ for a positive integer d and to decide whether $u=$ $q(v / \beta, z)$ for some $\beta \in K^{*}$ and some $q(y, z) \in H_{d}$. In the notation of Lemma 2.1. we know u in (6) and v in (4) up to the multiplicative constant β. Hence, up to β, we know the polynomials $\theta_{i}\left(t_{0}, t_{1}, \ldots, t_{n}\right)$ in the presentation of v. We compare some of the nonzero polynomial coefficients of $u=\sum \lambda_{j}\left(t_{0}, \ldots, t_{k d}\right) u_{j_{1}} \cdots u_{i_{k d}}$ with the corresponding coefficient of $q(v / \beta, z)$. Lemma 2.1 allows to find explicitly, up to the value of β^{d}, the polynomial $\omega\left(t_{0}, t_{1}, \ldots, \omega_{d}\right)$ in (5) using the usual
division of polynomials. If $l=k d$ and $u=q(v / \beta, z)$, then we replace $\varphi=(f, g)$ with $\varphi_{1}=(f-q(g / \beta, z), g)$. Then we apply Step 0 to φ_{1}. If u cannot be presented in the desired form, then φ is not an automorphism.

Step 3. If bideg $v>(1,0)$ and $\operatorname{bideg} u<\operatorname{bideg} v$, we have similar considerations, as in Step 2, replacing $\varphi=(f, g)$ with $\varphi_{1}=(f, g-$ $q(f / \alpha, z))$ for suitable $q(y, z)$. Then we apply Step 0 to φ_{1}. If v cannot be presented in this form, then φ is not an automorphism.

Corollary 2.3. Let $h(t, z) \in K\langle t, z\rangle$ and let $\operatorname{deg}_{u} h(u, z)>0$. Then

$$
\sigma_{h}=(x+z h(x z-z y, z), y+h(x z-z y, z) z, z)
$$

is a z-wild automorphism of $K\langle x, y, z\rangle$.
Proof. It is easy to see that σ_{h} is a z-automorphism of $K\langle x, y, z\rangle$ with inverse σ_{-h}. We apply Algorithm [2.2. Let w be the homogeneous component of highest bidegree of $h(x z-z y, z)$. Clearly, w has the form $w=\bar{h}(x z-z y, z)=q(x z-z y, z)$ for some bihomogeneous polynomial $q(t, z) \in K\langle t, z\rangle$. The leading components of the coordinates of σ_{h} are $z q(x z-z y, z)$ and $q(x z-z y, z) z$, and are of the same bidegree. If σ_{h} is a z-tame automorphism, then we can reduce the bidegree using a linear transformation, which is impossible because $z q(x z-z y, z)$ and $q(x z-z y, z) z$ are linearly independent.

The algorithm in Theorem 6.8.5 in [C] which recognizes the automorphisms of $K[x, y]$ can be easily modified to recognize the coordinates of $K[x, y]$. Such an algorithm is explicitly stated in [SY3], where Shpilrain and Yu established an algorithm which gives a canonical form, up to automorphic equivalence, of a class of polynomials in $K[x, y]$. (The automorphic equivalence problem for $K[x, y]$ asks how to decide whether, for two given polynomials $p, q \in K[x, y]$, there exists an automorphism φ such that $q=\varphi(p)$. It was solved over \mathbb{C} by Wightwick Wi and, over an arbitrary algebraically closed constructive field K, by MakarLimanov, Shpilrain, and Yu [MLSY].) When char $K=0$, Shpilrain and Yu SY1 gave a very simple algorithm which decides whether a polynomial $f(x, y) \in K[x, y]$ is a coordinate. Their approach is based on an idea of Wright Wr and the Euclidean division algorithm applied for the partial derivatives of a polynomial in $K[x, y]$. Using the isomorphism of Aut $K[x, y]$ and Aut $K\langle x, y\rangle$ and reducing the considerations to the case of $K[x, y]$, Shpilrain and Yu [SY2] found the first algorithm which recognizes the coordinates of $K\langle x, y\rangle$. Now we want to modify

Algorithm 2.2 to decide whether a polynomial $f(x, y, z)$ is a z-tame coordinate of $K\langle x, y, z\rangle$.

