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Analyticity of Entropy Rate of Hidden Markov Chains
Guangyue Han and Brian Marcus, Fellow, IEEE

Abstract—We prove that under mild positivity assumptions the
entropy rate of a hidden Markov chain varies analytically as a
function of the underlying Markov chain parameters. A general
principle to determine the domain of analyticity is stated. An ex-
ample is given to estimate the radius of convergence for the entropy
rate. We then show that the positivity assumptions can be relaxed,
and examples are given for the relaxed conditions. We study a spe-
cial class of hidden Markov chains in more detail: binary hidden
Markov chains with an unambiguous symbol, and we give neces-
sary and sufficient conditions for analyticity of the entropy rate for
this case. Finally, we show that under the positivity assumptions,
the hidden Markov chain itself varies analytically, in a strong sense,
as a function of the underlying Markov chain parameters.

Index Terms—Analyticity, entropy, entropy rate, hidden Markov
chain, hidden Markov process.

I. INTRODUCTION

FOR with , we denote a sequence of
symbols by . Consider a stationary

stochastic process with a finite set of states
and distribution . Denote the conditional distributions by

. The entropy rate of is defined as

where denotes expectation with respect to the distribution .
Let be a stationary first-order Markov chain with

It is well known that

A hidden Markov chain (or function of a Markov chain)
is a process of the form , where is a function
defined on with values . Often, a
hidden Markov chain is defined as a Markov chain observed in
noise. It is well known that the two definitions are equivalent
(the equivalence is typified by Example 4.1).

For a hidden Markov chain, turns out (see (2.4) below)
to be the integral of a certain function defined on a simplex with
respect to a measure due to Blackwell [4]. However, Blackwell’s
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measure is somewhat complicated and the integral formula ap-
pears to be difficult to evaluate in most cases.

Recently, there has been a rebirth of interest in computing the
entropy rate of a hidden Markov chain, and many approaches
have been adopted to tackle this problem. For instance, some
researchers have used Blackwell’s measure to bound the en-
tropy rate [20] and others introduced a variation [8] on bounds
due to [3]. An efficient Monte Carlo method for computing the
entropy rate of a hidden Markov chain was proposed indepen-
dently by Arnold and Loeliger [2], Pfister et al. [25], and Sharma
and Singh [31].

In another direction, [20], [12], [35] have studied the varia-
tion of the entropy rate as parameters of the underlying Markov
chain vary. These works motivated us to consider the general
question of whether the entropy rate of a hidden Markov chain
is smooth, or even analytic [30], [32], as a function of the un-
derlying parameters. Indeed, this is true under mild positivity
assumptions:

Theorem 1.1: Suppose that the entries of are analytically
parameterized by a real variable vector . If at

1. for all , there is at least one with
such that the th column of is strictly posi-

tive; and
2. every column of is either all zero or strictly positive;

then is a real analytic function of at .

Note that this theorem holds if all the entries of are positive.
The more general form of our hypotheses is very important (see
Example 4.1).

Real analyticity at a point is important because it means that
the function can be expressed as a convergent power series in
a neighborhood of the point. The power series can be used to
approximate or estimate the function. For convenience of the
reader, we recall some basic concepts of analyticity in Sec-
tion III.

Several authors have observed that the entropy rate of a
hidden Markov chain can be viewed as the top Lyapunov
exponent of a random matrix product [11], [12], [10]. Results
in [1], [22], [23], [27] show that under certain conditions the
top Lyapunov exponent of a random matrix product varies
analytically as either the underlying Markov process varies
analytically or as the matrix entries vary analytically, but not
both. However, when regarding the entropy rate as a Lyapunov
exponent of a random matrix product, the matrix entries de-
pend on the underlying Markov process. So, the results from
Lyapunov theory do not appear to apply directly. Nevertheless,
much of the main idea of our proof of Theorem 1.1 is essen-
tially contained in Peres [23]. In contrast to Peres’ proof, we
do not use the language of Lyapunov exponents and we use
only basic complex analysis and no functional analysis. Also,
the hypotheses in [23] do not carry over to our setting. To the
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best of our knowledge, the statement and proof of Theorem
1.1 has not appeared in the literature. For analyticity of certain
other statistical quantities, see also related work in the area of
statistical physics in [7], [5], [15], [6].

After discussing background in Sections II and III, we prove
Theorem 1.1 in Section IV. As an example, we show that the
entropy rate of a hidden Markov chain obtained by observing
a binary Markov chain in binary-symmetric noise, with noise
parameter , is analytic at any , provided that the
Markov transition probabilities are all positive.

In Section V, we infer from the proof of Theorem 1.1 a gen-
eral principle to determine a domain of analyticity for the en-
tropy rate. We apply this to the case of hidden Markov chains
obtained from binary Markov chains in binary-symmetric noise
to find a lower bound on the radius of convergence of a power
series in at . Given the recent results of [36], which
compute the derivatives of all orders at , this gives an
explicit power series for entropy rate near .

In Section VI, we show how to relax the conditions of The-
orem 1.1 and apply this to give more examples where the en-
tropy rate is analytic.

The entropy rate can fail to be analytic. In Section VII, we
give examples and then give a complete set of necessary and
sufficient conditions for analyticity in the special case of bi-
nary hidden Markov chains with an unambiguous symbol, i.e.,
a symbol which can be produced by only one symbol of the
Markov chain.

