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AUTOMORPHISMS FIXING A VARIABLE OF K〈x, y, z〉

VESSELIN DRENSKY AND JIE-TAI YU

Abstract. We study automorphisms ϕ of the free associative algebra K〈x, y, z〉
over a field K such that ϕ(x), ϕ(y) are linear with respect to x, y and ϕ(z) = z.
We prove that some of these automorphisms are wild in the class of all au-
tomorphisms fixing z, including the well known automorphism discovered by
Anick, and show how to recognize the wild ones. This class of automorphisms
induces tame automorphisms of the polynomial algebra K[x,y, z]. For n > 2
the automorphisms of K〈x1, . . . , xn, z〉 which fix z and are linear in the xis
are tame.

Introduction

Let K be a field of any characteristic and let X = {x1, . . . , xn}, n ≥ 2, be a
finite set. We denote by K[X ] the polynomial algebra in the set of variables X
and by K〈X〉 the free associative algebra (or the algebra of polynomials in the
set X of noncommuting variables). We write the automorphisms of K[X ] and
K〈X〉 as n-tuples of the images of the coordinates, i.e., ϕ = (f1, . . . , fn) means
that ϕ(xj) = fj(X) = fj(x1, . . . , xn), j = 1, . . . , n. We distinguish two kinds
of K-algebra automorphisms of K[X ] and K〈X〉. The first kind are the affine
automorphisms

(

n
∑

i=1

αi1xi + β1, . . . ,
n
∑

i=1

αinxi + βn

)

,

where αij and βj belong to K and the n×n matrix (αij) is invertible. The second
kind are the triangular automorphisms

(α1x1 + f1(x2, . . . , xn), . . . , αn−1xn−1 + fn−1(xn), αnxn + fn) ,

where αj are invertible elements of K and the polynomials fj(xj+1, . . . , xn) do not
depend on the first j variables. The affine and the triangular automorphisms gener-
ate the group of the tame automorphisms. Instead of affine, one can consider linear
automorphisms only, assuming that the polynomials f1, . . . , fn have no constant
terms.

Many problems concerning automorphisms of free objects are stated in a similar
way for free groups, polynomial algebras, free associative and free Lie algebras,
for relatively free groups and algebras. Sometimes the solutions are obtained with
similar methods but very often they require different techniques and the obtained
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results sound in different way, see the recent book [MSY] by Mikhalev, Shpilrain
and Yu. The results and the open problems on automorphisms of polynomial
algebras have served as the main motivation for the study of automorphisms of free
associative algebras.

It is a classical result of Jung [J] (for K = C) and van der Kulk [K] (for any
K), that all automorphisms of K[x, y] are tame. Czerniakiewicz [Cz] and Makar-
Limanov [ML1, ML2] proved that all automorphisms of K〈x, y〉 are also tame. This
implies that Aut K〈x, y〉 ∼= Aut K[x, y].

It was an open problem whether there exist nontame (or wild) automorphisms
of K[X ] for n = |X | ≥ 3. Nagata [N] constructed his famous example, the auto-
morphism of K[x, y, z] defined by

(x− 2(y2 + xz)y − (y2 + xz)2z, y + (y2 + xz)z, z).

It fixes z and, as Nagata showed, is wild considered as an automorphism ofK[z][x, y],
i.e., cannot be presented as a product of tame automorphisms of K[x, y, z] which
fix z. It was conjectured that the Nagata automorphism is wild also as an element
of Aut(K[x, y, z]) and it was one of the main open problems in the theory of poly-
nomial automorphisms for more than 30 years. Recently, Shestakov and Umirbaev
[SU1, SU2, SU3] have developed a special technique based on noncommutative al-
gebra (Poisson algebras) and have established that the Nagata automorphism is
wild. They have also proved that every automorphism of K[x, y, z], which fixes
z and is wild as an automorphism of K[z][x, y], is wild as an automorphism of
K[x, y, z]. Umirbaev and Yu [UY] have established even a stronger version of this
result: If ϕ ∈ Aut K[z][x, y] is wild, then there exists no tame automorphism of
K[x, y, z] which sends x to ϕ(x). In this way, if f(x, y, z) is a K[z]-wild coordinate
in K[z][x, y], then it is immediately wild also in K[x, y, z]. (A coordinate means an
automorphism image of a variable.) In [DY1] the authors of the present paper com-
menced the systematic study of the wild automorphisms and wild coordinates of
K[z][x, y], see also their survey [DY2]. In particular, they provided many new wild
automorphisms and wild coordinates of K[z][x, y] which are automatically wild au-
tomorphisms and wild coordinates of K[x, y, z]. For n > 3 the problem for existing
of wild automorphisms of K[X ] is still open.