Note, that if $\varphi=(f, g)$ and $\varphi^{\prime}=\left(f, g^{\prime}\right)$ are two z-automorphisms of $K\langle x, y, z\rangle$ with the same first coordinate, then $\varphi^{-1} \varphi^{\prime}$ fixes x. Hence $\varphi^{-1} \varphi^{\prime}=\left(x, g^{\prime \prime}\right)$ and, obligatorily, $g^{\prime \prime}=\beta y+r(x, z)$. In this way, if we know one z-coordinate mate g of f, then we are able to find all other z-coordinate mates. These arguments and Corollary 2.3 give immediately:

Corollary 2.4. Let $h(t, z) \in K\langle t, z\rangle$ and let $\operatorname{deg}_{u} h(u, z)>0$. Then $f(x, y, z)=x+z h(x z-z y, z)$ is a z-wild coordinate of $K\langle x, y, z\rangle$.

Theorem 2.5. There is an algorithm which decides whether a polynomial $f(x, y, z) \in K\langle x, y, z\rangle$ is a z-tame coordinate.

Proof. We start with the analysis of the behavior of the first coordinate f of φ in (2). Let h be the first coordinate of $\psi=\rho_{n-1} \tau \cdots \tau \rho_{1} \tau \rho_{0}$ and let, as in (2), $\rho_{n}=\left(x+p_{n}(y, z), y\right)$ and $p_{n}(0, z)=0$. Then

$$
\begin{equation*}
f(x, y, z)=\rho_{n} \tau(h(x, y, z))=h\left(y, x+p_{n}(y, z), z\right) . \tag{7}
\end{equation*}
$$

In order to make the inductive step, we have to recover the polynomials $h(x, y, z)$ and $p_{n}(y, z)$ or, at least their leading components with respect to a suitable grading.

For a pair of positive integers (a, b), we define the (a, b)-bidegree of a monomial $w \in K\langle x, y, z\rangle$ by

$$
\operatorname{bideg}_{(a, b)} w=\left(a \operatorname{deg}_{x} w+b \operatorname{deg}_{y} w, \operatorname{deg}_{z} w\right)
$$

and order the bidegrees in the lexicographic order, as in Algorithm 2.2 For a nonzero polynomial $f \in K\langle x, y, z\rangle$ we denote by $|f|_{(a, b)}$ the homogeneous component of maximal (a, b)-bidegree. We write $\varphi=(f, g) \in \mathrm{TAut}_{z} K\langle x, y, z\rangle$ in the form (2). Let us assume again that bideg $p_{i}(y)>(1,0)$ for all $i=0,1, \ldots, n$, and let h be the first coordinate of $\psi=\rho_{n-1} \tau \cdots \tau \rho_{1} \tau \rho_{0}$. Then the highest bihomogeneous component of h is

$$
\bar{h}(y, z)=q_{0}\left(q_{1}\left(\ldots\left(q_{n-1}(y, z), z\right) \ldots\right), z\right) .
$$

The homogeneous component of maximal $\left(d_{n}, 1\right)$-bidegree of $x+p_{n}(y, z)$ is $\left|x+q_{n}(y, z)\right|_{\left(d_{n}, 1\right)}=x+\xi_{n} y^{d_{n}}$ if $\operatorname{deg}_{z} q_{n}(y, z)=0$ and $\left|x+q_{n}(y, z)\right|_{\left(d_{n}, 1\right)}=$ $q_{n}(y, z)$ if $\operatorname{deg}_{z} q_{n}(y, z)>0$. Direct calculations give

$$
|f|_{\left(d_{n}, 1\right)}=\left|\rho_{n} \tau(\bar{h})\right|_{\left(d_{n}, 1\right)}=\mid \bar{h}\left(x+\left.q_{n}(y, z)\right|_{\left(d_{n}, 1\right)} .\right.
$$