Finally, in Section VIII, we resort to more advanced
techniques to prove a stronger version, Theorem 8.1, of The-
orem 1.1. This result gives a sense in which the hidden Markov
chain itself varies analytically with . The proof of this result
requires some measure theory and functional analysis, along
with ideas from equilibrium states [26], which are reviewed
in Appendix C. Our first proof of Theorem 1.1 was derived as
a consequence of Theorem 8.1. It also follows from Theorem
8.1 that, in principle, many statistical properties in addition to
entropy rate vary analytically.

Most results of this paper were first announced in [9].

II. ITERATION ON THE SIMPLEX

Let be the simplex, comprising the vectors

and let be all with for . Let
denote the complex version of , i.e., denotes the complex
simplex comprising the vectors

and let denote the complex version of , i.e., consists
of all with for . For , let
denote the matrix such that for with

, and otherwise. For , define the
scalar-valued and vector-valued functions and on by

and

Note that defines the action of the matrix on the simplex
. For any fixed and , define

(2.1)

(here represent the states of the Markov chain ), then from
Blackwell [4], satisfies the random dynamical iteration

(2.2)

starting with

(2.3)

We remark that Blackwell showed that

(2.4)

where , known as Blackwell’s measure, is the limiting proba-
bility distribution, as , of on . However, we do
not use Blackwell’s measure explicitly in this paper.

Next, we consider two metrics on a compact subset of the
interior of a subsimplex of . Without loss of generality,
we assume that consists of all points from with the last

coordinates equal to . The Euclidean metric on is
defined as usual, namely, for

we have

The Hilbert metric [29] on is defined as follows:

The following result is well known (for instance, see [1]). For
completeness, we give a detailed proof in Appendix A.

Proposition 2.1: and are equivalent (denoted by
) on any compact subset of the interior of a subsimplex

of , i.e., there are positive constants such that for
any two points

Proposition 2.2: Assume that at satisfies Conditions 1
and 2 of Theorem 1.1. Then for sufficiently large and all
choices of and
(here and denote hidden Markov symbols), the
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mapping is a contraction mapping under
the Euclidean metric on .

Proof: is a compact subset of the interior
of some subsimplex of ; this subsimplex corresponds to
column indices such that and the th column is
strictly positive. Therefore, one can define the Hilbert metric
accordingly on . Each is a contraction mapping on each

under the Hilbert metric [29]; namely, there exists
such that for any and , and for any two points

Thus, for any choices of , we have

By Proposition 2.1, there exists a positive constant such that

Let be a universal Lipschitz constant for any
with respect to the Euclidean metric. Choose large enough
such that . So, for sufficiently large , any com-
position of the form is a Euclidean contraction
on .

Remark 2.3: Using a slightly modified proof, one can show
that for sufficiently large , any composition of the form

is a Euclidean contraction on the whole simplex .

III. BRIEF BACKGROUND ON ANALYTICITY

In this section, we briefly review the basics in complex anal-
ysis for the purpose of this paper. For more details, we refer to
[30], [32].

A real (or complex) function of several variables is analytic at
a given point if it admits a convergent Taylor series representa-
tion in a real (or complex) neighborhood of the given point. We
say that it is real (or complex) analytic in a neighborhood if it is
real (or complex) analytic at each point of the neighborhood.

The relationship between real and complex analytic functions
is as follows: 1) Any real analytic function can be extended to
a complex analytic function on some complex neighborhood.
2) Any real function obtained by restricting a complex analytic
function from a complex neighborhood to a real neighborhood
is a real analytic function.

The main fact regarding analytic functions used in this paper
is that the uniform limit of a sequence of complex analytic func-
tions on a fixed complex neighborhood is complex analytic. The
analogous statement does not hold (in fact, fails dramatically!)
for real analytic functions.

As an example of a real-valued parametrization of a matrix,
consider

Denote the states of by and let
. Each entry of is a real analytic function of at

any given point . For and sufficiently small,
is stochastic (i.e., each row sums to and each entry is nonneg-
ative) and in fact strictly positive (i.e., each entry is positive).
According to Theorem 1.1, for such values of , the entropy
rate of the hidden Markov chain defined by and is real
analytic as a function of at .

While we typically think of analytic parametrizations as
having the “look” of the preceding example, there is a con-
ceptually simpler parametrization—namely, parameterize an

matrix by its entries themselves; if is required
to be stochastic, we choose the parameters to be any set of

entries in each row (so, the real variable vector is an
-tuple). Clearly, for analyticity it does not matter which

entries are chosen. We call this the natural parametrization.
Suppose that is analytic with respect to this

parametrization. Then, viewed as a function of any
other analytic parametrization of the entries of is the compo-
sition of two analytic functions and thus must be analytic. We
thus have that the following two statements are equivalent.

• is analytic with respect to the natural parameteriza-
tion.

• is analytic with respect to any analytic parameteri-
zation.

We shall use this implicitly throughout the paper.

IV. PROOF OF THEOREM 1.1

Notation: We rewrite with parameter
vector as and , respectively. We use
the notation to mean . Let denote
the set of points of distance at most from in the complex
parameter space . Let denote the set of all
points in of distance at most from .