Up till now no wild automorphisms of the free algebras with more than two
generators are known. There are some candidates to be wild, see the book by Cohn
[C2]. One of them is the example of Anick (x + y(xy − yz), y, z + (zy − yz)y) ∈
Aut K〈x, y, z〉, see [C2], p. 343. Although it fixes one variable, its abelianization is
a tame automorphism of K[x, y, z] and we cannot apply the results of Shestakov,
Umirbaev and Yu. Of course, if we were able to lift the Nagata automorphism (or
any wild automorphism of K[x, y, z]) to any automorphism of K〈x, y, z〉, this would
give an example of a wild automorphism of K〈x, y, z〉.

The present paper is motivated by the idea that the results on the automorphisms
of K[z][x, y] give important information on the automorphisms of K[x, y, z]. We
study automorphisms of the free algebra K〈x, y, z〉 which fix the variable z. We
restrict our considerations to the automorphisms ϕ such that ϕ(x), ϕ(y) are linear
with respect to x, y. We call such automorphisms linear K[z]-automorphisms. We
prove that some of these automorphisms are wild in the class of all automorphisms
fixing z, including the automorphism discovered by Anick, and show how to recog-
nize the wild ones. This class of automorphisms induces tame automorphisms of
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the polynomial algebraK[x, y, z]. For n > 2 the automorphisms of K〈x1, . . . , xn, z〉
which fix z and are linear in the xis are tame.

A forthcoming paper will be devoted to the description of the structure of the
group of all K[z]-automorphisms of K〈x, y, z〉.

1. Preliminaries

We fix a field K of any characteristic, a set of variables X = {x1, . . . , xn},
n ≥ 2, and one more variable z. The main object of our paper is the free algebra
K〈X, z〉 in the set of free generators X ∪ {z}. The algebra K〈X, z〉 is isomorphic
to the free product K[z] ∗K K〈X〉. We call an endomorphism ϕ of K〈X, z〉 a K[z]-
endomorphism if it fixes z (and hence K[z] ⊂ K〈X, z〉) and write ϕ = (f1, . . . , fn),
where fj = ϕ(xj), j = 1, . . . , n. We denote the group of K[z]-automorphisms by
AutK[z]K〈X, z〉.

Defining the tame K[z]-automorphisms of K〈X, z〉, the group of the triangular
automorphisms consists obviously of the automorphisms

(α1x1 + f1(x2, . . . , xn, z), . . . , αn−1xn−1 + fn−1(xn, z), αnxn + fn(z)) ,

αj ∈ K∗, fj ∈ K〈X, z〉, but we have to decide which are the linear automorphisms.
We may call a K[z]-automorphism (f1, . . . , fn) linear if the polynomials fj are

linear with respect to X , with coefficients depending on z. But for n = 2 it is
not known whether a big class of automorphisms similar to this of Anick are tame,
although they all are linear with respect to X . So, we prefer to introduce the group
of elementary linear automorphisms generated by the automorphisms

(α1x1, . . . , αnxn), (x1, . . . , xj−1, xj + a(z)xib(z), xj+1, . . . , xn), i 6= j,

αj ∈ K∗, a, b ∈ K[z], and to generate the group of the tame K[z]-automorphisms
by the elementary linear automorphisms and the triangular automorphisms. As
we shall see, the celebrated Suslin theorem [Su] gives that for n = |X | ≥ 3 the
two possible definitions are equivalent. Our paper is concentrated around K[z]-
endomorphisms of K〈X, z〉 which are linear with respect to X . We call such endo-
morphisms linear K[z]-endomorphisms.