If $f^{\prime}(x, z)$ and $f^{\prime \prime}(y, z)$ are the components of $f(x, y, z)$ which do not depend on y and x, respectively, we can recover the degree d_{n} of $p_{n}(y, z)$ as the quotient $d_{n}=\operatorname{deg}_{x} f^{\prime} / \operatorname{deg}_{y} f^{\prime \prime}$. Now the problem is to recover $q_{n}(y, z)$ and $\bar{h}(y, z)$. Since $\bar{h}(y, z)$ does not depend on x, we have that

$$
\bar{h}(y, z)=\overline{h(x, y, z)}=\overline{h(0, y, z)} .
$$

From the equality (7) and the condition $p_{n}(0, z)=0$ we obtain that

$$
f(x, 0, z)=h\left(0, x+p_{n}(0, z), z\right)=h(0, x, z) .
$$

Hence $h(0, y, z)=f(y, 0, z)$ and we are able to find $\bar{h}(y, z)$. We write \bar{h} and $\overline{q_{n}}$ in the form

$$
\bar{h}(y, z)=\theta\left(t_{0}, t_{1}, \ldots, t_{k}\right) * y^{k}, \quad q_{n}(y, z)=\omega\left(t_{0}, t_{1}, \ldots, t_{d}\right) * y^{d}
$$

where $\theta\left(t_{0}, t_{1}, \ldots, t_{k}\right) \in K\left[t_{0}, t_{1}, \ldots, t_{k}\right]$ is known explicitly and $\omega\left(t_{0}, t_{1}, \ldots, t_{d}\right) \in$ $K\left[t_{0}, t_{1}, \ldots, t_{d}\right]$. Similarly, the part of the component of maximal bidegree of $f(x, y, z)$ which does not depend on x has the form
$\overline{f^{\prime \prime}}(y, z)=\zeta\left(t_{0}, t_{1}, \ldots, t_{k d}\right) * y^{k d}, \quad \zeta\left(t_{0}, t_{1}, \ldots, t_{k d}\right) \in K\left[t_{0}, t_{1}, \ldots, t_{k d}\right]$.
Since $\bar{h}\left(q_{n}(y, z), z\right)=\overline{f^{\prime \prime}}(y, z)$, by Lemma 2.1 we obtain

$$
\begin{gathered}
\zeta\left(t_{0}, t_{1}, \ldots, t_{k d}\right)=\theta\left(t_{0}, t_{d}, t_{2 d}, \ldots, t_{k d}\right) \omega\left(t_{0}, t_{1}, \ldots, t_{d}\right) \\
\omega\left(t_{d}, t_{d+1}, \ldots, t_{2 d}\right) \cdots \omega\left(t_{(k-1) d}, t_{(k-1) d+1}, \ldots, t_{k d}\right)
\end{gathered}
$$

Here we know ζ and θ and want to determine ω. Let

$$
\begin{gathered}
\zeta^{\prime}\left(t_{0}, t_{1}, \ldots, t_{k d}\right)=\zeta\left(t_{0}, t_{1}, \ldots, t_{k d}\right) / \theta\left(t_{0}, t_{d}, t_{2 d}, \ldots, t_{k d}\right) \\
=\omega\left(t_{0}, t_{1}, \ldots, t_{d}\right) \omega\left(t_{d}, t_{d+1}, \ldots, t_{2 d}\right) \cdots \omega\left(t_{(k-1) d}, t_{(k-1) d+1}, \ldots, t_{k d}\right) .
\end{gathered}
$$