We first prove that for some can be
extended to a complex analytic function of and for
two symbol sequences and

decays exponentially fast in , when and
, uniformly in .

Note that for each is a rational function of the en-
tries of and . So, by viewing the real vector variables

and as complex vector variables, we can naturally extend
to a complex-valued function of complex vector variables

and . Since satisfies Conditions 1 and 2 at , for suffi-
ciently small and , the denominator of is nonzero for

in and in . Thus, is a complex analytic
function of in the neighborhood .

Assuming Conditions 1 and 2, we claim that has an iso-
lated (in modulus) maximum eigenvalue at . To see this, we
apply Perron–Frobenius theory [29] as follows. By permuting
the indices, we can express
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where is the submatrix corresponding to indices with positive
columns. The nonzero eigenvalues of are the same as the
eigenvalues of , which is a positive stochastic matrix. Such
a matrix has isolated (in modulus) maximum eigenvalue .

The stationary distribution (the eigenvector cor-
responding to the maximum eigenvalue ) is a rational func-
tion of the entries of , since it is a solution of the equation

. So, in the same way as for , we can naturally
extend to a complex analytic function
on .

Extending (2.1) for each , we define

(4.5)

by iterating the following complexified random dynamical
system (extending (2.2) and (2.3)):

(4.6)

starting with

(4.7)

By Proposition 2.2, for sufficiently large , we can replace the
set of mappings with the set and
then assume that each is a Euclidean contraction on each

with contraction coefficient . Since is compact
and the definition of -contraction is given by strict inequality,
we can choose and sufficiently small such that

is a Euclidean -contraction on each
(4.8)

Further, we claim that by choosing still smaller, if necessary

for all and all choices of
(4.9)

To see this, fixing and , choose so small that

(4.10)

and

(4.11)

Now consider the difference

(4.12)

Then by (4.8), (4.10) and (4.11), and (4.12), for , we
have

So

and thus for all , we have , yielding (4.9).
Each is the composition of analytic functions on and
so is complex analytic on .

For , we say two sequences
and have a common tail if there exists with

such that (denoted by
).

Let

Then we have

From (4.8) and (4.9), if , then there exists a positive
constant independent of and such that

(4.13)

Naturally

(4.14)
Then, there is a positive constant , independent of , such
that

(4.15)

Since satisfies Conditions 1 and 2, is
bounded away from , uniformly in and choices
of ; thus, there is a positive constant , independent of

, such that

(4.16)

Since for each is analytic, from

we deduce that is analytic. Furthermore, since
is analytic on , we conclude is analytic on .

Choose so that

If and are chosen sufficiently small, then

and all sequences (4.17)

and

(4.18)
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Then we have

implying

(4.19)

Let

and

then we have

here the latter inequality follows from (4.16) and (4.19). Thus,
for

This establishes the uniform convergence of to a limit
. By Theorem 2.4.1 of [32], the uniform limit of com-

plex analytic functions on a fixed complex neighborhood is an-
alytic on that neighborhood, and so is analytic on .

For real coincides with the entropy rate function
, and so Theorem 1.1 follows.

Example 4.1: Consider a binary-symmetric channel with
crossover probability . Let be the input Markov chain
with the transition matrix

(4.20)

At time , the channel can be characterized by the following
equation:

where denotes binary addition, denotes the independent
and identically distributed (i.i.d.) binary noise with

and , and denotes the corrupted output.
Then is jointly Markov, so is a hidden Markov
chain with the corresponding

here, maps states and to and maps states and to .
This class of hidden Markov chains has been studied extensively
(e.g., [12], [20]).

By Theorem 1.1, when and ’s are positive, the entropy
rate is analytic as a function of and ’s. This still holds
when and the ’s are positive, because in this case, we
have

V. DOMAIN OF ANALYTICITY

Suppose is analytically parameterized by a vector variable
, and Conditions 1 and 2 in Theorem 1.1 are satisfied at .

In principle, the proof of Theorem 1.1 determines a neighbor-
hood of on which the entropy rate is analytic. Specif-
ically, if one can find and such that all of the following
hold, then the entropy rate is analytic on .

1. Find such that each is a Euclidean -contraction
on each . Then choose positive such that for all

, each is a Euclidean -contraction on each
(see (4.8)).

2. Next find smaller (if necessary) such that for all
, the image of the stationary vector of , under any

composition of the mappings , stays within
(see (4.9)). Note that the argument in the proof shows that
this holds if (4.10) and (4.11) hold.

3. Finally, find such that the sum of the absolute values
of the complexified conditional probabilities, conditioned
on any given past symbol sequence, is , and simi-
larly for the sum of the absolute values of the complexified
stationary probabilities (see (4.17) and (4.18)).

In fact, the proof shows that one can always find such ,
but in Condition 1 above one may need to replace ’s by all

-fold compositions of the ’s, for some .
Recall from Example 4.1 the family of hidden Markov chains

determined by passing a binary Markov chain through a
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binary-symmetric channel with crossover probability . Recall
that is an analytic function of at when the
Markov transition probabilities are all positive. We shall deter-
mine a complex neighborhood of such that the entropy rate,
as a function of , is analytic on this neighborhood.

Let and . For
we have

Since is a function of ; let denote this
function.