One of the main tools in the study of automorphisms is the Jacobian ma-
trix. If ϕ = (f1, . . . , fn) is an automorphism of K[X ], then the Jacobian matrix
J(ϕ) = (∂fj/∂xi) is invertible. The famous Jacobian conjecture states that, if
char K = 0 and J(ϕ) is invertible for an endomorphism ϕ, then ϕ is an automor-
phism, see the book by van den Essen [E] for the history and the state-of-the-art
of the problem. There are various analogues of the Jacobian matrix in the case of
(relatively) free groups and (relatively) free associative and Lie algebras, see [MSY].
In the case of free associative algebras, the exact analogue of the Jacobian matrix
was introduced by Dicks and Lewin [DL] who proved the Jacobian conjecture for
the free associative algebra K〈x, y〉 with two generators. The complete solution,
also into affirmative, was given by Schofield in his book [Sc]. Implicitly, in terms of
endomorphisms, the Jacobian matrix appeared in the paper [Y] by Yagzhev who
used it to construct an algorithm which recognizes whether an endomorphism of
K〈X〉 is an automorphism.

We recall the construction of the partial derivatives of Dicks and Lewin. Let
y0 = z, y1 = x1, . . . , yn = xn, Y = {y0, y1, . . . , yn} and F = K〈Y 〉. The algebra
M(F ) of the multiplications of F is a subalgebra of the algebra ofK-linear operators
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acting on F and is generated by the operators λ(u) : F → F and ρ(u) : F → F ,
u ∈ F , of left and right multiplications defined, respectively, by

wλ(u) = uw, wρ(u) = wu, w ∈ F.

The operators λ(u) and ρ(v) commute and M(F ) ∼= F op ⊗K F , where F op is the
opposite algebra of F . The isomorphism is given by

∑

λ(up)ρ(vp) →
∑

up ⊗ vp

and the opposite algebra appears because wλ(u1)λ(u2) = u2u1w = wλ(u2u1). We
define the partial derivatives on the monomials w = yj1 · · · yjk

∈ F by

∂w

∂yi

=

k
∑

p=1

(

yj1 · · · yjp−1

)

⊗
(

yjp+1
· · · yjk

)

δpi ∈ F op ⊗K F,

where δpi = 0, 1 is the Kronecker symbol, and then extend them on F by linearity.
The Jacobian matrix of an endomorphism ϕ = (f0, f1, . . . , fn) of F is defined by

J(ϕ) =





















∂f0

∂y0

∂f1

∂y0
· · · ∂fn

∂y0

∂f0

∂y1

∂f1

∂y1
· · · ∂fn

∂y1

...
...

. . .
...

∂f0

∂yn

∂f1

∂yn
· · · ∂fn

∂yn





















.

If ϕ fixes z = y0, the first column of this matrix consists of one 1 and n zeros and
the matrix is invertible if and only if the matrix

JK[z](ϕ) =









∂f1

∂y1
· · · ∂fn

∂y1

...
. . .

...
∂f1

∂yn
· · · ∂fn

∂yn









is invertible and we call the latter matrix JK[z](ϕ) the Jacobian matrix of the
K[z]-endomorphism ϕ.

It is well known (and easy to check) that the Jacobian matrices satisfy the chain
rule

J(ϕψ) = J(ϕ)ϕ(J(ψ)),

where ϕ(J(ψ)) means that ϕ acts on the entries of J(ψ). In particular, if ϕ is an
automorphism, then Jϕ is invertible, i.e. belongs to GLn+1(M(F )). The theorem
of Dicks-Lewin-Schofield gives that the invertibility of J(ϕ) implies that ϕ is an
automorphism. It is obvious, that the same holds for the matrix JK[z](ϕ) when
ϕ is a K[z]-endomorphism of F = K〈X, z〉. If ϕ = (f1, . . . , fn) is a linear K[z]-
endomorphism of K〈X, z〉, then

fj =

n
∑

i=1

kij
∑

p=1

bijp(z)xicijp(z)

and the entries aij of JK[z](ϕ) = (aij) are of the form

aij =

kij
∑

p=1

bijp(z) ⊗ cijp(z) ∈ K[z]op ⊗K K[z] ⊂ F op ⊗K F.
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Since K[z]op ⊗K K[z] ∼= K[z1, z2], identifying z ⊗ 1 with z1 and 1 ⊗ z with z2, we
can consider JK[z](ϕ) as a matrix with entries from K[z1, z2].