The greatest common divisor of the polynomials $\zeta^{\prime}\left(t_{0}, t_{1}, \ldots, t_{k d}\right)$ and $\zeta^{\prime}\left(t_{(k-1) d}, t_{(k-1) d+1}, \ldots, t_{(2 k-1) d}\right)$ in $K\left[t_{0}, t_{1}, \ldots, t_{(2 k-1) d}\right]$ is equal, up to a multiplicative constant β, to $\omega\left(t_{(k-1) d}, t_{(k-1) d+1}, \ldots, t_{k d}\right)$. Hence the knowledge of ζ^{\prime} allows to determine $\beta \omega\left(t_{0}, t_{1}, \ldots, t_{k}\right)$ as well as the value of β^{d}. This means that we know also all the possible values of β and the polynomial $q_{n}(y, z)$. Now we apply on $f(x, y, z)$ the z-automorphism $\sigma=\left(x-q_{n}(y, z), y\right)$. Since $f(x, y, z)-\bar{h}\left(x+q_{n}(y, z), z\right)$ is lower in the $\left(d_{n}, 1\right)$-biordering than $f(x, y, z)$ itself, we may replace f with $\sigma(f)$ and to make the next step. The considerations are almost the same when some of the automorphisms ρ_{0} and ρ_{n} is affine. For example, if $f=\varphi(x)$ and $\rho_{n}=(x+\gamma y, y), \gamma \in K$, in (2), then the leading bihomogeneous component of $h=\tau \rho_{n}^{-1}(f)$ does not depend on y, and we can do the next step. If f is a z-tame coordinate, then the above process will stop when we reduce f to a polynomial in the form $\alpha x+p(y, z)$. If f is not
a z-tame coordinate, then the process will also stop by different reason. In some step we shall reduce $f(x, y, z)$ to a polynomial $f_{1}(x, y, z)$. It may turn out that the degree $d=\operatorname{deg}_{x} f_{1}(x, 0, z) / \operatorname{deg}_{y} f_{1}(0, y, z)$ is not integer. Or, the commutative polynomials θ and ω corresponding to f_{1} do not exist.

The following corollary is stronger than Corollary 2.4.
Corollary 2.6. Let $h(t, z) \in K\langle t, z\rangle$ and let $\operatorname{deg}_{u} h(u, z)>0$. Then $f(x, y, z)=x+h(x z-z y, z)$ is not a z-tame coordinate of $K\langle x, y, z\rangle$.

Proof. We apply the algorithm in the proof of Theorem [2.5] Let $f(x, y, z)$ be a z-tame coordinate and let $h^{\prime}(x, z)=h(x z, z)$ and $h^{\prime \prime}(y, z)=$ $h(-z y, z)$ be the polynomials obtained from $h(x z-z y, z)$ replacing, respectively, y and x by 0 . Clearly, $\operatorname{bideg}_{x} h^{\prime}=\operatorname{bideg}_{y} h^{\prime \prime}$. Hence, as in the proof of Theorem 2.5 we can replace $f(x, y, z)$ with $\sigma(f)$, where $\sigma=(x-\alpha y, y)$, for a suitable $\alpha \in K^{*}$, and the leading bihomogeneous component of $\sigma(f)$ in the $(1,1)$-ordering does not depend on y. But this brings to a contradiction. If $h_{1}(t, z) \in K\langle t, z\rangle$ is homogeneous with respect to t, and

$$
h_{1}((x-\gamma y) z-z y, z)=h_{2}(x, z)
$$

for some $h_{2}(x, z)$, then, replacing x with 0 , we obtain $h_{1}(-(\gamma y z+$ $z y), z)=0$, which is impossible.

Remark 2.7. In Corollary 2.6, we cannot guarantee that the polynomial $f(x, y, z)=x+h(x z-z y, z)$ is a z-coordinate at all. For example, let $f(x, y, z)=x+(x z-z y)$ be a z-coordinate with a coordinate mate $g(x, y, z)$. If $g_{1}(x, y, z)$ is the linear in x, y component of g, then $\varphi_{1}=\left(f, g_{1}\right)$ is also a z-automorphism. Then, for suitable polynomials $c, d \in K\left[z_{1}, z_{2}\right]$, the matrix

$$
J_{z}\left(\varphi_{1}\right)=\left(\begin{array}{cc}
1+z_{2} & c\left(z_{1}, z_{2}\right) \\
-z_{1} & d\left(z_{1}, z_{2}\right)
\end{array}\right)
$$

is invertible. If we replace z_{1} with 0 in its determinant $\operatorname{det}\left(J_{z}\right)=$ $\left(1+z_{2}\right) d\left(z_{1}, z_{2}\right)-z_{1} c\left(z_{1}, z_{2}\right)$ we obtain that $\left(1+z_{2}\right) d_{2}\left(0, z_{2}\right) \in K^{*}$ which is impossible.

3. Endomorphisms which are not automorphisms

In this section we shall establish a z-analogue of the following proposition which is the main step of the proof of the theorem of Czerniakiewicz [Cz] and Makar-Limanov [ML1, ML2] for the tameness of the automorphisms of $K\langle x, y\rangle$.