For we have

Again, is a function of ; let denote this function.
And for the conditional probability, we have

Since is a function of ; let
denote this function. And

Again, is a function of ; let denote this
function.

Note that are all implicitly parameterized by .
The stationary vector of , which does not depend on
, is equal to .

We shall choose with and such
that for all with

1. and are -contraction mappings on -neighborhoods
of 0 and 1 in the complex plane;

2. the set of all ) are within the
-neighborhoods of and ;

3. for in -neighborhoods of and
in the complex plane.

By the general principle above, the entropy rate should be
analytic on .

More concretely, Conditions 1, 2, and 3 translate to (here
):

1. on ( and ) and
( and );

2.
on (this follows from (4.10); (4.11) is trivial since
the stationary vector of does not depend on );

3. on ( and ) and
( and ).

A straightforward computation shows that the conditions
shown at the bottom of the page guarantee Conditions 1, 2, 3.

In other words, for given with , choose and
to satisfy all the constraints above. Then the entropy rate is an
analytic function of on .

Let and . We plot lower
bounds on radius of convergence of (as a function of )
against in Fig. 1. For a fixed , the lower bound is obtained
by randomly generating many -tuples and taking the
maximal from the -tuples which satisfy the inequality con-
ditions above. One can see in the plot that as goes to , the
lower bound is rapidly increasing. This is not surprising, since
when , the corresponding entropy rate is a constant func-
tion of , and thus the radius of convergence is .

VI. RELAXED CONDITIONS

We do not know a complete set of necessary and sufficient
conditions on and that guarantee analyticity of entropy rate.
However, in this section, we show how the hypotheses in The-
orem 1.1 can be relaxed and still guarantee analyticity. We then
give several examples. In Section VII, we do give a complete set
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Fig. 1. Lower bound on radius of convergence as a function of p.

of necessary and sufficient conditions for a very special class of
hidden Markov chains.

In this section, we assume that has a simple maximum
eigenvalue ; this implies that has a unique stationary
vector .

For a mapping from to and . Let de-
note the first derivative of at restricted to the subspace
spanned by directions parallel to the simplex and let
denote the Euclidean norm of a linear mapping. We say that

is eventually contracting at if
there exists such that for any

is strictly less than . We say
that is contracting at if it is
eventually contracting at with . Using the mean value
theorem, one can show that if is con-
tracting at each in a compact convex subset of then
each is a contraction mapping on .

Let denote the limit set of

Theorem 6.1: If at
1. is a simple eigenvalue for ;
2. for every and all in ;
3. for every is eventually con-

tracting at all in the convex hull of the intersection of
and ;

then is analytic at .
Proof: Let denote the right infinite shift space

. Let be the set of all points in

of distance at most from , and let .
Choose so small that

• for every and in and
• for every is eventually con-

tracting at all in the convex hull of .
Since is compact, there exists such that for

any and any
is strictly less than . For

simplicity, we may assume that is contracting on , and
so each is a contraction mapping on . Since , it
follows that .

For any , there exists such that

Let denote the cylinder set

Since , we conclude that for any and
all

By the compactness of , we can find finitely many such
cylinder sets to cover . Consequently, we can find
such that for any and any , we have

. We can now apply the proof
of Theorem 1.1—namely, we can use the contraction (along
any symbolic sequence ) to extend
from real to complex and prove the uniform convergence of

to in complex parameter space.
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Remark 6.2:
1) If has a strictly positive column (or more generally, there

is a such that for all , there exists such that ),
then Condition 1 of Theorem 6.1 holds by Perron–Frobe-
nius theory.

2) If for each symbol is row allowable (i.e., no row is
all zero), then for all and so Condition
2 of Theorem 6.1 holds.

Theorem 6.1 relaxes the positivity assumptions of Theorem
1.1. Indeed, given Conditions 1 and 2 of Theorem 1.1, by
Remark 6.2, Conditions 1 and 2 of Theorem 6.1 hold. For
Condition 3 of Theorem 6.1, first observe that is contained
in . Using the equivalence of the Euclidean metric
and the Hilbert metric, Proposition 2.2 shows that for every

is eventually contracting on ,
which is a convex set containing the intersection of and .

Theorem 6.1 also applies to many cases not covered by The-
orem 1.1. Suppose that some column of is strictly positive and
each is row allowable. By Remark 6.2, Theorem 6.1 applies
whenever we can guarantee Condition 3. For this, it is sufficient
to check that for each is a contraction, with respect to
the Euclidean metric, on the convex hull of the intersection of
with each . This can be done by explicitly computing deriva-
tives. This is illustrated by the following example.

Example 6.3: Consider a hidden Markov chain defined by

with and . We assume that
some column of is strictly positive and both and are
row allowable.

Parameterize by and parameterize by
(with ). We can explicitly compute the

derivatives of and with respect to

Note that the row allowability condition guarantees that the de-
nominators in these expressions never vanish.

Choose ’s such that each of these derivatives is less than
; then we conclude that the entropy rate is analytic at . One

way to do this is to make each of the upper/lower left/right
matrices singular.

Or choose the ’s such that

where
and denote a real positive number (note that Theorem 1.1

does not apply for this special case). Let be the Perron
eigenvector of the stochastic matrix

Then is the stationary vector of corre-
sponding to the simple eigenvalue . Let and

. One checks that for
. Therefore, consists of . Using the

expressions above, we see that

So, and are contraction mappings at , and so
Condition 3 holds. Thus, the entropy rate is analytic at .