Lemma 1. Let ϕ be a linear K[z]-endomorphism of F = K〈X, z〉. Then ϕ is an

automorphism of F if and only if its Jacobian matrix JK[z](ϕ) belongs to to the

group GLn(K[z1, z2]) of the invertible matrices with entries from K[z1, z2]. The

group of the linear K[z]-automorphisms of F is isomorphic to GLn(K[z1, z2]).

Proof. The first part of the lemma follows from the fact that an n× n matrix with
entries from K[z]op ⊗K K[z] ⊂ F op ⊗K F is invertible over F op ⊗K F if and only
if it is invertible over K[z]op ⊗K K[z]. For the second part, if ϕ, ψ are linear K[z]-
endomorphisms, then the matrices JK[z](ϕ), JK[z](ψ) depend on z1, z2 only and the
chain rule gives that JK[z](ϕψ) = JK[z](ϕ)JK[z](ψ), i.e., the Jacobian matrix of the
product of two linear K[z]-endomorphisms is equal to the product, over K[z1, z2],
of the Jacobian matrices of the factors. �

2. The Main Results

By the theorem of Suslin [Su], for n ≥ 3, every matrix in GLn(K[z1, . . . , zp])
can be presented as a product of a diagonal matrix and elementary matrices, i.e.,
belongs to the group GEn(K[z1, . . . , zp]). For n = 2, this is not true. Cohn [C1]
showed that the matrix

(

1 + z1z2 z2
2

z2
1 1 − z1z2

)

∈ SL2(K[z1, z2])

cannot be presented as a product of elementary 2 × 2 matrices with entries from
K[z1, z2].

Theorem 2. (i) A linear K[z]-automorphism of K〈x, y, z〉 is tame if and only if

its Jacobian matrix belongs to the group GE2(K[z1, z2]).
(ii) Every linear K[z]-automorphism of K〈x, y, z〉 induces a tame automorphism

of K[x, y, z].
(iii) For n > 2, any linear K[z]-automorphism of K〈X, z〉 is tame.

Proof. (i) The algebra F = K〈x, y, z〉 has an augmentation assuming that the
variables x, y are linear and z is a “constant”, i.e. of zero degree. The corresponding
augmentation ideal ωF consists of all polynomials without terms depending only
on z. Every element f of F has the form

f = f0(z) + f1(x, y, z) + f2(x, y, z),

where f0(z) ∈ K[z], f1(x, y, z) is linear with respect to x, y and f2(x, y, z) ∈ ω2
F .

It is easy to see (as in the case of endomorphisms of K[X ] and K〈X〉) that the
K[z]-endomorphism ϕ = (f(x, y, z), g(x, y, z)), f = f0 + f1 + f2, g = g0 + g1 +
g2, is an automorphism if and only if the augmentation preserving endomorphism
ϕ0 = (f1 + f2, g1 + g2) is an automorphism. Also, ϕ is tame if and only if ϕ0

is tame. Then we can decompose ϕ0 as a product of elementary augmentation
preserving automorphisms. So, we may restrict our considerations to augmentation
preserving K[z]-automorphisms only. If ϕ0 is an automorphism, then the linear
K[z]-endomorphism ϕ′ = (f1, g1) is also an automorphism. If ϕ0 is tame, then
ϕ′ is a product of elementary linear K[z]-automorphisms. Hence, a linear K[z]-
automorphism ϕ of K〈x, y, z〉 is tame if and only if it is a product of elementary
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linear K[z]-automorphisms. By Lemma 1 this means that JK[z](ϕ) belongs to
GE2(K[z1, z2]).