Proposition 3.1. Let $\varphi=(x+u, y+v)$ be an endomorphism of $K\langle x, y\rangle$, where u, v are in the commutator ideal of $K\langle x, y\rangle$ and at least one of them is different from 0 . Then φ is not an automorphism of $K\langle x, y\rangle$.

An essential moment in its proof, see the book by Cohn [C], is the following lemma.

Lemma 3.2. If $f, g \in K\langle x, y\rangle$ are two bihomogeneous polynomials, then they either generate a free subalgebra of $K\langle x, y\rangle$ or, up to multiplicative constants, both are powers of the same bihomogeneous element of $K\langle x, y\rangle$.

We shall prove a weaker version of the lemma for $K\langle x, y, z\rangle$ which will be sufficient for our purposes.

Lemma 3.3. Let $(0,0) \neq(a, b) \in \mathbb{Z}^{2}$ and let $f_{1}, f_{2} \in K\langle x, y, z\rangle$ be bihomogeneous with respect to the (a, b)-degree of $K\langle x, y, z\rangle$, i.e., $a \operatorname{deg}_{x} w+b \operatorname{deg}_{y} w$ is the same for all monomials of f_{1}, and similarly for f_{2}. If f_{1} and f_{2} are algebraically dependent, then both $\operatorname{deg}_{(a, b)} f_{1}$ and $\operatorname{deg}_{(a, b)} f_{2}$ are either nonnegative or nonpositive.
Proof. Let $v\left(f_{1}, f_{2}, z\right)=0$ for some nonzero polynomial $v\left(u_{1}, u_{2}, z\right) \in$ $K\left\langle u_{1}, u_{2}, z\right\rangle$. We may assume that both f_{1}, f_{2} depend not on z only. We fix a term-ordering on $K\langle x, y, z\rangle$. Let \tilde{f}_{1} and \tilde{f}_{2} be the leading monomials of f_{1} and f_{2}, respectively. For each monomial $z^{k_{0}} u_{i_{1}} z^{k_{1}} \cdots z^{k_{s-1}} u_{i_{s}} z^{k_{s}} \in$ $K\left\langle u_{1}, u_{2}, z\right\rangle$ the leading monomial of $z^{k_{0}} f_{i_{1}} z^{k_{1}} \cdots z^{k_{s-1}} f_{i_{s}} z^{k_{s}} \in K\langle x, y, z\rangle$ is $z^{k_{0}} \tilde{f}_{i_{1}} z^{k_{1}} \cdots z^{k_{s-1}} \tilde{f}_{i_{s}} z^{k_{s}}$. Hence, the algebraic dependence of f_{1} and f_{2} implies that two different monomials $z^{k_{0}} \tilde{f}_{i_{1}} z^{k_{1}} \cdots z^{k_{s-1}} \tilde{f}_{i_{s}} z^{k_{s}}$ and $z^{l_{0}} \tilde{f}_{j_{1}} z^{l_{1}} \cdots z^{l_{t-1}} \tilde{f}_{j_{t}} z^{j_{t}}$ are equal. We write $\tilde{f}_{1}=z^{p_{1}} g_{1} z^{q_{1}}$ and $\tilde{f}_{2}=$ $z^{p_{2}} g_{2} z^{q_{2}}$, where g_{1}, g_{2} do not start and do not end with z. After some cancelation in the equation

$$
z^{k_{0}} \tilde{f}_{i_{1}} z^{k_{1}} \cdots z^{k_{s-1}} \tilde{f}_{i_{s}} z^{k_{s}}=z^{l_{0}} \tilde{f}_{j_{1}} z^{l_{1}} \cdots z^{l_{t-1}} \tilde{f}_{j_{t}} z^{j_{t}}
$$

we obtain a relation of the form

$$
\begin{equation*}
g_{a_{1}} z^{m_{1}} \cdots z^{m_{k-1}} g_{a_{k}} z^{m_{k}}=g_{b_{1}} z^{n_{1}} \cdots z^{n_{l-1}} g_{b_{l}} z^{n_{l}} \tag{8}
\end{equation*}
$$