VII. HIDDEN MARKOV CHAINS WITH UNAMBIGUOUS SYMBOL

Definition 7.1: A symbol is called unambiguous if
contains only one element.

Remark 7.2: Note that unambiguous symbol is referred to as
“singleton clump” in some ergodic theory work, such as [24].

When an unambiguous symbol is present, the entropy rate
can be expressed in a simple way: letting be an unambiguous
symbol

(7.21)

In this section, we focus on the case of a binary hidden
Markov chain, in which is unambiguous. Then, we can
rewrite (7.21) as

(7.22)

where denotes the sequence of ’s and

Example 7.3: Fix and for let

Assume are chosen such that is sto-
chastic. The symbols of the Markov chain are the matrix
indices . Let be the binary hidden Markov chain
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defined by and . We claim that
is not analytic at .

Let be the stationary vector of (which is unique
since is irreducible). Observe that

and for

Since is irreducible, is analytic in and positive. Now

(7.23)

The first term in (7.23) is

which is not analytic (or even differentiable at ). The
second term in (7.23) is

which is analytic at . Thus, is not analytic at
. Similarly, it can be shown that all of the terms of (7.22),

other than , are analytic at . Since the matrix

has spectral radius , the terms of (7.22) decay exponentially;
it follows that the infinite sum of these terms is analytic. Thus,

is the sum of two functions of , one of which is ana-
lytic and the other is not analytic at . Thus, is not
analytic at .

Example 7.4: Fix and consider the stochastic
matrix

The symbols of the Markov chain are the matrix indices
. Again let be the binary hidden Markov chain

defined by and . We show that
is analytic at when , and not analytic when

. Note that

and for

When , we assume , then

Since is irreducible, is analytic in and positive.
Simple computation leads to

and

In this case, all terms are analytic. Again since

has spectral radius , the term is ex-
ponentially decaying with respect to . Therefore, the infinite
sum of these terms is also analytic, and so the entropy rate is a
real analytic function of .

When , we have

and

For any , consider a small neighborhood of
in such that only holds for

. When , the complexified term
. Meanwhile, the sum of all the

other terms can be analytically extended to (from any path
from a positive to with

for ). Thus, by the uniqueness of analytic continuation
of , we conclude that blows up when one ap-
proaches and therefore is not analytic at
(although it is smooth from the right at ).



5260 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 12, DECEMBER 2006

The two examples above show that under certain conditions
the entropy rate of a binary hidden Markov chain with unam-
biguous symbol can fail to be analytic at the boundary. We now
show that these examples typify all the types of failures of ana-
lyticity at the boundary (in the case of a binary hidden Markov
chains with an unambiguous symbol).

We will need the following result.

Lemma 7.5: Let be an analytic parameterization of
complex matrices. Let be the spectral radius of . Then
for any , there exists a complex neighborhood of
and positive constant such that for all and all

Proof: Following [29], we consider

And

where are the eigenvalues of . So every entry of
takes the form

Since the eigenvalues of a complex matrix vary continuously
with entries, the lemma follows.

Now let denote the set of all the complex matrices
with isolated (in modulus) maximum eigenvalue.

Lemma 7.6: is connected.
Proof: Let , then we consider their Jordan

forms

here are maximum eigenvalues for , respectively,
correspond to other Jordan blocks, and

(here denotes the set of all the nonsingular
complex matrices). Since is connected [19], it suf-
fices to prove that there is a path in from to

. This is straightforward: first connect
to by a continuous rescaling; then connect

to by the path (the path
stays within since the

matrices along this path are upper triangular with all diagonal
entries, except , of modulus less than ).

For a complex analytic function , let
denote the “hypersurface” defined by , namely

Now let denote a connected open set in . It is well known
that the following lemma holds (for completeness, we include a
brief proof).

Lemma 7.7: is connected.
Proof: For simplicity, we first assume is a ball

(here is the center of the ball and is the radius, i.e.,
) in . For any two distinct

points , consider the “complex line”

consists of only isolated points (A noncon-
stant one variable complex analytic function must have isolated
zeros in the complex plane [30]). It then follows that for the
compact real line segment

consists of only finitely many points. Cer-
tainly one can choose an arc in to avoid these points
and connect and . This implies that is connected.

In the general case, is a connected open set in . Let be
an arc in connecting and , and let be a collec-
tion of balls covering such that each

. Pick a point in such that
. Applying the same argument as above to every ball

, we see that is connected to in through
the points ’s. Thus, we prove the lemma.

Theorem 7.8: Let be an irreducible stochastic matrix.
Write in the form

(7.24)

where is a scalar and is a matrix. Let be
the function defined by , and

. Then for any parametrization such that ,
letting denote the hidden Markov chain defined by and

is analytic at if and only if
1. , and for ;
2. the maximum eigenvalue of is simple and strictly greater

in absolute value than the other eigenvalues of .