(ii) The linear K[z]-automorphism ϕ of K〈x, y, z〉 induces a linear K[z]-auto-
morphism ϕ̄ of K[x, y, z]. Its Jacobian matrix JK[z](ϕ̄) belongs to GL2(K[z]).
Since K[z] is a principal ideal domain, the groups GL2(K[z]) and GE2(K[z]) co-
incide. This gives that JK[z](ϕ̄) is a product of a diagonal matrix and elementary
matrices with entries from K[z]. Since the diagonal and the elementary matri-
ces correspond to elementary linear automorphisms, we derive that ϕ̄ is a tame
K[z]-automorphism.

(iii) The Jacobian matrix JK[z](ϕ) of the linear K[z]-automorphism ϕ of K〈X, z〉
belongs to GLn(K[z1, z2]). The theorem of Suslin gives that JK[z](ϕ) is a product
of a diagonal matrix and elementary matrices. Again, these matrices correspond to
elementary linear automorphisms and we obtain the proof. �

Recall that an automorphism (f1, . . . , fn) of K〈X〉 is called stably tame if the
automorphism (f1, . . . , fn, xn+1, . . . , xn+m) of K〈X,xn+1, . . . , xn+m〉 is tame for
some m ≥ 1. Theorem 2 (iii) immediately gives:

Corollary 3. The linear K[z]-automorphisms of K〈x, y, z〉 are stably tame.

There is an algorithm which decides whether a matrix in GL2(K[z1, . . . , zp])
belongs toGE2(K[z1, . . . , zp]). It was suggested by Tolhuizen, Hollmann and Kalker
[THK] for the partial ordering by degree and then generalized by Park [P] for any
monomial ordering on K[z1, . . . , zp]. One applies Gaussian elimination process on
the matrix based on the Euclidean division algorithm for K[z1, . . . , zp]. The matrix
belongs to GE2(K[z1, . . . , zp]) if and only if this procedure brings it to an elemetary
or diagonal matrix. The result of Park was already used by Shpilrain and Yu [SY] to
give an algorithm which recognizes whether a polynomial in K[x, y] is a coordinate,
and by the authors in [DY1] to decide whether a polynomial in K[z][x, y] is a
coordinate and a tame coordinate.

Consider the automorphism (x+ y(xy− yz), y, z+ (zy− yz)y) of K〈x, y, z〉 con-
structed by Anick. Exchanging the places of y and z, we obtain the automorphism

ϕ = (x+ z(xz − zy), y + (xz − zy)z) ∈ AutK[z]K〈x, y, z〉.

Its abelianization ϕ̄ = (x + z2(x − y), y + z2(x − y)) is a tame automorphism of
K[z][x, y]: Apply Theorem 2 (ii) or change the coordinates (x, y) of K[z][x, y] to
(u, y) = (x− y, y), then

ϕ̄ = (x− y, y + z2(x− y)) = (u, y + z2u).

Clearly, ϕ is a linear K[z]-automorphism. Its Jacobian matrix is

JK[z](ϕ) =

(

1 + z1z2 z2

z2
1 1 − z1z2

)

and is the matrix constructed by Cohn. It cannot be presented as a product of
elementary 2×2 matrices with entries from K[z1, z2]. (Direct arguments: Applying
the Gaussian elimination process, we cannot reduce the entries of JK[z](ϕ) using
only the Euclidean division algorithm because the leading terms of the entries of
the columns are not divisible by each other.) Hence, Theorem 2 (i) gives that this
automorphism is wild considered as a K[z]-automorphism. On the other hand, by
Corollary 3, it is stably tame. An explicit decomposition of JK[z](ϕ) can be obtained



AUTOMORPHISMS FIXING A VARIABLE OF K〈x, y, z〉 7

from the proof of the lemma of Mennicke, see Lemma 2.3 of [PW]. The sequence
of elementary operations in [PW], p. 281, formula (2.1), gives the decomposition





1 + z1z2 z2
2 0

z2
1 1 − z1z2 0
0 0 1





= E13(−z2)E23(−z1)E31(z1)E32(−z2)E13(z2)E23(z1)E31(−z1)E32(z2),

where the matrix Eij(αz
a
1z

b
2) corresponds to the K[z]-automorphism of K〈x, y, t, z〉

defined by xj → xj + αzaxiz
b, xk → xk, when k 6= j, and x1 = x, x2 = y, x3 = t.
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