with different $g_{a_{1}}$ and $g_{b_{1}}$. Hence, if $\operatorname{deg} g_{1} \geq \operatorname{deg} g_{2}$, then $g_{1}=g_{2} g_{3}$ for some monomial g_{3} (and $g_{2}=g_{1} g_{3}$ if $\operatorname{deg} g_{1}<\operatorname{deg} g_{2}$). Again, g_{2} and g_{3} satisfy a relation of the form (8). Since $\operatorname{deg} g_{1} \geq \operatorname{deg} g_{2}>$ 0 , we obtain $\operatorname{deg} g_{1}+\operatorname{deg} g_{2}>\operatorname{deg} g_{1}=\operatorname{deg} g_{2}+\operatorname{deg} g_{3}$. Applying inductive arguments, we derive that both $\operatorname{deg}_{(a, b)} g_{2}$ and $\operatorname{deg}_{(a, b)} g_{3}$ are either nonnegative or nonpositive, and the same holds for f_{1} and f_{2} because $g_{1}=g_{2} g_{3}, \operatorname{deg}_{(a, b)} g_{1}=\operatorname{deg}_{(a, b)} g_{2}+\operatorname{deg}_{(a, b)} g_{3}$, and $\operatorname{deg}_{(a, b)} f_{i}=$ $\operatorname{deg}_{(a, b)} g_{i}, i=1,2$.

The condition that $u(x, y)$ and $v(x, y)$ belong to the commutator ideal of $K\langle x, y\rangle$, as in Proposition [3.1, immediately implies that all monomials of u and v depend on both x and y, as required in the following theorem.

Theorem 3.4. The z-endomorphisms of the form

$$
\varphi=(x+u(x, y, z), y+v(x, y, z))
$$

where $(u, v) \neq(0,0)$ and all monomials of u and v depend on both x and y, are not automorphisms of $K\langle x, y, z\rangle$.

Proof. The key moment in the proof of Proposition [3.1] is the following. If $\varphi=(x+u, y+v)$ is an endomorphism of $K\langle x, y\rangle$, where u, v are in the commutator ideal of $K\langle x, y\rangle$ and at least one of them is different from 0 , then there exist two integers a and b such that $(a, b) \neq(0,0)$ and $a \leq 0 \leq b$ with the property that $\operatorname{deg}_{(a, b)}(x+u)=\operatorname{deg}_{(a, b)} x=a$ and $\operatorname{deg}_{(a, b)}(y+v)=\operatorname{deg}_{(a, b)} y=b$. Ordering in a suitable way the (a, b)-bidegrees, one concludes that the (a, b)-degrees of the leading bihomogeneous components of $x+u$ and $y+v$ are with different signs. Then Lemma 3.2 shows that these leading components are algebraically independent and bidegree arguments as in the proof of Proposition 3.1 give that φ cannot be an automorphism. We repeat verbatim these arguments, working with the same (a, b)-(bi)degree and bidegree ordering Proposition 3.1, without counting the degree of z. In the final step, we use Lemma 3.3 instead of Lemma 3.2.