Proof:
Proof of sufficiency. We write

(7.25)

where is a scalar and is a matrix.
Since is stochastic and irreducible, its spectral

radius is , and is a simple eigenvalue of . Thus, if
is sufficiently small, for all , any fixed row

of is a
left eigenvector of associated with eigenvalue and
is an analytic function of . Normalizing, we can assume
that is analytic in , and for

.
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The entries of and are real analytic in and
can be extended to complex analytic functions in a complex
neighborhood of . Thus, for all

and

can be extended to complex analytic functions on (in fact,
each of these functions is a polynomial in ).

Since is a proper submatrix of the irreducible sto-
chastic matrix , its spectral radius is strictly less than .
Thus, by Lemma 7.5, there exists and a constant

, such that for some complex neighborhood of ,
all , and all

Since and are continuous in , there is a constant
such that for all and all

(7.26)

We will need the following result, proven in Appendix B.

Lemma 7.9: Let

For a sufficiently small neighborhood of , both
and are bounded from above and away from zero, uni-
formly in and .

Define

where and are as in Lemma 7.9. Choosing
to be a smaller neighborhood of , if necessary, and

are constrained to lie in a closed disk not containing
. Thus, for all is an analytic function of , with

bounded uniformly in and . Since
is analytic on and exponentially decaying (by (7.26)), the
infinite series

(7.27)

converges uniformly on and thus defines an analytic func-
tion on .

Note that for

(7.28)

and

(7.29)

By (7.28), (7.29), and (7.22), agrees with the entropy
rate when , as desired.

Remark 7.10: We show how sufficiency relates to Theorem
6.1. Namely, the assumptions in Theorem 7.8 imply those of

Theorem 6.1. Condition 1 of Theorem 6.1 follows from the fact
that is assumed irreducible. For conditions 2 and 3 of The-
orem 6.1, one first notes that the image of is a single point ,
and the -orbit of and -orbit of converge to a point .
It follows that is the union of , the -orbit of and .
The assumptions in Theorem 7.8. imply that on (i.e.,
condition 2 of Theorem 6.1 holds) and that for sufficiently large

, the -fold composition of is contracting on the convex hull
of the intersection of and (so condition 3 of Theorem 6.1
holds). To see the latter, one uses the ideas in the proof of suffi-
ciency.

Proof:
Proof of necessity We first consider Condition 2. We shall

use the natural parameterization and view as a function
of , or more precisely of . Note that there is a one-to-one
correspondence between and ; we shall use this corre-
spondence throughout the proof.

Suppose does not satisfy Condition 2, however, is
analytic at with respect to the natural parameterization. In
other words, suppose there exists a complex neighborhood
of (here corresponds to where is neighbor-
hood of and is neighborhood of ) such that can be
analytically extended to , while the corresponding does
not have isolated (in modulus) maximum eigenvalue.

We first claim there exists with , here
and correspond to and has distinct eigenvalues (in mod-
ulus). Indeed, we can first (for simplicity) perturb to such
that the corresponding has distinct eigenvalues in modulus.
Then

where , and ’s are appropri-
ately scaled right and left eigenvectors of , respectively. Then
we have

Further, consider a perturbation of from

to

where is a complex matrix close to the iden-
tity matrix . So we can pick such that

. Clearly, is not
proportional to . Then by a further perturbation of
to , we can simultaneously require that

, where we redefine
and . For any and , it can be

checked that
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Since is a perturbation of , it follows that for large enough
, one can perturb to satisfy the equation at the bottom of

the page, with and strictly greater than for
. Thus we prove the claim.

We now pick a positive matrix with corresponding
and . We then pick with corresponding and (with
distinct eigenvalues in modulus) such that for some

, and we can further require that
(see the proof for the previous claim), where as before,
are eigenvectors corresponding to the largest eigenvalue of .
According to Lemma 7.6, there is an arc con-
necting to ; we then connect and using an arc in .
According to Lemma 7.7, we can choose the arc to
avoid the hypersurface

in other words, we can assume that along the path
and ; here are determined by the variable

matrix along the path and is the variable point along
path (we remind the reader that the coordinates of and
are all analytic functions of the entries of ). We then claim
that there is a neighborhood of such that
and hold for only finitely many , where

and . Indeed,
for any with corresponding , by the Jordan
form we have

where is the isolated maximum eigenvalue and are
appropriately scaled right and left eigenvectors of , respec-
tively. Since on , there exists a complex con-
nected neighborhood of such that on
and dominates uniformly on (see Lemma 7.5).
Consequently, on for large enough . In other
words, holds for only finitely many . Similarly,
since on , there exists a complex neighborhood

of (here we use the same notation for a possibly different
neighborhood) such that holds only for finitely
many . From now on, we assume such ’s are less than some

, which depends on .
We claim that we can further choose and find a new neigh-

borhood in of such that
holds only for and for all . Consider

with corresponding , let ,
which is a hyperplane orthogonal to the vector in .
Similarly, we define . Re-
call that ; we can require
that has no zero coordinates by a small perturbation
of if necessary. We then show that ’s and ’s define
different hyperplanes in . Indeed, suppose .