References

[C] P.M. Cohn, Free Rings and Their Relations, Second Edition, Acad. Press, 1985.
[Cz] A.J. Czerniakiewicz, Automorphisms of a free associative algebra of rank 2. I, II, Trans. Amer. Math. Soc. 160 (1971), 393-401; 171 (1972), 309-315.
[DY1] V. Drensky, J.-T. Yu, Automorphisms and coordinates of polynomial algebras, in "Combinatorial and Computational Algebra (Hong Kong, 1999)"; Eds. K.Y. Chan, A.A. Mikhalev, M.-K. Siu, J.-T. Yu, and E. Zelmanov, Contemp. Math. 264, 2000, 179-206.
[DY2] V. Drensky, J.-T. Yu, Tame and wild coordinates of $K[z][x, y]$, Trans. Amer. Math. Soc. 353 (2001), No. 2, 519-537.
[DY3] V. Drensky, J.-T. Yu, Automorphisms fixing a variable of $K\langle x, y, z\rangle$, J. Algebra 291 (2005), No. 1, 250-258.
[DY4] V. Drensky, J.-T. Yu, The strong Anick conjecture, Proc. Nat. Acad. Sci. 103 (2006), No. 13, 4836-4840.
[DY5] V. Drensky, J.-T. Yu, The strong Anick conjecture is true, preprint.
[E] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Birkhäuser, Progress in Mathematics 190, Basel-Boston, 2000.
[F] E. Formanek, Central polynomials for matrix rings, J. Algebra 23 (1972), 129-132.
[J] H.W.E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine und Angew. Math. 184 (1942), 161-174.
$[\mathrm{K}]$ W. van der Kulk, On polynomial rings in two variables, Nieuw Archief voor Wiskunde (3) 1 (1953), 33-41.
[ML1] L.G. Makar-Limanov, On automorphisms of free algebra with two generators (Russian), Funk. Analiz i ego Prilozh. 4 (1970), No. 3, 107-108. Translation: Functional Anal. Appl. 4 (1970), 262-263.
[ML2] L.G. Makar-Limanov, On Automorphisms of Certain Algebras (Russian), Ph.D. Thesis, Moscow, 1970.
[MLSY] L. Makar-Limanov, V. Shpilrain, J.-T. Yu, Equivalence of polynomials under automorphisms of $K[x, y]$, J. Pure Appl. Algebra (to appear).
[MSY] A.A. Mikhalev, V. Shpilrain, J.-T. Yu, Combinatorial Methods. Free Groups, Polynomials, Free Algebras, CMS Books in Mathematics, Springer, New York, 2004.
[N$] \quad$ M. Nagata, On the Automorphism Group of $k[x, y]$, Lect. in Math., Kyoto Univ., Kinokuniya, Tokyo, 1972.
[SU1] I.P. Shestakov, U.U. Umirbaev, The Nagata automorphism is wild, Proc. Nat. Acad. Sci. 100 (2003), No. 22, 12561-12563.
[SU2] I.P. Shestakov, U.U. Umirbaev, Poisson brackets and two-generated subalgebras of rings of polynomials, J. Amer. Math. Soc. 17 (2004), 181-196.
[SU3] I.P. Shestakov, U.U. Umirbaev, The tame and the wild automorphisms of polynomial rings in three variables, J. Amer. Math. Soc. 17 (2004), 197-227.
[SY1] V. Shpilrain, J.-T. Yu, Polynomial automorphisms and Gröbner reductions, J. Algebra 197 (1997), 546-558.
[SY2] V. Shpilrain, J.-T. Yu, On generators of polynomial algebras in two commuting or non-commuting variables, J. Pure Appl. Algebra 132 (1998), 309-315.
[SY3] V. Shpilrain, J.-T. Yu, Embeddings of curves in the plane, J. Algebra 217 (1999), 668-678.
[U] U.U. Umirbaev, Tame and wild automorphisms of polynomial algebras and free associative algebras, Max-Planck-Institute for Mathematics, Bonn, Preprint MPIM2004-108, J. Algebra (to appear).
[UY] U.U. Umirbaev, J.-T. Yu, The strong Nagata conjecture, Proc. Nat. Acad. Sci. 101 (2004), No. 13, 4352-4355.
[Wi] P.G. Wightwick, Equivalence of polynomials under automorphisms of \mathbb{C}^{2}, J. Pure Appl. Algebra 157 (2001), No. 2-3, 341-367.
[Wr] D. Wright, The amalgamated free product structure of $G L_{2}\left(k\left[X_{1}, \ldots, X_{n}\right]\right)$ and the weak Jacobian theorem for two variables, J. Pure Appl. Algebra 12 (1978), 235-251.

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

E-mail address: drensky@math.bas.bg
Department of Mathematics, the University of Hong Kong, Hong Kong SAR, China

E-mail address: yujt@hkucc.hku.hk

[^0]: 2000 Mathematics Subject Classification. Primary 16S10. Secondary 16W20; 16Z05.

 Key words and phrases. Automorphisms of free algebras, tame automorphisms, tame coordinates, primitive elements in free algebras.

 The research of Vesselin Drensky was partially supported by Grant MI-1503/2005 of the Bulgarian National Science Fund.

 The research of Jie-Tai Yu was partially supported by a Hong Kong RGC-CERG Grant.