It follows that is propor-
tional to . It then follows that

is proportional to . How-
ever, since not all eigenvalues have the same modulus, this
implies that . With a perturbation of (equivalently, a
perturbation of row sums of ), if necessary, we conclude
that the ’s and ’s determine different hyperplanes, i.e.,

for , and for all .
Thus, with a perturbation of if necessary, we can choose a new

contained in , but not contained in any with
or for all . Again, by Lemma 7.7, one can choose a new
inside original , connecting and , to avoid all ’s and

’s except , then choose a smaller new neighborhood
of the new to make sure that only holds for

and for all .
Since the perturbed complex matrix still has spectral radius

strictly less than , all the complexified terms in the entropy rate
formula (see (7.27)) with are exponentially decaying
and thus sum up to an analytic function on (i.e., the sum
of these terms can be analytically continued to ), while the
unique analytic extension of the th term on blows up as
one approaches from . Again, by the uniqueness of
analytic extension of on , this would be a contradic-
tion to the assumption that is analytic at (here we are
applying the uniqueness theorem of analytic continuation of a
function of several complex variables, see [30, p. 21]). Thus, we
prove the necessity of Condition 2.

We now consider Condition 1. Suppose does not satisfies
Condition 1, namely, or for some , however,

is analytic at . With the proof above for the necessity
of Condition 2, we can now assume the corresponding

.
If , consider any perturbation of to such that

and
for all (here we follow the notation as in the proof

of necessity of Condition 2). Then using similar arguments, we
can prove the sum of all the terms except the first term in the en-
tropy rate formula (see (7.27)) can be analytically extended to

. However, this implies that is a well-defined analytic
function on some neighborhood of in , which is a contradic-
tion. Similar arguments can be applied to the case that
for some ’s. Thus, we prove the necessity of Condition 1.

VIII. ANALYTICITY OF A HIDDEN MARKOV CHAIN IN A

STRONG SENSE

In this section, we show that if is analytically parameter-
ized by a real variable vector , and at satisfies Conditions
1 and 2 of Theorem 1.1, then the hidden Markov chain itself is
a real analytic function of at in a strong sense. We assume
(for this section only) that the reader is familiar with the basics
of measure theory and functional analysis [17], [34], [18]. Our



HAN AND MARCUS: ANALYTICITY OF ENTROPY RATE OF HIDDEN MARKOV CHAINS 5263

approach uses a connection between the entropy rate of a hidden
Markov chain and symbolic dynamics explored in [16].

Let denote the set of left infinite sequences with finite
alphabet. A cylinder set is a set of the form

. The Borel sigma-algebra is the smallest
sigma-algebra containing the cylinder sets. A Borel probability
measure (BPM) on is a measure on the Borel measurable
sets of such that . Such a measure is uniquely de-
termined by its values on the cylinder sets.

For real , consider the measure on defined by

(8.30)

Note that can be rewritten as

(8.31)

Usually, the Borel sigma-algebra is defined to be the smallest
sigma-algebra containing the open sets; in this case, the open
sets are defined by the metric: for any two elements and in

, define where . The
metric space is compact.

Let be the space of real-valued continuous functions
on . Then is a Banach space (i.e., complete normed
linear space) with the sup norm .
Then any BPM acts as a bounded linear functional on ,
namely, . As such, the set of BPMs is a subset of
the dual space , which is itself a Banach space; the norm
of a BPM is defined as . In
fact, since is compact, is the linear span of the BPMs.

It makes sense to ask if is analytic as a mapping from
the parameter space to ; by definition, this would mean
that can be expressed as a power series in the coordinates of
. However, as the following example shows, this mapping is

not even continuous.
Let be the set of binary left infinite sequences. Let de-

note the i.i.d. measure, with . We claim that,
for fixed and with , by application
of the law of large numbers to and , one can find a finite
union of cylinder sets such that

and

To see this, first say that a word is -
typical if the frequency of ’s in is in . Let

be the union of the cylinder sets corresponding to the
-typical words. The law of large numbers asserts that

for sufficiently large

and

Since , then and are disjoint. Thus, we
have

Set .

Now, if is the characteristic function of , we have

So, . It follows that cannot converge in norm
to as , and so the map from to is
discontinuous.

On the other hand, using the work of Ruelle [26], we now
show that is analytic as a mapping from the parameter
space to another natural space.

For , define

for

We denote by the subset of such that

is a Banach space with the norm .
Let denote the dual space (i.e., the set of bounded linear
functionals) on . For any , the norm of is natu-
rally defined as . Using complex
functions instead of real functions, one defines and
similarly.

In the following theorem, we prove the analyticity of a hidden
Markov chain in a strong sense.

Theorem 8.1: Suppose that the entries of are analytically
parameterized by a real variable vector . If at sat-
isfies Conditions 1 and 2 in Theorem 1.1, then the mapping

is analytic at from the real parameter
space to (here is the contraction constant in the proof of
Theorem 1.1). Moreover, the mapping is analytic at
from the real parameter space to .

Proof: For complex , by (4.16), one shows that
can be defined on as the uniform (in and

) limit of as , and
belongs to . By (4.5), (4.6), (4.7), and (4.14) it follows
that is analytic on . As a result of (4.16), if
satisfies Conditions 1 and 2, for fixed
is the uniform limit of analytic functions and hence is analytic
on (see [32, Theorem 2.4.1]).

For a given sequence , let
. Let denote the vector of partial

derivatives of with respect to at . Using (4.16)
and the Cauchy integral formula in several variables [32]
(which expresses the derivative of an analytic function at a
point as an integral on a closed surface around the point), we
obtain the following. There is a positive constant such that
whenever , for all

(8.32)

For a direction in the parameter space, let denote
the directional derivative of at in direction . Let

denote the function on , whose value on
is given by . By (8.32),

belongs to .
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Now, we must prove that the mapping
is complex differentiable (therefore analytic) from to .
For this, it suffices to prove that for all

(8.33)

and

(8.34)

Let denote the second directional derivative
in direction of at . Again, applying the
Cauchy integral formula in several variables, it follows that there
exists a positive constant such that for all we have

(8.35)

and whenever

(8.36)

From the Taylor formula with integral remainder, we have

(8.37)

To prove (8.33), use (8.35) and (8.37). To prove (8.34),
use (8.36) and (8.37). Therefore, is ana-
lytic as a mapping from to . Restricting the mapping

to the real parameter space, we conclude
that it is real analytic (as a mapping into ). Using this and
the theory of equilibrium states [26], the “Moreover” is proven
in Appendix C.

Corollary 8.2: Suppose that at satisfies Conditions 1
and 2 in Theorem 1.1, and is analytic at , then

is analytic at . In particular, we recover Theorem
1.1: is analytic at .

Proof: The map

is analytic at , as desired.

APPENDIX A
PROOF OF PROPOSITION 2.1

Proof: Without loss of generality, we assume is convex
(otherwise, consider the convex hull of ). It follows from stan-
dard arguments that max and sum norms are equivalent. More
specifically, for another metric defined by

we have . For metric defined by

Applying mean value theorem to function, one concludes
that . Note that

Applying the mean value theorem to function , defined as

we conclude that there exists such that

It follows from Cauchy inequality that there exists a positive
constant such that

Similarly, consider , and apply mean value the-
orem to function , defined as , we show that
there exists a positive constant such that

Namely, . Thus, the claim in this proposition follows,
namely, there exist two positive constant such that for
any two points

APPENDIX B
PROOF OF LEMMA 7.9

Recall that for a nonnegative matrix , the canonical form of
is

...
...

. . .
...

where is either an irreducible matrix (called irreducible
components) or a zero matrix.

Condition 2 in Theorem 7.8 is equivalent to the statement that
has a unique irreducible component of maximal
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spectral radius and that this component is primitive. Let de-
note the square matrix obtained by restricting to this compo-
nent and let denote the set of indices corresponding to this
component. Let denote the spectral radius of , equivalently,
the spectral radius of .

Let denote the largest, in modulus, eigenvalue of .
Since the entries of are analytic in and is simple, it fol-
lows that if the complex neighborhood is chosen sufficiently
small, then is an analytic function of .

The columns (resp., rows) of are right
(resp., left) eigenvectors of corresponding to . By
choosing (resp., ) to be a fixed column (resp., row)
of and then replacing and by
appropriately rescaled versions, we may assume that

• , and they are positive on ;
• ;
• and are analytic in .
Let

and

Then

And similarly

Let denote the spectral radius of . By Condition 2,
. Thus, there is a constant such that if the

neigbourhood is sufficiently small, then for all

Thus, by Lemma 7.5, and making still smaller if necessary,
there is a constant such that for all , all and all

(B.38)

Let and .
Let . Since is irreducible, for some

. Similarly, there exist a state of the
underlying Markov chain and such that . Now

Since is primitive, by Perron–Frobenius theory,
grows like (up to a scalar) as goes to infinity; it
then follows that there is a constant such that for sufficiently
large

which by (B.38) implies that . Therefore, if is
sufficiently small, there exists a positive constant such that

for .
Let be an upper bound on the entries of

and .
Thus, for all and all , we have

and

With similar upper and lower bounds for , it fol-
lows that for sufficiently large and all

and

are uniformly bounded from above and away from zero. By
Condition 1, for any finite collection of , there is a (possibly
smaller) neighborhood of , such that for all , these
quantities are uniformly bounded from above and away from
zero. This completes the proof of Lemma 7.9 (and therefore,
the proof of sufficiency for Theorem 7.8).

APPENDIX C
IS ANALYTIC

In this appendix, we follow the notation in Section VIII. Let
be the right shift operator, which is a continuous

mapping on under the topology induced by the metric . For
, one defines the pressure via a variational principle

[26]

where denotes the set of -invariant probability mea-
sures on and denotes measure-theoretic entropy. A
member of is called an equilibrium state for if

.
For , the Ruelle operator is

defined [26] by

The connection between pressure and the Ruelle operator is as
follows [26], [28]. When is , where is
the spectral radius of . The restriction of to still has
spectral radius , and is isolated from all other eigenvalues
of the restricted operator. Using this, Ruelle applied standard
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perturbation theory for linear operators [13] to conclude that
pressure is real analytic on . Moreover, he showed that
each has a unique equilibrium state and the first-
order derivative of on is , viewed as a linear
functional on . So, the analyticity of implies that the
equilibrium state is also analytic in .

We first claim that for , we have
as in (8.30).

To see this, first observe that the spectral radius of
is ; this follows from the following observations:

• the function which is identically on is a fixed point
of and

• (see [26, Proposition 5.16]) converges to a
strictly positive function.

Thus, . So, for , we have

But from (8.31), we have

By uniqueness of the equilibrium state, we thus obtain
as claimed.

Since is analytic, it then follows that is
analytic, thereby completing the proof of Theorem 8.1.
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